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1 Introduction

In [1], a new coverage process was defined. It was motivated by the various
SINR(Signal to Interference Noise Ratio) models in wireless communica-
tions. The underlying point process was assumed to be a Poisson process.
In this report, we extend the theory to the case when the underlying point
process is a Poisson-Poisson cluster process.

Firstly, we define the stochastic geometric model. We give sufficient
conditions similar to [1] for the model to be well-defined. Finally, certain
results analogous to the cited paper are derived. The reader can also refer
to [2] for some more results on such a model and [3] for percolation in such
a model.

The necessity of this extension arises mainly because in certain models
of wireless communications the antennae are clustered or bunched together.
And cluster processes model such cases better than Poisson process. Our
main goal in this direction is comparison of the two models. In SINR models
one would expect the clustering to have a negative impact on the connectiv-
ity of the network. The report is organized as follows: Section 2 describes the
model in generality and various assumptions for the model to be well-defined.
The concluding remark describes the specific model we shall analyse in lot
more detail. The sufficient conditions for the assumptions on the model to
be satisfied are given in Section 3. Finally, in Section 4 we derive formulae
for the coverage probability.
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2 Description of Model

2.1 Generic Stochastic Geometric Model

Our underlying marked point process is Φ = {(Xi + Xij ∈ Rd, Zij)}, where
C = {Xi} is a Poisson process with intensity λ(.) and ({Xij}|Xi)i are
i.i.d Poisson process with intensity µ(.). The marks Zij = (Vi, Sij , Aij)
are such that (Sij , Vi) ∈ DXD1, product of two metric spaces and Aij =
(aij , bij , cij) ∈ R3. We shall call the point process C as the center process
and the point process {Xij} as the cluster process associated with Xi. This
is viewed as follows : there is a main point process with each point of whose
is associated a subsidiary point process. By choosing the parameters λ(.)
and µ(.) one can get varied cluster processes. The mark Vi is common to
all the points of the cluster process associated with Xi. In applications, this
can be viewed as a common parameter for all the points in a cluster. And
Sij is a more individual parameter associated with the point.

Apart from these, the model is based on the ’response’ function L :
DXD1XRd → R+, which is continuous in its final argument and such that
L(s, v, x) → 0 when |x| → ∞.
For some results, we shall omit the v argument from the function L. In such
cases, we shall not write the v variable in the function.

Individual Cells We shall now define the cell attached to the point
X0 + X00 as the following set

C00 = C00(Φ) = {y : a00L(S00, V0, y −X0 −X00) ≥ b00IΦ(y) + c00}, (1)

where

IΦ(y) =
∑

i

∑

j

L(Sij , Vi, y −Xi −Xij) =
∫

RdXRdXD
L(s, y − z)Φ(d(z, s)).

(2)
The second formula is obtained by viewing the point process as the ran-
dom point measure Φ =

∑
i

∑
j δ(Xi+Xij ,Zij). The function IΦ(y) denotes

the value of a shot-noise process (see e.g. [5, 6, 11,13] ) of (Xi + Xij , Sij) at
the point y for the response function L.

Coverage Process Naturally, the coverage process is defined as the
union of all cells i.e,

Ξ = Ξ(Φ) = ∪i,jCij(Φ). (3)
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2.2 Assumptions on λ(.) and µ(.)

Point process For the point process Φ to be a random point measure, we
need the number of points in any bounded set to be finite. Formally, define
N(A) = #{Φ ∩ A}, where A is any bounded subset of Rd. And we require
E(N(A)) < ∞. We assume throughout the paper that our point process is a
random point measure. We shall give some formulas to check the assump-
tion as well as demonstrate it with a few simple examples.

Individual Cells and Coverage Process As stated in Secn 2.3 of [1],
we will require the random function to have finite expectation and IΦ(y) to
be a.s continuous in y(even lower semi-continuity is sufficient).

Also we want the expected number of cells that intersect a bounded set
to be finite. This shall imply that the coverage process Ξ is closed.

And to avoid degenerate cases we assume that a, b, c ∈ R+ and P (a00 = c00 = 0) =
0. Also, we shall mention at the required places stationarity assumptions on
the centre or cluster processes. Note that the stationarity of the center pro-
cess guarantees the stationarity of the entire process Φ.

Remark 1 For more detailed exposition of coverage process and other stochas-
tic geometric tools, the reader is referred to [4, 7, 8]. The mentioned texts,
in particular, shall explain the necessity of the above assumptions.

Remark 2 We refrain from explaining some examples and certain special
cases of the model defined above. The reader is referred to Secn 2.4 and Secn
2.5 of [1] where a very good account of motivating examples are described.

Remark 3 Many times in the following sections, we shall calculate some
quantities explicitly under the assumptions a = 1+T, b = T, c = TW , where
T > 0 is called the ’threshold’ and W is the external noise independent of
the other random variables. Also, we shall take L(s, z) = sl(|z|). Under
these assumptions,

C = C(Φ) = {y : Sl(|y −X0 −X|) ≥ T (IΦ(y) + W )}.

This can be viewed as follows: The signal of power S emitted by station at
X0−X with ’path-loss’ or ’attenuation’ function l is received at level Sl(|y−
X0−X|) and this has to be at least T times bigger than the interference from
other antennae and external noise for the point y to receive it correctly. We
shall call these assumptions as SINR assumptions.
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3 Sufficient Conditions for the model to be well defined

3.1 Individual Cells

In this section, we give some sufficient conditions analogous to [1] for the
model to be well-defined. Remember that in the previous section, we had
said of the point process as well as the individual cells to satisfy certain
conditions. We shall give sufficient conditions for them to meet the required
conditions. We omit some of the proofs as they are similar to the cited
paper. As we shall use the Campbell’s formula (see e.g. [7], eq. (4.4.3), p.
119) often , we refrain from mentioning it everywhere. We use it to represent
various expectations as integrals.

Proposition 4 Let H denote the law of S00 ∈ D and H1 denote the law of
V0 ∈ D1 (see for eg. [12]). If for each y ∈ Rd, there exists a ball B(y, εy)
such that,
∫

RdxDxRdxD1

supz∈B(y,εy)L(s, v, z − x0 − x)λ(dx0)H(ds)µ(dx)H1(dv) < ∞
(4)

then w.p.1, the function IΦ(y) is continuous w.r.t y.

The proof follows from noting that same proposition in [1] holds for any
general point process.

3.2 Coverage Process

In the previous section, we had mentioned of the expected number of points
in a bounded Borel set being finite. Let,

N(A) :=
∑

i,j

1[Xi + Xij ∈ A],

where A is a bounded Borel set in Rd. We require E(N(A)) < ∞. Let us
denote Φ0 as the random measure corresponding to the center process.

E(N(A)) = E(E(N(A)|C))
= E

(∫

Rd

∫

A−x
µ(dx0)Φ0(dx)

)

=
∫

Rd

∫

A−x
µ(dx0)λ(dx). (5)

(6)
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The above equation gives us a formula to verify whether the given point
process satisfies the required condition. Now, we shall look at the some of
the standard cases where the given condition is satisfied.

3.2.1 λ(dx) = λdx and µ(Rd) < ∞
This is when the center process is a homogeneous Poisson point process and
the cluster process is a finite process.

E(N(A)) = λ

∫

Rd

∫

A−x
µ(dx0)dx

= λ

∫

Rd

∫

A−x0

dxµ(dx0)

= λµ(Rd)‖A‖ < ∞

Here λµ(Rd) is the intensity of the point process. Similarly, one can
show the same holds for λ(Rd) < ∞ and µ(dx0) = µdx0.

3.2.2 λ(dx) = λdx and µ(dx0) = µ0(x)1B(x)for‖B‖ < ∞
Under these assumptions also, one can show that the required condition is
satisfied. The explicit formulas can be derived for the special case when
µ0(x) = µ and B = Bp[0, R], i.e, a a ball of radius R in Lp norm. The
intensity for this point process shall be λµ‖Bp[0, R]‖ = CpλµRd, where
Cp = ‖Bp[0, 1]‖.

As said in the previous section, the number of cells intersecting a bounded
set needs to be finite for the coverage process to be well-defined.

4 Cell Characteristics

One of the important tools we need for some of the calculations is of Palm
probability of the point process. For this we use the results concerning the
same from [10]. The reader can refer to the above paper and [9] for further
results on the same.

In particular, we shall use the following result which can be deduced
from Proposition 2 of [10].

Proposition 5 Let Nlf be the set of locally finite sets of Rd equipped with
the usual σ-algebra Nlf by the sets FB,n = {x ∈ Nlf : ](x ∩ B) = n} for
n = 0, 1, . . . and bounded Borel subsets B ⊂ Rd.
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Let ξ ∈ Rd. Now, define the marked point process Φξ independent of Φ
as follows :

Φξ = {(Xξ + X̃i, S̃i)},
where

P (Xξ ∈ D) =
µ(ξ + dx)

µ(Rd)
,

for Lebesgue sets D ⊂ Rd. And (X̃i) are Poisson point process with intensity
µ(.).

The reduced palm distribution for ξ denoted by P !
ξ is given as

P !
ξ(F ) = P (Φ ∪ Φξ ∈ F ) .

4.1 Coverage Probability

Now we want to analyze the cell C(x̃; Φ) attached to a point located at x̃ of
the marked point process Φ under the reduced palm distribution P !

ξ. Due
to Proposition 5, we have the law of this set is same as that of the random
closed set,

C(x̃; Φ∪Φx̃) = {y : aL(S, V, y− x̃) ≥ b(IΦ(y) + IΦx̃(y) + L(S, V, y− x̃)) + c}

under P , where Φ is the original Poisson point process and Φx̃ is as
defined in the previous proposition. And (S, V, (a, b, c)) is an ’additional
mark’ distributed independently of other marks.

Denote by probability px̃(y) that the point y ∈ Rd is covered by C(x̃; Φ∪
Φx̃). We have,

px̃(y) = P (aL(S, V, y − x̃) ≥ b(IΦ(y) + IΦx̃(y) + L(S, V, y − x̃)) + c) .

We assume λ(dx) = λdx and µ(dx0) = µ1Bp[0,R](x)dx. SINR assump-
tions as in Remark 3 are also assumed. Even though some of the calculations
can be worked in more generality, but this helps us to analyse the model
better. The assumption on λ(dx) ensures that the process is stationary,
hence the probability of signal reception at y of the antenna at x̃ depends
only on |y − x̃|. Hence without loss of generality, we can take y = 0 and
|x̃| = r > 0. So, we can denote the probability of coverage as pr. The depen-
dence on λ, µ,R is not explicitly mentioned here. Let S have an exponential
distribution with parameter η. Also, we omit 0 in the shot-noise functions
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and denote IΦx̃ by IΦ0 . Thus,

pr = P

(
S ≥ T

l(r)
(IΦ + IΦ0 + W )

)

=
∫ ∞

0
e−ηTs/l(r)dP (IΦ + IΦ0 + W ≤ s)

= ΨΦ(ηT/l(r))ΨΦ0(ηT/l(r))ΨW (ηT/l(r)), (7)

ΨX denotes the Laplace transform of the random variable X defined as
ΨX(ξ) = E

(
e−ξX

)
. In the above expressions we have slightly abused the

notation by denoting ΨΦ the Laplace transform of the shot-noise of the
corresponding point process. Also, note that ΨW doesn’t depend on λ. The
above calculation is similar to the one in Lemma 3.1, [2]. As in that proof,
we use additive shot noise theory.

For a general Poisson shot noise in R2, we know that,

Ψ(ξ) = exp{−λ

∫

R2

[1− E
(
e−ξQ(|x|)

)
]dx},

where Q(|x|) is the level of signal power received from the antenna at x at
0. In our case, we can view Q(|x|) =

∑
j Sjl(|x + Xj |) with x as the point

of center process and Xj as the cluster points associated with x. Sj is the
power of signal emitted by Xj . And by another application of the Laplace
transform formula of a Poisson shot noise, we get

E
(
e−ξ

∑
j Sj l(|x+Xj |)

)
= exp{− µ

CpR2

∫

Bp[0,R]
(1− E

(
e−ξSl(|x+x0|)

)
)dx0}.

Hence,

ΨΦ(ξ) = exp{−λ

∫

R2

[1− exp{− µ

CpR2

∫

Bp[0,R]
(1− E

(
e−ξSl(|x+x0|)

)
)dx0}]dx}

= exp{−λ

∫

R2

[1− exp{− µ

CpR2

∫

Bp[0,R]

dx0

1 + η
ξl(|x+x0|)

}]dx} (8)

The last equality is using the fact E
(
e−ξS

)
= η

η+ξ for S ∼ EXP (η).

ΨΦ(ηT/l(r)) = exp{−λ

∫

R2

[1− exp{−µ

∫

Bp[0,R]

dx0

1 + l(r)
T l(|x+x0|)

}]dx.

= exp{−λ

∫ 2π

0

∫ ∞

0
[1− exp{−µ

∫ 2π

0

∫ R

0

r2dr2dθ2

1 + l(r)

T l(
√

r2
1+r2

2+2r1r2cos(θ2−θ1))

}] r1dr1 dθ1}}
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Similarly, we can calculate ΨΦ0 .

ΨΦ0(ξ) = E
(
e−ξIΦ0

)

= E
(
E
(
e−ξIΦ0 |Xr

))

= E

(
exp{−µ

∫

Bp[0,R]
(1− E

(
e−ξSl(|Xr+x0|)

)
)dx0}

)

=
∫

Bp[x̃,R]
exp{−µ

∫

Bp[0,R]
(1− E

(
e−ξSl(|x+x0|)

)
)dx0} 1

CpR2
dx

=
∫

Bp[x̃,R]
exp{−µ

∫

Bp[0,R]

dx0

1 + η
ξl(|x+x0|)

} 1
CpR2

dx

Thus,

ΨΦ0(ηT/l(r)) =
∫

Bp[x̃,R]
exp{−µ

∫

Bp[0,R]

dx0

1 + l(r)
T l(|x+x0|)

} 1
CpR2

dx

=
1

πR2

∫ 2π

0

∫ R

0
exp{−µ

∫ 2π

0

∫ R

0

r2dr2dθ2

1 + l(r)

T l(
√

r2
1+r2

2+2r1r2cos(θ2−θ1))

}r1dr1dθ1

And so the probability of coverage can be obtained by substituting (9) and
(9) in (7).

5 Conclusion

To conclude, in this article we have calculated some of the basic quantities
for a SINR coverage process when the underlying point process is a Poisson-
Poisson cluster process. Further scope exists in comparing the coverage
properties of the model with the one introduced in [1](where the underlying
point process is a Poisson point process).



Bibliography 9

References

[1] Baccelli, F., BÃlaszczyszyn, B. (2001) On a coverage process ranging
from the Boolean model to the Poisson-Voronoi tessellation with ap-
plications to wireless communications. Adv. in Appl. Probab. 33 , no.
2, 293–323.

[2] Baccelli, F., BÃlaszczyszyn, B., Mühlethaler, P. (2006) An aloha Proto-
col for Multihop Mobile Wireless Networks. IEEE Trans. Inf. Theory
Vol. 52, No. 2.

[3] Dousse, O., Franceschetti, M., Macris, N., Meester, R. and Thiran,
P. (2006) Percolation in the signal to noise interference ratio graph.
to appear in The Journal of Applied Probability. Pre-print on Ronald
Meester’s webpage.

[4] Hall, P. (1988), Introduction to the Theory of Coverage Processes. J.
Wiley & Sons, New York.

[5] Heinrich, L. and Molchanov, I.S. (1994) Some limit theorems for ex-
tremal and union shot- noise processes. Math. Nach. 168, 139-159.

[6] Heinrich, L. and Schmidt, V. (1985) Normal convergence of multi-
dimensional shot noise and rates of this convergence. Adv. in Appl.
Probab. 17, 709-730.

[7] Kendall, W., Mecke, J., and Stoyan, D. (1995) Stochastic Geometry
and its Applications, John Willey & Sons, Chichester.

[8] Matheron, G. (1975) Random Sets and Integral Geometry, John Wiley
& Sons, London.

[9] Møller, J., Torrisi, G. L. (2005) Generalised shot noise Cox processes.
Adv. in Appl. Probab. 37, no. 1, 48–74.

[10] Møller, J. (2003) Shot noise Cox processes. Adv. in Appl. Probab. 35
(2003), no. 3, 614–640.

[11] Rice, J. (1977) On a generalized shot noise. Adv. in Appl. Probab. 17,
709-730.

[12] Schmidt, V. (1985) On finiteness and continuity of shot-noise process.
Optimization, 16, 921-933.



Bibliography 10

[13] Westcott, M. (1976) On the existence of a generalized shot-noise pro-
cess. In Williams, E.J., editor, Studies in Probability and Statistics.
Papers in Honour of Edwin J.G. Pitman, North-Holland, Amsterdam,
pages 73-88.


