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Abstract. We shall review some of the author’s recent results concerning geometric and

topological features of the boolean model on a stationary point processes. While study of

geometric features of the Poisson boolean model span a very rich literature, the literature

for topological features of the Poisson boolean model is very nascent and that for a general

stationary point process is very little. In particular, the focus will be on asymptotics of

geometric or topological statistics of the boolean model on a stationary point process. We

shall mainly give details about topological phase transitions and central limit theorem for

geometric and topological statistics.

1. Introduction

Consider a locally finite collection of random points P = {Xi}i≥1 (called as point processes

from now onwards) on a euclidean space Rd, d ≥ 2. We shall assume that P is stationary

(i.e., P + x has same distribution as P) and P is simple (i.e., Xi 6= Xj for i 6= j). For exam-

ple, consider the following three examples of stationary point point processes restricted to a

finite window in Figure 1. Such point processes arise in diverse applications. For example,

point processes might denote node locations in a network ([Baccelli and Blaszczyszyn, 2009,

Baccelli and Blaszczyszyn, 2010, Haenggi, 2012, Yukich, 2006]), configuration of sites in dis-

ordered or amorphous materials ([Hiraoka et al., 2016, Agarwala and Shenoy, 2017]), data

points in data analysis ([Carlsson, 2014, Bobrowski and Kahle, 2014, Adler, 2015]

[Penrose and Yukich, 2013]) and so on. A common theme in many of these applications is

to build suitable geometric or topological structures to either understand such structures or

use them as a tool to understand the point process itself. We shall consider a very simple

object constructed from point processes called as boolean model. The boolean model is ob-

tained by taking unions of balls of radius r centred at the points of P . More formally, it

is defined as C(P , r) := ∪Xi∈PBr(Xi) where Br(x) denotes the euclidean ball of radius r

centred at x ∈ Rd. While it is true that the afore-cited articles sometimes consider more

complicated structures on P or point processes on more general spaces, we shall see that
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Figure 1. Hypergeometric perturbed lattice, Poisson point process and Neg-

ative binomial perturbed lattice

there are still many interesting unanswered questions about the boolean model on the eu-

clidean space itself. For many questions, it is more meaningful to consider the asymptotics

of C(Pn, r) as n→∞ where Pn = P ∩Wn with Wn = [−n1/d

2
, n

1/d

2
]d being a window of vol-

ume n. For example, Vd(C(P , r)) = ∞ (Vd denotes the volume) for many ‘nice’ P whereas

asking the growth of C(Pn, r) still makes sense. In this short survey, we shall endeavour

to describe some recent studies of such asymptotics by the author as well as some related

work. The results presented here are more for illustrative purposes and hence the reader is

referred to the papers [B laszczyszyn and Yogeshwaran, 2015, Yogeshwaran and Adler, 2015,

Yogeshwaran et al., 2017, Blaszczyszyn et al., 2016] for complete details and the most gen-

eral results. After introducing the necessary notions and notations in sections 1.1 and 1.2,

we shall present a sample of our results in Section 2 as follows :

• Thresholds for topological phase transitions on stationary point processes (Section

2.1) : As we vary r, the topology of C(P , r) undergoes two phase transitions - from

trivial to non-trivial and then back to trivial. Though qualitatively the phase transi-

tions remain the same for many point processes, there do exist quantitative differences

in terms of how the points are spatially distributed in a point process. To summarise
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the differences in words, the more regular the spatial distributions of the point pro-

cesses are, the more narrower is the window between the two thresholds. See Figures

1 and 2 for an illustration.

• Limit theory for geometric statistics of ‘asymptotically independent’ point processes

(Section 2.2) : Now, we turn our attention to the thermodynamic regime for point

processes i.e., r ∈ (0,∞). For many geometric statistics (i.e.,those obtained as a sum

of ‘local information’ around the points) and point processes satisfying a weak notion

of ‘asymptotic independence’, we will state central limit theorems assuming variance

lower bounds. We will mention examples of point processes satifying our conditions.

• Limit theory for topological statistics of Poisson point process (Section 2.3) : We

shall consider topological invariants of the boolean model but over Poisson point

processes. Due to the long-range dependence of topological invariants, we are more

restrictive on our choice of point processes. Again, we shall state our central limit

theorem and mention some related results.

Finally, we shall conclude with some omitted, on-going and future directions. We would also

like to warn the reader that some of the material has already been covered in the survey

[Bobrowski and Kahle, 2014] on random geometric complexes.

1.1. Geometric and Topological Statistics : Having described the boolean model, let us

now spill some details on what we mean by geometric or topological statistics. By geometric,

we refer to functionals of the boolean model that can be obtained by collecting “local infor-

mation” about the boolean model around each point X ∈ Pn. To be more precise, geometric

statistics (denoted as G have the form)

(1.1) Gn := Gξ(Pn) :=
∑
X∈Pn

ξ(X,Pn),

where ξ : Rd ×N → R (N denotes the space of all point processes i.e., locally-finite count-

ing measures) is a measurable function satisfying the following conditions : (1) ξ(x,P) = 0

if x ∈ P , (2) ξ is translation invariant i.e., ξ(x,P + x) = ξ(O,P) for all x ∈ Rd with O

denoting the origin and (3) there exists r > 0 such that ξ(O,P) = ξ(O, (P ∩ BO(r)) ∪ A)

for any locally finite A ⊂ BO(r)c. We call r as the radius of stabilization and such Gn’s

are called as local geometric statistics. We also allow r to be a random variable with

a (stretched) exponentially decaying tail and we refer to such Gn’s as quasi-local statis-

tics. Examples of local statistics in the context of boolean model include Vj(C(P , r)), j =

0, . . . , d where Vj is the jth intrinsic volume with Vd being the volume or Lebesgue mea-

sure, Vd−1 being the surface measure and V0 is the famed Euler-Poincaré characteristic.

These are very important statistics which have applications in stereology and image analysis

([Göring et al., 2013, Klette and Rosenfeld, 2004, Kong and Rosenfeld, 1989, Svane, 2017])

and have been of interest in stochastic and integral geometry ([Schneider and Weil, 2008])
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since the earliest days of the subject. Examples of quasi-local statistics include nearest-

neighbour distances (i.e., ξNN(x,P) = distance from x to its nearest-neighbour in P) and we

denote the corresponding geometric statistics as Ln. This arises in computational geometry

and combinatorial optimization ([Yukich, 2006]) and is also of interest due to its relation

with connectivity of the boolean model (see [Penrose, 1997]).

We use the term ‘topological statistics’ loosely to denote a collection of statistics that cap-

ture the topology of the boolean model or the underlying point process and what makes

them interesting as well as difficult is that they cannot be expressed like in geometric

statistics in (1.1). In this article, the main example of topological statistics are Betti

numbers βk(C(Pn, r)), k = 0, . . . , d − 1 and persistent Betti numbers βk(C(Pn, r, s)), k =

0, . . . , d − 1. Though a precise definition is beyond the scope of the article, we try to

give a heuristic description now and refer to [Carlsson, 2014, Edelsbrunner and Harer, 2010,

Munkres, 1996] for details. β0(C(Pn, s)) denotes the number of connected components in

C(Pn, s), βk(C(Pn, r)) denote the number of (k + 1)-dimensional ‘holes’ or equivalently the

number of independent k-dimensional non-trivial cycles. The persistent Betti numbers are

rather meant to count the ’holes’ or non-trivial cycles that persist from r to s.

More generally, as we track the evolution of C(Pn, r) as r varies from 0 to ∞, we can

associate a birth-time and death-time to every non-trivial cycle or hole. Since C(Pn, r) are

increasing in r, every non-trivial cycle or hole appears for the first time for some r called the

birth-time of the cycle and vanishes (i.e., the cycle becomes trivial or the hole is filled) for

some s (≥ r) called the death-time of the cycle. The collection of all birth and death times

corresponding to the kth Betti number is the kth persistent diagrams : Perk := {(bi, di)}.
Given Perk, we can infer both the Betti and persistent Betti numbers as follows :

βk(C(Pn, r, s)) =
∑
i

1[bi ≤ r ≤ s ≤ di], βk(C(Pn, r)) = βk(C(Pn, r, r)).

Further, instead of representing Perk as points in R2, we can also represent Perk as barcodes

by representing each (bi, di) as a bar from bi to di. We give the barcodes of Per1 for a related

model (the Vietoris-Rips complex) in Figure 2 corresponding to the three point processes in

Figure 1. For an illustration of Per1 of the boolean model of Poisson point process and two

other point processes (Ginibre and Poisson cluster), we refer the reader to [Duy et al., 2016,

Figure 1]. One notable feature of this diagrams is that the support of the barcode is narrower

if the spatial distribution of points is more regular i.e., the support of the barcodes is shorter

for hypergeometric perturbed lattice compared to that of the Poisson point process which is

shorter compared to that of the negative Binomial perturbed lattice.

Persistent diagrams are the key tool in the new and thriving area of topological data analy-

sis or applied topology ([Carlsson, 2014, Bobrowski and Kahle, 2014, Adler, 2015, Ghrist, 2014]).

In this subject, point process represent data points and persistent diagrams capture the

topology of the points as well as the underlying space on which the points are distributed.

In many applications, it is reasonable to assume that one is unaware of the space on

which the data points are distributed and one is interested in gleaning some information
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Figure 2. Barcode representation of Per1 of Hypergeometric perturbed lat-

tice, Poisson point process and Negative binomial perturbed lattice

about the space via the points. Of course, our space is euclidean, the simplest possi-

ble underlying space and has trivial topological features. However, as we shall see, a

complete mathematical understanding of point process on even this simple space eludes

us. There is some progress about understanding the topology on more general spaces in

[Bobrowski and Mukherjee, 2015, Bobrowski and Weinberger, 2017] but describing these re-

sults is beyond the scope of this article.

1.2. Point processes : We shall now introduce some notions and examples related to sta-

tionary point processes and refer the reader to [Ben-Hough et al., 2009, Blaszczyszyn et al., 2016,

Yogeshwaran and Adler, 2015, B laszczyszyn and Yogeshwaran, 2015, Schneider and Weil, 2008,

Last and Penrose, 2017] for details.

By stationarity we have that E(P(B)) = λVd(B) for any Borel set B. As a standing

assumption, we set λ ∈ (0,∞). Note that a point process can be viewed as a random set {Xi}
or as a random counting measure P =

∑
i δXi

(.). We set α(k)(.) to be the k th order factorial

moment measure on (Rd)k and assume that it has a Radon-Nikodyn density ρ(k)(.) with

respect to the Lebesgue measure, also called k-point correlation functions. If α(k) is locally

finite, there exists a family of probability distributions called the Palm measures Px1,...,xk
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on (N ,B), defined and unique up to an α(k)-null set of (Rd)k and satisfy the disintegration

formula (also known as the refined Campbell theorem)

(1.2) E
( ∑

(x1,...,xk)∈P(k)

f(x1, . . . , xk;P)
)

=

∫
Rkd

∫
N
f(x1, . . . , xk;µ)Px1,...,xk(dµ)α(k)(dx1, . . . dxk)

for any (say non-negative) measurable functions f on (Rd)k × N . We denote the corre-

sponding expectation Ex1,...,xk . Intuitively, Px1,...,xk is the distribution of P conditioned on

{x1, . . . , xk} ⊂ P . The factorial moment measures or correlation functions characterize point

processes under some reasonable assumptions (see [Ben-Hough et al., 2009, Remark 1.2.4])

and so do the void probabilities defined as ν(B) = P(P(B) = ∅) for Borel subsets B. Here

are a few examples of stationary point processes.

(1) Poisson point process - Pλ : The most ubiquituous model and characterized either

by ρ(k)(.) ≡ λk or ν(B) = e−λVd(B).

(2) Determinantal point process - Pdet : A point process P is said to a determinantal point

process with kernel K if ρ(k)(x1, . . . , xk) = det
(
K(xi, xj)

)
1≤i,j≤k for all x1, . . . , xk ∈

Rd. For a kernel K to generate a correlation function as mentioned, K must be a

locally trace-class Hermitian kernel. The most popular euclidean determinantal point

process is the Ginibre point process PGin on C (identified with R2) and defined by

the kernel K(z, w) = exp− |z|
2+|w|2−2zw̄

2
, z, w ∈ C.

(3) Zeros of Gaussian entire function - PGEF : This point process is PGEF = F−1(0)

where F is a Gaussian analytic function defined by F (z) :=
∑

j≥0Xj
zj√
j!

with Xj’s

being i.i.d. standard complex normal random variables.

For more details on the last two examples, we refer to [Ben-Hough et al., 2009]. We refer the

reader to [Blaszczyszyn et al., 2016, Section 2.2] and [Yogeshwaran and Adler, 2015, Section

2.2] for more examples of point process that fall within our framework.

2. Preview of results

2.1. Some topological phase transitions. We hinted at the regulairty of spatial distri-

bution of points playing a crucial role in determining their topological phase transitions.

A mathematical way of characterizing the same is as follows : We say that P is weakly

sub-Poisson if for λ = α([0, 1]d) we have that

(2.1) ρ(k)(x1, . . . , xk) ≤ λk ; P(P(B) = ∅) ≤ e−λVd(B)

i.e., the correlation functions and void probabilities are lesser than that of the corresponding

Poisson point process. P is said to be weakly super-Poisson if the above inequalities are re-

versed. These definitions and some other notions of comparison of point processes were intro-

duced in the author’s thesis and we refer to the survey [B laszczyszyn and Yogeshwaran, 2015]

for details. Here weakly sub-Poisson means the points are distributed more regularly than a

Poisson point process and weakly super-Poisson indicates that the points are more clustered

than a Poisson point process. For example, the hypergeometric perturbed lattice and de-

terminantal point processes are weakly sub-Poisson while the negative Binomial perturbed
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lattice and the permanental point process are weakly super-Poisson. Our first theorem esta-

bilishes bounds for the two thresholds for topological phase transitions for weakly sub-Poisson

point processes.

Theorem 2.1. ([Yogeshwaran and Adler, 2015, Theorem 4.4]) Let P be a stationary weakly

sub-Poisson point process. Then if rn is a sequence of radii such that either r
d(k+1)
n = o(n−1)

or rdn = ω(log n) 1 then as n→∞,

P(βk(C(Pn, rn)) = 0)→ 1, k = 1, . . . , d− 1,

and further if rdn = ω(log n), we have that as n→∞,

P(β0(C(Pn, rn)) = 1)→ 1.

Such a result was proven for Poisson point processes alone in [Kahle, 2011] and along

with the results of [Bobrowski and Weinberger, 2017], one knows that the thresholds are

sharp for the Poisson point process. Hence, our result implies that for weakly sub-Poisson

point processes, “non-trivial topology appears later than that of Poisson but vanishes earlier

than Poisson”. It is feasible at times to quantify ‘how later/earlier than Poisson’. Such

quantifications either involve the stronger property of negative association or are very much

dependent on the behaviour of the k-correlation functions near the diagonal and the void

probabilities for large balls. Thus, a complete statement is beyond the scope of this paper

but as a sample, we shall mention the result in the special case of the Ginibre point process.

Proposition 2.2. ([Yogeshwaran and Adler, 2015, Theorems 4.4 and 4.6]) Let P be the

Ginibre point process PGin on R2. If rn is a sequence of radii such that either r
(k+1)(k+4)
n =

o(n−1) or rdn = ω((log n)1/4), we have that as n→∞,

P(βk(C(Pn, rn)) = 0)→ 1, k = 1, . . . , d− 1

and if r
(k+1)(k+4)
n = ω(n−1) and rn = O(1), then as n→∞,

P(βk(C(Pn, rn)) 6= 0)→ 1, k = 1, . . . , d− 1.

Further if rdn = ω((log n)1/4), then P(β0(C(Pn, rn)) = 1)→ 1 as n→∞.

As a comparison, for the Poisson point process on R2, the above proposition holds with

(k + 4)(k + 1) replaced by 2(k + 1) and 1/4 by 1/2. Thus, this substantiates our heuris-

tic argument that “more regularly the points are distributed spatially, the support of the

persistence barcodes are narrower”. The key to the proofs of the above result is first us-

ing the refined Campbell theorem ((1.2)) to compute first and second moments for suitable

geometric statistics and using them as an approximation for topological statistics.

1We are using the Bachmann-Landau big O-small o notation for asymptotics.
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2.2. Geometry of the boolean model : Thermodynamic regime. Having broadly

etched the thresholds for topological phase transitions, we wish to focus on distributional

results within the different radii regimes. In this survey, we shall focus on thermodynamic

regime (i.e., r ∈ (0,∞)) as it has a rich set of results. We call this the thermodynamic regime

as the asymptotic density of balls intersecting a window Wn (i.e., n−1]{i : Br(Xi)∩Wn 6= ∅})
converges to a constant. Recall the definition of geometric statistics (1.1) and score functions

defined therein. Let us consider the following simple score function ξk, k ≥ 0 of the boolean

model : Setting X0 = x, we define

ξk(x,P) :=
1

k!

6=∑
{X1,...,Xk}⊂P

1[∩ki=0Br(Xi) 6= ∅].

Denote the corresponding geometric statistic as Gn,k := Gξk(Pn). Essentially Gn,k counts the

number of k-wise intersections in the boolean model C(Pn, r). In combinatorial topology,

Gn,k represents the number of k-simplices in the Cěch complex on Pn formed by balls of

radius r (see [Edelsbrunner and Harer, 2010] for a precise definition). The advantage of teh

Cěch complex is its combinatorial nature and at the same time, it is homotopy equivalent to

the boolean model because of the nerve theorem ([Björner, 1995, Theorem 10.7]). Simplices

are the building block of any complex and hence one of the first quantities of interest in

a random complex. Thus, we can add Gn,k also to the list of geometric statistics we have

already encountered. We shall now illustrate our results for such geometric statistics by

stating a few special cases here. Firstly, for a score function ξ, define

(2.2) σ2(ξ) := E0ξ
2(O,P)ρ(1)(O) +

∫
Rd

(m(2)(O, x)−m(1)(O)2) dx.

where we define m(p)(x1, . . . , xp) := Ex1,...,xp(ξ(x1,P) . . . ξ(xp,P))ρ(p)(x1, . . . , xp) for p ≥
1, x1, . . . , xp ∈ Rd with Ex1,...,xp and ρ(p)(x1, . . . , xp) being the Palm expectation and cor-

relation functions respectively as defined in Section 1.2.

Theorem 2.3. Let k ∈ N and P = PGEF or P is a determinantal point process with

kernel K(x, y) such that |K(x, y)| ≤ φ(|x − y|) where φ is exponentially decaying (i.e.,

lim inft→∞ t
b log φ(t) < 0 for some b > 0). Then, we have that

lim
n→∞

n−1VarGn,k = σ2(ξk).

Additionally, if VarGn,k = Ω(nν) for some ν ∈ (0,∞), then as n→∞
Gn,k − EGn,k√

VarGn,k

D→ N,

where
D→ denotes convergence in distribution and N denotes standard normal random vari-

able.

Theorem 2.4. Let P be a stationary determinantal point process on Rd as in Theorem 2.3.

We have that for all j = 0, . . . , d,

lim
n→∞

n−1VarVj(C(Pn, r)) = σ2(ξj) ; lim
n→∞

n−1VarLn = σ2(ξNN),

8



where ξj, j = 0, . . . , d are the score functions generating the corresponding intrinsic volumes

Vj’s as in (1.1). Moreover, if VarVj(C(Pn, r)) = Ω(nν) for some ν ∈ (0,∞) then as n→∞

Vj(C(Pn, r))− EVj(C(Pn, r))√
VarVj(C(Pn, r))

D→ N.

Similarly, if VarLn) = Ω(nν) for some ν ∈ (0,∞) then as n→∞

Ln − ELn√
VarLn

D→ N.

Remark 2.5 (Remarks on Theorems 2.3 and 2.4).

(1) Firstly, we again re-emphasize that the above theorems are illustrative and results as

above hold true for more general point processes satisfying the following condition :

For all x1, . . . , xp+q with s := min1≤i≤p,1≤j≤q |xi − xp+j|, we have that

(2.3) |ρ(p+q)(x1, . . . , xp+q)− ρ(p)(x1, . . . , xp)ρ
(q)(xp+1, . . . , xp+q)| ≤ Cp+qφ(cp+qs),

for a fast decreasing φ and for all k ≥ 1, Ck <∞, ck > 0. Theorem 2.3 holds for this

class of point processes provided they satisfy some moment conditions. Apart from

the two examples mentioned above, many α-permanental point processes also satisfy

(2.3).

(2) For applying Theorem 2.4 to general point processes, apart from satisfying (2.3) and

some moment conditions, it is necessary for infk ck > 0 and Ck = O(kak) for some

a < 1. Such examples as expected are rarer. Apart from determinantal point pro-

cesses mentioned in the aboe theorems, certain Gibbs point processes, finite-range

dependent point processes and some Cox point processes are the well-known exam-

ples. We refer the reader to [Blaszczyszyn et al., 2016, Section 1.4] for the general

and precise statements and [Blaszczyszyn et al., 2016, Section 2] for more examples

and applications.

(3) We refer to [Blaszczyszyn et al., 2016, Section 1] for weak laws and for more detailed

variance behaviour. For example, it is shown that if variance is not of volume order,

it is at most of surface order. However, it is a challenge to prove suitable variance

bounds except in specific cases.

(4) We refer to remarks in [Blaszczyszyn et al., 2016, Section 1.4] for more details on

the previous literature and comparisons. However, we mention that similar results

for Poisson point process and for certain Gibbs point processes was proven in

[Baryshnikov and Yukich, 2005] and [Schreiber and Yukich, 2008] respectively. Refer

to [Yukich, 2013] for a detailed survey of these results.

(5) In full generality, the above theorems are stated for linear functionals of the random

measure µξn :=
∑

X∈Pn
ξ(x,Pn)δn−1/dx(.).

(6) In a recent pre-print [Ram Reddy et al., 2017], these results have been extended to

random fields on finitely generated Cayley graphs.

(7) The key tool to the proofs is to derive a series expansion for the mixed moments

m(p)(.) using the factorial moment expansion for functionals of point processes (see
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[B laszczyszyn, 1995, B laszczyszyn et al., 1997]). Using the above mentioned expan-

sion, we show clustering as in (2.3) for mixed moments and from there, prove the

central limit theorem via the classical cumulant method.

2.3. Topology of the Poisson boolean model : Thermodynamic regime. In this

section, we shall state the strong law for certain topological statistics of the boolean model

- the Betti numbers and the persistent Betti number- on ergodic point processes and the

central limit theorem under the further assumption that P is a stationary Poisson point

process . For a boolean model, the non-trivial Betti numbers are βi, 0 ≤ i ≤ d− 1.

Theorem 2.6. Let P be an ergodic point process such that E(P(B)m) < ∞ for all m ∈ N
and for all bounded Borel subsets B. Let 0 < r ≤ s < ∞. Then, for 0 ≤ k ≤ d − 1, there

exist constants β∞k (r, s) ∈ [0,∞) such that

n−1βk(C(Pn, r, s))
a.s→ β∞k (r, s).

Theorem 2.7. Let P be the stationary Poisson process and and 0 < r ≤ s <∞. Then, for

k ∈ {1, . . . , d− 1}, there exists a constant σ2
k(r, s) ∈ [0,∞) such that, as n→∞,

n−1Varβk(C(Pn, r, s) → σ2
k(r, s),

and

n−1/2 (βk(C(Pn, r, s))− Eβk(C(Pn, r, s))) ⇒ N(0, σ2
k(r, s)).

Remark 2.8 (Remarks on Theorems 2.6 and 2.7). (1) For the case k = 0, the above

results are well-known from [Penrose, 2003]. The above results for the case r = s was

proven in [Yogeshwaran et al., 2017, Theorems 3.5 and 4.7] and later extended to the

case r ≤ s by [Duy et al., 2016, Theorems 1.11 and 1.12].

(2) It is not necessary that β∞k (r, s) > 0 but it holds for many well-known point processes

(see [Yogeshwaran and Adler, 2015, Theorem 3.3] and [Duy et al., 2016, Theorem

1.9]. In fact, the strong law has been shown to hold for inhomogeneous Poisson point

processes as well in [Duy, 2017].

(3) As for variance asymptotics, while it is shown in [Yogeshwaran et al., 2017, Theorem

4.7] that σ2
k(r, r) > 0 no such assertion can be made about σ2

k(r, s) for r < s. Further,

variance lower bounds for inhomogeneous Poisson point processes for β0, βd−1 have

been shown in [Yogeshwaran et al., 2017, Lemma 4.3] and we wish to mention that

using the construction from [Bobrowski et al., 2016, Section 7], it might be possible

to show lower bounds for other Betti numbers.

(4) The proof of the strong law rests on exploiting near-additivity of (persistent) Betti

numbers along with ergodicity of the point process. The central limit theorem proceeds

via a general martingale-difference based central limit theorem for Poisson functional

derived in [Penrose and Yukich, 2001, Theorem 2.1]. The key step in the proof is

to verify stabilization of the first-order difference operator or the add-one cost of

βk(C(Pn, r, s). For the case r = s, this is done via the Mayer-Vietoris exact sequence

but for the case r ≤ s, this is done via a more direct analysis of the add-one cost.
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3. Omitted, on-going and future directions :

As is to be expected in such a short survey, we have omitted numerous related results of

which we shall refer to the latest here. The three notable omissions are the work on discrete

random complexes (see the survey [Kahle, 2014]), thresholds for vanishing of homology in

random geometric complexes (see [Bobrowski and Weinberger, 2017, Bobrowski and Oliveira, 2017]

for the most recent results) and effect of the tail of the density of the inhomogeneous Pois-

son point process on the topology (see [Owada, 2016]). We refer the reader to the surveys

[Kahle, 2014, Bobrowski and Kahle, 2014] for more on both discrete and geometric random

complexes.

In an on-going project, we are extending the limit theorems for Betti numbers and persis-

tent Betti numbers to lifetime sum of barcodes i.e.,
∫∞

0
βk(C(Pn, r)). In the case of k = 0,

this corresponds to the length of the minimal spanning tree on the complete graph on Pn
with edge-weights being the euclidean distances. In a seminal work, [Kesten and Lee, 1996]

proved the CLT for length of minimal spanning tree using martingale-difference argument

and this served as the motivation for the general CLT of [Penrose and Yukich, 2001, Theo-

rem 2.1] that we referenced earlier. Given this connection, it is natural to wonder whether

for higher k, there is a correspondance to higher-dimensional versions of trees. Such a cor-

respondance is estabilished to ‘minimal spanning acycles’ in [Hiraoka and Shirai, 2015] and

[Skraba et al., 2017] via different methods. Hence, this on-going work shall provide limit

theorems for statistics of euclidean minimal spanning acycles.

For a reader interested in exploring more about this subject, we mention a few open

problems. A basic question would be to derive strong laws and variance lower bounds for

persistent Betti numbers of the boolean model on an inhomogeneous Poisson point process.

A more non-trivial question would be to estabilish CLT as well as rates of convergence for

topological statistics of the boolean model on an inhomogeneous Poisson point process. A

starting point for such studies might be the recent work on CLT rates for minimal span-

ning tree in [Chatterjee and Sen, 2017] and a more general result for CLT rates of Poisson

functionals via the Malliavin-Stein method in [Last et al., 2016, Peccati and Reitzner, 2016].

Now, if we move onto stationary point processes, there are no CLTs for topological statistics

and rates of CLT are unavailable even for geometric statistics. Possible approaches to such

a question of rates might be via deriving more careful bounds on cumulants and then us-

ing [Grote and Thäle, 2016, Lemma 4.2] or [Heinrich and Schmidt, 1985, Theorem 1]. Such

methods might also be useful in proving other limit theorems such as moderate deviations.
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