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Scale invariance and Power-laws In
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Shape-dependant power-laws

Granulometric analysis

13 April 2015 B. S. Daya Sagar 2




Il.1l.I. Scale Invariant Power-laws: Morphometry

and Allometry of Networks

First step in drainage basin
analyses is the classification of
stream orders Dby Horton-
Strahler’s ordering  system
(Horton, 1945; Strahler, 1957).
The order of the whole tree is
defined to be the order of the
root. This ordering system has
been found to correlate well
with important basin properties
in a wide range of
environments.

This figure shows a sample
network classified based on
Horton-Strahler’s ordering
system.
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Scale Invariant Power-laws: Two Topological

Quantities

eI,
s> Two topological quantities bifurcation ratio (R,) and length ratio (R,)

Networks extraction and their properties : Morphometry

s Besides these two ratios, the universal similarity of stream network can
be shown through Hack’s law and Hurst’s law as follows:

s« Hack’s Law: me oC Ah
where A is the area of basin with main channel length L.

% Hurst’s law: L o LM

where Ly, |£ the longitudinal length and

L transverse length respectively.
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Allometric power-laws

s Allometric power-laws are
derived between the basic
measures such as basin
area, basin perimeter,
channel length, longitudinal
length and  transverse
length

s Observed that these power-
laws are of universal type
as they exhibit similar
scaling relationships at all
scales.

Existing allometric  power-laws:
Decomposed basins & networks
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Existing allometric power-laws

Decomposed basins and networks

The number of
decomposed sub-basins
of respective orders
from the simulated 6th
order F-DEM include:

e two 51

e five 41

* ten 3

thirty six 2", and

o eighty six 15t order
basins.
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Decomposed sub-basins

are

e two 4t

* eight 31

* twenty-eight 2", and

* one hundred twenty-four 1%t
order basins.
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Existing allometric power-laws : Basic Measures

Longitudinal
length \
Transvers

Length

Basic measures for a basin, (a) basin area, (b) total channel length, (c) main channel length, (d) basin

perimeter, (e) longitudinal Iength and (f) transverse length.
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Allometric relationships among various areal and length parameters for all sub-basins of F-DEM and TOPSAR DEM.
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Scale Invariant allometric power-laws

F-DEM TOPSAR DEMSs

Relations Notatio | For Basin's order Eelations MNotatio For Basin’s order
ns all ns all
i 1 2 3 4 3 6 ord 1 2 3 4 5

Aand me h 0.53 0302 | 0.56 056 | 0.55 0.55 0.56 Aand me h 0.57 0.60 0.37 0.50 | 0.58 0.56
Aand P a 135 131 136 141 | 144 148 146 Aand P 24 1.97 1.62 1.78 1.78 | 1.69 1.62
Pand L | # 139 151 132 128 | 1.26 123 1.23 ¥l 0.84 0.78 092 0.88 | 1.09 1.05

Pand L,

L, andl, | - 0.97 092 101 104 | 1.03 0.94 093 L,andl, | - 1.17 0.73 1.00 0.92 | 1.02 1.08
[ and f H 0.95 0.94 094 096 | 098 0.94 0.98 [ and L, H 1.00 0.39 0.53 0.68 | 1.00 0.97

L 0 L
2h D 1.06 1.00 111 111 | 1.10 1.10 112 2h D, e 1.14 1.20 1.14 1.00 | 1.16 1.12
Na D, 148 153 147 142 | 1.39 135 1.37 2 a D, 1.02 1.23 112 1.12 | 1.18 1.23
1= Dy - 155 1.52 1.57 139 | 1.56 1.57 1.57 1+ Die - 1.57 1.86 1.74 1.60 | 1.58 1.57

1+H 1+H

Existing allometric power-laws : Scaling laws

Our results shown for basins derived from F-DEM and TOPSAR DEM are in
good accord with power-laws derived from Optimal Channel Networks
(Maritan et. al., 2002) and Random Self-Similar Networks (Veitzer and Gupta
2000) and certain natural river basins.

13 April 2015 B. S. Daya Sagar 10



Novel scaling relationships between travel-time channel
networks, convex hulls and convexity measures

Network topology and watershed geometry are important
features in terrain characterization.

Travel-time networks are sequence of networks generated by
removing the extremities of the network iteratively. Hit-or-Miss
transformation and Thinning transformations is used in
generating travel-time network. Half-plane closing-based

algorithm (Soille, 2005) is employed to generate convex hulls
for these travel-time networks.
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The process of deleting the end points from
the networks is named as pruning.

To decompose the stream network subsets
from n =1to N, structuring template of B
and B, are decomposed Into various

subsets. B where 1=1,2,....8 and n=12

1

Both structuring templates are disjointed into
eight directions. The intersecting portion of
eroded S and eroded Sc by disjointed
templates {B/}and {Bd} k=12,..,8
respectively are computed to derive pruned
version of S.

The X’s in the structuring templates signifies
the ‘don’t care’ condition — it doesn’t matter
whether the pixel in that location has a value
of O or 1.
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Proposed scaling relationships : Travel-time networks

eI,
s« Mathematically,
S*B=(S 6Bf)n(S°© B;) where B=BfUB}

s> By subtracting (S * B)from S, a pruned version of S is obtained and
expressed as

» S, =S ®{B} where, S®{B}=S—(S*B))
= {BYis the sequence of (B!,BZ, -, BY), (B, BZ, -, B}

so After pruning of S in first pass with B, the process continue with pruning
with B, and so on until S is pruned in the last pass with Bg.

S{B}=((---((S®B')®B?%)--)®B®)
s The whole process removes the first-encountered open pixels of S and
produces S,.

so Repeating the same process on S, will produce S, . The process is
repeated until no further changes occur, where the closed outlet is

reached.
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Proposed scaling relationships : Convex hull

Convex hull is the
smallest convex set that
contains all the points of

the network.

Since convex hull
represents the basin of
network, convex hulls of
the travel-time networks
are generated. |
_4
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Proposed scaling relationships : Pruned network and

convex hull

eSS,
Properties of the pruned network:

N-1
L. S = k_JO(Sn _Sn+1)
2. SycSy,ccS, <S5, S

3. S, Sl, 82 RN SN obtained by iterative pruning.
The final convex polygon containing all the points of S yields C(S).

el ] ]
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Proposed scaling relationships

IS
so Network - pruning - network

length =S

s Convex hull computed -
convex hull area = C(S,)

s Convexity measures, CM =

ratio between the areas of S

and C(S,).
L(S,) ~ AIC(S,))”

1

1
AIC(S,)I’

CM(S,) ~
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Graph of lengths of the sequential pruned networks
versus the corresponding areas of convex hulls.
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Sample basin

Simulated F-DEM basins
Cameron basins
Petaling basins
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Proposed scaling relationships

Network a, (R?) o, R? A, R? R, R, h H

Sample 0.5693, (0.9671) 0.6988, (0.8325) 0.4307, (0.9439) 3.84 1.66 - -

Basin 1 (Cameron) 0.5777, (0.9883) 0.7109, (0.9358) 0.4223, (0.9783) 3.60 221 0.5414 0.9714
Basin 2 (Cameron) 0.5774, (0.9925) 0.7189, (0.9586) 0.4226, (0.9861) 4.35 2.25 0.5561 1

Basin 3 (Cameron) 0.5799, (0.9934) 0.7131, (0.963) 0.4201, (0.9875) 3.31 2.39 0.5612 0.9256
Basin 4 (Cameron) 0.5521, (0.9835) 0.7814, (0.92) 0.4479, (0.9752) 4.47 3.18 0.5671 0.9506
Basin 5 (Cameron) 0.5798, (0.9905) 0.7083, (0.9469) 0.4202, (0.982) 3.31 2.16 0.5766 0.9162
Basin 6 (Cameron) 0.5819, (0.9865) 0.6955, (0.925) 0.4181, (0.9743) 4.00 2.64 0.5746 0.8597
Basin 7 (Cameron) 0.5885, (0.9887) 0.68, (0.9348) 0.4115, (0.9772) 2.82 2.39 0.5548 0.895
Basin 1 (Petaling) 0.5462, (0.969) 0.7741, (0.8561) 0.4538, (0.9557) 5.00 257 0.5568 0.9319
Basin 2 (Petaling) 0.5393, (0.9899) 0.8357, (0.9532) 0.4607, (0.9863) 4.00 3.51 0.5828 0.8623
Basin 3 (Petaling) 0.5198, (0.9852) 0.8953, (0.9367) 0.4802, (0.9827) 4.24 3.30 0.597 0.9019
Basin 4 (Petaling) 0.5592, (0.9938) 0.7771, (0.9684) 0.4408, (0.99) 4.24 2.96 0.5807 0.8902
Basin 5 (Petaling) 0.5729, (0.9906) 0.729, (0.9492) 0.4271, (0.9832) 4.79 3.96 0.5844 0.8704
Basin 6 (Petaling) 0.5547, (0.9872) 0.7798, (0.937) 0.4453, (0.9804) 4.89 3.42 0.5713 0.9116
Basin 7 (Petaling) 0.6059, (0.9929) 0.6387, (0.9551) 0.3941, (0.9834) 3.60 3.39 0.5865 0.8312

Allometric power-laws between travel-time channel networks, convex hulls, and convexity measures for model
network, networks of Hortonian fractal DEM, and networks of fourteen basins of Cameron Highlands and
Petaling region.
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* Proposed scaling relationships

These proposed scaling exponents are shown for basins derived
from simulated F-DEM and TOPSAR DEMs.

These exponents are scale-independent.

At macroscopic level, these exponents complement with other
existing scaling coefficients can be used to identify commonly
sharing generic mechanisms in different river basins.
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Proposed Technique

Stepl: Channel network is traced from topographic map.

(Step2: Channel network is dilated and eroded iteratively until the entire basin\

is filled up with white space. This step is to generate catchment boundary
automatically. Dilation followed by erosion is called structural closing, which

will smoothen the image.
% € Y

~ ™
Step3: Generate the basin with channel network and non-network space with

boundary by subtracting the channel network from the catchment boundary
\aohieved in Step2.

y,
"Stepd: Structural opening (erosion followed by dilation) is performed’
recursively in basin achieved in Step3 to fill the entire basin of non-network
_Space with varying size of octagons. )

N

Stepb: Assign unique color for each size of octagons.

S

rStep6: Compute morphometry for the basin.

rStep?: Compute shape dependent dimension.




* As per the previous fig. the slopes of the best-fit
lines (o and o) for number-radius and area-
radius relationships yield 2.37 and 1.34.

* These slope values of the best-fit lines provide
shape dependent dimensions as Dy = oy — 1 and
D, =a,.

* As i previous Fig., Dy and D, for non-network
space yield 1.37 and 1.34.

A Power-law relationship is shown in earlier
Fig. with an exponent value 1.79 between the
area and number of NODs observed with
increasing radius of structuring template.

. (a) Appollonian Space, and (b) after decomposition by
13T [ means of octagon.



Algorithm Implementation:

Step 1: Channel network of sub basin 1 il e

Y RN
& k’%!\ « "3\’ Vs AT
/\} T~ P \S\?l \\\ : K\
L T, sy S 1
/,;7 fj’\\ - ) \ '7/1,7 S
Step 2: Close-Hull Generation e

A

Iterative dilation of channel netw ork of basin 1 Tterative erosion applied to previous Fig




[terative erosion applied to previous Fig. [terative dilation applied to previous Fig.




13 April 2015 B. S. Daya Sagar 26






Dimensions derived from Morphometric parameter
morphometry of network || computations achieved through

and non network space decomposition of non-network
& I o 240 2200
Basi | Network | LogRs/ | Rvs | Rvs | Avs g ’- i:f%
n# | FD |LogRn| A | N N ;'3 i gt
1 1.83 1.93 | 134 | 206 | 150 | |z5 " f =206 0802
2rls Pz w’
2 | 086 | 163 | 133|123 | 159 sg . ‘/‘41“
!
m L) Ll L\l
3 | 08 | 141 | 202|187 | 180 | |5 [T T
4 | 207 | 201 | 143|217 | 152 Logracls o huctrng lomort (B 1)
1,
5 | 173 | 190 | 1.34 | 1.94 | 1.43 '
15 el ARG
6 | 184 | 204 | 113 | 1.87 | 1.63 " K alrs
7 | 133 | 161 | 123 208 | 1.70 183
8

|
1.65 2.06 1.61 | 2.38 | 1.49 " /
'
0




Basin number versus varied dimensions derived
from morphometry of networks and non-network
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