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II.II.I. Scale Invariant Power-laws: Morphometry 
and Allometry of Networks 

First step in drainage basin 

analyses is the classification of 

stream orders by Horton-

Strahler’s ordering system 

(Horton, 1945; Strahler, 1957). 

The order of the whole tree is 

defined to be the order of the 

root. This ordering system has 

been found to correlate well 

with important basin properties 

in a wide range of 

environments.   
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This figure shows a sample 
network classified based on 
Horton-Strahler’s ordering 
system.  

Cameron Highland 

channel network. Model network. 



Scale Invariant Power-laws: Two Topological 
Quantities 
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 Two topological quantities bifurcation ratio (Rb) and length ratio (Rl)  

 

 

Networks extraction and their properties : Morphometry 

 Besides these two ratios, the universal similarity of stream network can 

be shown through Hack’s law and Hurst’s law as follows: 

 

 Hack’s Law:   

       where A is the area of basin with main channel length Lmc. 

 

 Hurst’s law:  

  where L|| is the longitudinal length and   

                          L transverse length respectively.  
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Allometric power-laws 

 Allometric power-laws are 

derived between the basic 

measures such as basin 

area, basin perimeter, 

channel length, longitudinal 

length and transverse 

length 

 Observed that these power-

laws are of universal type 

as they exhibit similar 

scaling relationships at all 

scales.  

 

Existing allometric power-laws: 

Decomposed basins & networks 
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Existing allometric power-laws  : 
Decomposed basins and networks 

13 April 2015 B. S. Daya Sagar 6 

The number of 

decomposed sub-basins 

of respective orders 

from the simulated 6th 

order F-DEM include: 

•  two 5th 

•  five 4th 

•  ten 3rd 

•  thirty six  2nd, and  

•  eighty six 1st order 

basins.  



Existing allometric power-laws :  

Decomposed basins and networks 
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Decomposed sub-basins 

are  
•  two 4th 

•  eight 3rd 

•  twenty-eight 2nd, and  

•  one hundred twenty-four 1st 

order basins. 



Existing allometric power-laws : Basic Measures 
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Basic measures for a basin, (a) basin area, (b) total channel length, (c) main channel length, (d) basin 
perimeter, (e) longitudinal length and (f) transverse length. 



Scale Invariant allometric power-laws 
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Allometric relationships among various areal and length parameters for all sub-basins of F-DEM and TOPSAR DEM. 



Scale Invariant allometric power-laws 
       F-DEM                     TOPSAR DEMs 
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Existing allometric power-laws : Scaling laws 

Our results shown for basins derived from F-DEM and TOPSAR DEM are in 

good accord with power-laws derived from Optimal Channel Networks 

(Maritan et. al., 2002) and Random Self-Similar Networks (Veitzer and Gupta 

2000) and certain natural river basins. 



Novel scaling relationships between travel-time channel 
networks, convex hulls and convexity measures 

Network topology and watershed geometry are important 
features in terrain characterization. 

Travel-time networks are sequence of networks generated by 
removing the extremities of the network iteratively. Hit-or-Miss 
transformation and Thinning transformations is used in 
generating travel-time network. Half-plane closing-based 
algorithm (Soille, 2005) is employed to generate convex hulls 
for these travel-time networks.  

Length of the travel-time network and area of the corresponding 
convex hull are used to derive new scaling exponents. 
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Proposed scaling relationships :  

Travel-time networks 
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• The process of deleting the end points from 
the networks is named as pruning. 

• To decompose the stream network subsets 
from n = 1 to N, structuring template of       
and         are decomposed into various  

 subsets,      where                        and           
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• Both structuring templates are disjointed into 

eight directions. The intersecting portion of 

eroded S and eroded Sc by disjointed 

templates        and        ,                 

respectively are computed to derive pruned 

version of S.  

• The X’s in the structuring templates signifies 

the ‘don’t care’ condition – it doesn’t matter 

whether the pixel in that location has a value 

of 0 or 1. 
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Proposed scaling relationships : Travel-time networks 

 Mathematically,  

                         Ө                  Ө        ,    where                

 By subtracting               from S, a pruned version of S is obtained and 
expressed as 

                        where,                    

        is the sequence of   

 After pruning of S in first pass with B1, the process continue with pruning 
with B2 and so on until S is pruned in the last pass with B8.  

 

 The whole process removes the first-encountered open pixels of S and 
produces S1. 

 Repeating the same process on S1 will produce S2 . The process is 
repeated until no further changes occur, where the closed outlet is 

reached.  
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Proposed scaling relationships : Convex hull 

Convex hull is the 
smallest convex set that 
contains all the points of 

the network. 

Since convex hull 
represents the basin of 
network, convex hulls of 
the travel-time networks 

are generated. 
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Proposed scaling relationships : Pruned network and 
convex hull 
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Properties of the pruned network: 

 

 1.  

 

 2. 

  

  3.     obtained by iterative pruning. 

 The final convex polygon containing all the points of S yields C(S).  
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Proposed scaling relationships  

 Network – pruning – network 

length = Sn 

 Convex hull computed – 

convex hull area = C(Sn) 

 Convexity measures, CM = 

ratio between the areas of Sn 

and C(Sn). 
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Proposed scaling relationships  

 Sample basin 

 Simulated F-DEM basins 

 Cameron basins 

 Petaling basins 
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Proposed scaling relationships 

Allometric power-laws between travel-time channel networks, convex hulls, and convexity measures for model 
network, networks of Hortonian fractal DEM, and networks of fourteen basins of Cameron Highlands and 

Petaling region. 
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Network α, (R2) σ, R2 λ, R2 Rb Rl h H 

Sample 0.5693, (0.9671) 0.6988, (0.8325) 0.4307, (0.9439) 3.84 1.66 - - 

Basin 1 (Cameron) 0.5777, (0.9883) 0.7109, (0.9358) 0.4223, (0.9783) 3.60 2.21 0.5414 0.9714 

Basin 2 (Cameron) 0.5774, (0.9925) 0.7189, (0.9586) 0.4226, (0.9861) 4.35 2.25 0.5561 1 

Basin 3 (Cameron) 0.5799, (0.9934) 0.7131, (0.963) 0.4201, (0.9875) 3.31 2.39 0.5612 0.9256 

Basin 4 (Cameron) 0.5521, (0.9835) 0.7814, (0.92) 0.4479, (0.9752) 4.47 3.18 0.5671 0.9506 

Basin 5 (Cameron) 0.5798, (0.9905) 0.7083, (0.9469) 0.4202, (0.982) 3.31 2.16 0.5766 0.9162 

Basin 6 (Cameron) 0.5819, (0.9865) 0.6955, (0.925) 0.4181, (0.9743) 4.00 2.64 0.5746 0.8597 

Basin 7 (Cameron) 0.5885, (0.9887) 0.68, (0.9348) 0.4115, (0.9772) 2.82 2.39 0.5548 0.895 

Basin 1 (Petaling) 0.5462, (0.969) 0.7741, (0.8561) 0.4538, (0.9557) 5.00 2.57 0.5568 0.9319 

Basin 2 (Petaling) 0.5393, (0.9899) 0.8357, (0.9532) 0.4607, (0.9863) 4.00 3.51 0.5828 0.8623 

Basin 3 (Petaling) 0.5198, (0.9852) 0.8953, (0.9367) 0.4802, (0.9827) 4.24 3.30 0.597 0.9019 

Basin 4 (Petaling) 0.5592, (0.9938) 0.7771, (0.9684) 0.4408, (0.99) 4.24 2.96 0.5807 0.8902 

Basin 5 (Petaling) 0.5729, (0.9906) 0.729, (0.9492) 0.4271, (0.9832) 4.79 3.96 0.5844 0.8704 

Basin 6 (Petaling) 0.5547, (0.9872) 0.7798, (0.937) 0.4453, (0.9804) 4.89 3.42 0.5713 0.9116 

Basin 7 (Petaling) 0.6059, (0.9929) 0.6387, (0.9551) 0.3941, (0.9834) 3.60 3.39 0.5865 0.8312 



Proposed scaling relationships 

These proposed scaling exponents are shown for basins derived 
from simulated F-DEM and TOPSAR DEMs. 

These exponents are scale-independent. 

At macroscopic level, these exponents complement with other 
existing scaling coefficients can be used to identify commonly 

sharing generic mechanisms in different river basins.  

13 April 2015 B. S. Daya Sagar 19 



  

II.II.II. Scale Invariant But 
Shape Dependent Power-laws 



Objectives 

To propose morphology based method via fragmentation rules 
to compute scale invariant but shape-dependent measures of 
non-network space of a basin. 

To make comparisons between morphometry based parameters 
/ dimensions and dimensions derived for non-network space. 

Topologically Invariant networks with variant geometric organization 



Proposed Technique 

Step1: Channel network is traced from topographic map. 

Step2: Channel network is dilated and eroded iteratively until the entire basin 
is filled up with white space. This step is to generate catchment boundary 
automatically. Dilation followed by erosion is called structural closing, which 
will smoothen the image. 

Step3: Generate the basin with channel network and non-network space with 
boundary by subtracting the channel network from the catchment boundary 
achieved in Step2. 

Step4: Structural opening (erosion followed by dilation) is performed 
recursively in basin achieved in Step3 to fill the entire basin of non-network 
space with varying size of octagons. 

Step5: Assign unique color for each size of octagons. 

Step6: Compute morphometry for the basin. 

Step7: Compute shape dependent dimension. 



Power law relationship 

(a) Appollonian Space, and (b) after decomposition by 
means of octagon. 



Algorithm Implementation: 



Step 3: Non-network 
space of basin 1 

Iterative erosion applied to 
step-3 Fig.  



Step 4: Non-Network Space Decomposition 
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Decomposition of Non-network 
space in to non-overlapping disks 
of octagon shape of several sizes 

for basin 1  

Non-Network Spaces Packed with Non-
Overlapping Disks of basins 2 to 8 



Dimensions derived from 
morphometry of network 
and non network space 

Basi

n # 

Network 

FD 

Log Rs/ 

Log RN 

R vs 

A 

R vs 

N 

A vs 

N 

1 1.83 1.93 1.34 2.06 1.50 

2 0.86 1.63 1.33 1.23 1.59 

3 0.98 1.41 1.02 1.87 1.80 

4 2.07 2.01 1.43 2.17 1.52 

5 1.73 1.90 1.34 1.94 1.43 

6 1.84 2.04 1.13 1.87 1.63 

7 1.33 1.61 1.23 2.08 1.70 

8 1.65 2.06 1.61 2.38 1.49 

Morphometric parameter 
computations achieved through 
decomposition of non-network 

space 
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