Towards connectivities of random geometric complexes

D. Yogeshwaran

Indian Statistical Institute Bangalore.
Joint work with:
Srikanth K. Iyer, Indian Institute of Science, Bangalore

Leiden, June 2018.

Random geometric graphs

Random geometric graphs

Random geometric graphs

- \mathcal{P}_{n} - Poisson process with intensity n on $U=[0,1]^{d}$. Toroidal metric and $d \geq 2$ (always).

Random geometric graphs

- \mathcal{P}_{n} - Poisson process with intensity n on $U=[0,1]^{d}$. Toroidal metric and $d \geq 2$ (always).
- $\mathcal{P}_{n}=\left\{X_{1}, \ldots, X_{N_{n}}\right\}-X_{i}$ i.i.d. uniform and $N_{n} \sim \operatorname{Poi}(n)$.

Random geometric graphs

- \mathcal{P}_{n} - Poisson process with intensity n on $U=[0,1]^{d}$. Toroidal metric and $d \geq 2$ (always).
- $\mathcal{P}_{n}=\left\{X_{1}, \ldots, X_{N_{n}}\right\}-X_{i}$ i.i.d. uniform and $N_{n} \sim \operatorname{Poi}(n)$.
- Random geometric graph: $G\left(\mathcal{P}_{n}, r\right)$: Vertices, $V=\mathcal{P}_{n}$, Edges : $x_{i} \sim x_{j}$ if $0<\left|x_{i}-x_{j}\right| \leq 2 r, r>0$.

The first and last obstacle to connectivity

The first and last obstacle to connectivity

- Sharp connectivity threshold: (Penrose '97) :
$\mathrm{P}\left(G\left(\mathcal{P}_{n}, r_{n}\right)\right.$ is connected $) \rightarrow\left\{\begin{array}{ll}0 & \text { if } n \theta_{d} 2^{d} r_{n}^{d}=\log n-w(n) \\ 1 & \text { if } n \theta_{d} 2^{d} r_{n}^{d}=\log n+w(n)\end{array}\right.$,
for $w(n) \rightarrow \infty . \theta_{d}$ - Vol. of unit ball.

The first and last obstacle to connectivity

- Sharp connectivity threshold: (Penrose '97) :

$$
\mathrm{P}\left(G\left(\mathcal{P}_{n}, r_{n}\right) \text { is connected }\right) \rightarrow\left\{\begin{array}{ll}
0 & \text { if } n \theta_{d} 2^{d} r_{n}^{d}=\log n-w(n) \\
1 & \text { if } n \theta_{d} 2^{d} r_{n}^{d}=\log n+w(n)
\end{array},\right.
$$

for $w(n) \rightarrow \infty . \theta_{d}$ - Vol. of unit ball.

- Threshold for isolated nodes : $J_{n, 0}$. For $w(n) \rightarrow \infty$,

$$
\mathrm{P}\left(J_{n, 0}=0\right) \rightarrow \begin{cases}0 & \text { if } n \theta_{d} 2^{d} r_{n}^{d}=\log n-w(n) \\ 1 & \text { if } n \theta_{d} 2^{d} r_{n}^{d}=\log n+w(n)\end{cases}
$$

Towards higher-dimensions

Towards higher-dimensions

- Simplicial Complex: V finite. $\mathcal{K} \subset 2^{V}$ - complex if

Towards higher-dimensions

- Simplicial Complex: V finite. $\mathcal{K} \subset 2^{V}$ - complex if

$$
\sigma \in \mathcal{K}, \tau \subset \sigma \Rightarrow \tau \in \mathcal{K}
$$

Towards higher-dimensions

- Simplicial Complex: V finite. $\mathcal{K} \subset 2^{V}$ - complex if

$$
\sigma \in \mathcal{K}, \tau \subset \sigma \Rightarrow \tau \in \mathcal{K}
$$

- $\sigma \in \mathcal{K}, k$-face if $|\sigma|=k+1 . F^{k}(\mathcal{K})$ - all k-faces.

Towards higher-dimensions

- Simplicial Complex: V finite. $\mathcal{K} \subset 2^{V}$ - complex if

$$
\sigma \in \mathcal{K}, \tau \subset \sigma \Rightarrow \tau \in \mathcal{K}
$$

- $\sigma \in \mathcal{K}, k$-face if $|\sigma|=k+1 . F^{k}(\mathcal{K})$ - all k-faces.
- up-connectivity: $\sigma \stackrel{u}{\sim} \sigma^{\prime}$ in F^{k} if $\sigma \cup \sigma^{\prime} \in F^{k+1}$.

Towards higher-dimensions

- Simplicial Complex: V finite. $\mathcal{K} \subset 2^{V}$ - complex if

$$
\sigma \in \mathcal{K}, \tau \subset \sigma \Rightarrow \tau \in \mathcal{K}
$$

- $\sigma \in \mathcal{K}, k$-face if $|\sigma|=k+1 . F^{k}(\mathcal{K})$ - all k-faces.
- up-connectivity: $\sigma \stackrel{u}{\sim} \sigma^{\prime}$ in F^{k} if $\sigma \cup \sigma^{\prime} \in F^{k+1}$.
- $G_{k}^{U}:$ Vertices - F^{k}, Edges $\sigma \stackrel{u}{\sim} \sigma^{\prime}$.

Towards higher-dimensions

- Simplicial Complex: V finite. $\mathcal{K} \subset 2^{V}$ - complex if

$$
\sigma \in \mathcal{K}, \tau \subset \sigma \Rightarrow \tau \in \mathcal{K}
$$

- $\sigma \in \mathcal{K}, k$-face if $|\sigma|=k+1 . F^{k}(\mathcal{K})$ - all k-faces.
- up-connectivity: $\sigma \stackrel{u}{\sim} \sigma^{\prime}$ in F^{k} if $\sigma \cup \sigma^{\prime} \in F^{k+1}$.
- $G_{k}^{U}:$ Vertices - F^{k}, Edges $\sigma \stackrel{u}{\sim} \sigma^{\prime}$.
- down-connectivity: $\sigma \stackrel{d}{\sim} \sigma^{\prime}$ in F^{k} if $\sigma \cap \sigma^{\prime} \in F^{k-1}$.

Towards higher-dimensions

- Simplicial Complex: V finite. $\mathcal{K} \subset 2^{V}$ - complex if

$$
\sigma \in \mathcal{K}, \tau \subset \sigma \Rightarrow \tau \in \mathcal{K}
$$

- $\sigma \in \mathcal{K}, k$-face if $|\sigma|=k+1 . F^{k}(\mathcal{K})$ - all k-faces.
- up-connectivity: $\sigma \stackrel{u}{\sim} \sigma^{\prime}$ in F^{k} if $\sigma \cup \sigma^{\prime} \in F^{k+1}$.
- $G_{k}^{U}:$ Vertices - F^{k}, Edges $\sigma \stackrel{u}{\sim} \sigma^{\prime}$.
- down-connectivity: $\sigma \stackrel{d}{\sim} \sigma^{\prime}$ in F^{k} if $\sigma \cap \sigma^{\prime} \in F^{k-1}$.
- $G_{k}^{D}:$ Vertices - F^{k}, Edges $\sigma \stackrel{d}{\sim} \sigma^{\prime}$.

Towards higher-dimensions

- Simplicial Complex: V finite. $\mathcal{K} \subset 2^{V}$ - complex if

$$
\sigma \in \mathcal{K}, \tau \subset \sigma \Rightarrow \tau \in \mathcal{K}
$$

- $\sigma \in \mathcal{K}, k$-face if $|\sigma|=k+1 . F^{k}(\mathcal{K})$ - all k-faces.
- up-connectivity: $\sigma \stackrel{u}{\sim} \sigma^{\prime}$ in F^{k} if $\sigma \cup \sigma^{\prime} \in F^{k+1}$.
- $G_{k}^{U}:$ Vertices - F^{k}, Edges $\sigma \stackrel{u}{\sim} \sigma^{\prime}$.
- down-connectivity: $\sigma \stackrel{d}{\sim} \sigma^{\prime}$ in F^{k} if $\sigma \cap \sigma^{\prime} \in F^{k-1}$.
- $G_{k}^{D}:$ Vertices - F^{k}, Edges $\sigma \stackrel{d}{\sim} \sigma^{\prime}$.
- G_{0}^{U} : Vertices - $F^{0} \subset V$. Edges $\subset F^{1}$ i.e., the usual graph.

Geometric complexes

Geometric complexes

- $\mathcal{X} \subset \mathbb{R}^{d}$ - loc. fin. point-set. $\mathcal{X}^{(k)}$ - all distinct k-tuples in \mathcal{X}.

Geometric complexes

- $\mathcal{X} \subset \mathbb{R}^{d}$ - loc. fin. point-set. $\mathcal{X}^{(k)}$ - all distinct k-tuples in \mathcal{X}.
- Čech complex : $C(\mathcal{X}, r)-\sigma=\left[x_{0}, \ldots, x_{k}\right] \in \mathcal{X}^{(k+1)}$ a k-face if

Geometric complexes

- $\mathcal{X} \subset \mathbb{R}^{d}$ - loc. fin. point-set. $\mathcal{X}^{(k)}$ - all distinct k-tuples in \mathcal{X}.
- Čech complex : $C(\mathcal{X}, r)-\sigma=\left[x_{0}, \ldots, x_{k}\right] \in \mathcal{X}^{(k+1)}$ a k-face if

$$
\cap B_{x_{i}}(r) \neq \emptyset
$$

Geometric complexes

- $\mathcal{X} \subset \mathbb{R}^{d}$ - loc. fin. point-set. $\mathcal{X}^{(k)}$ - all distinct k-tuples in \mathcal{X}.
- Čech complex : $C(\mathcal{X}, r)-\sigma=\left[x_{0}, \ldots, x_{k}\right] \in \mathcal{X}^{(k+1)}$ a k-face if

$$
\cap B_{x_{i}}(r) \neq \emptyset
$$

- Vietoris-Rips complex : $R(\mathcal{X}, r)-\sigma=\left[x_{0}, \ldots, x_{k}\right] \in \mathcal{X}^{(k+1)}$ a k-face if

Geometric complexes

- $\mathcal{X} \subset \mathbb{R}^{d}$ - loc. fin. point-set. $\mathcal{X}^{(k)}$ - all distinct k-tuples in \mathcal{X}.
- Čech complex : $C(\mathcal{X}, r)-\sigma=\left[x_{0}, \ldots, x_{k}\right] \in \mathcal{X}^{(k+1)}$ a k-face if

$$
\cap B_{x_{i}}(r) \neq \emptyset .
$$

- Vietoris-Rips complex : $R(\mathcal{X}, r)-\sigma=\left[x_{0}, \ldots, x_{k}\right] \in \mathcal{X}^{(k+1)}$ a k-face if

$$
B_{x_{i}}(r) \cap B_{x_{j}}(r) \neq \emptyset, \forall i, j .
$$

Geometric complexes

- $\mathcal{X} \subset \mathbb{R}^{d}$ - loc. fin. point-set. $\mathcal{X}^{(k)}$ - all distinct k-tuples in \mathcal{X}.
- Čech complex : $C(\mathcal{X}, r)-\sigma=\left[x_{0}, \ldots, x_{k}\right] \in \mathcal{X}^{(k+1)}$ a k-face if

$$
\cap B_{x_{i}}(r) \neq \emptyset .
$$

- Vietoris-Rips complex : $R(\mathcal{X}, r)-\sigma=\left[x_{0}, \ldots, x_{k}\right] \in \mathcal{X}^{(k+1)}$ a k-face if

$$
B_{x_{i}}(r) \cap B_{x_{j}}(r) \neq \emptyset, \forall i, j .
$$

- 0-faces of $C(\mathcal{X}, r), R(\mathcal{X}, r)$ are \mathcal{X}.

Geometric complexes

- $\mathcal{X} \subset \mathbb{R}^{d}$ - loc. fin. point-set. $\mathcal{X}^{(k)}$ - all distinct k-tuples in \mathcal{X}.
- Čech complex : $C(\mathcal{X}, r)-\sigma=\left[x_{0}, \ldots, x_{k}\right] \in \mathcal{X}^{(k+1)}$ a k-face if

$$
\cap B_{x_{i}}(r) \neq \emptyset .
$$

- Vietoris-Rips complex : $R(\mathcal{X}, r)-\sigma=\left[x_{0}, \ldots, x_{k}\right] \in \mathcal{X}^{(k+1)}$ a k-face if

$$
B_{x_{i}}(r) \cap B_{x_{j}}(r) \neq \emptyset, \forall i, j .
$$

- 0 -faces of $C(\mathcal{X}, r), R(\mathcal{X}, r)$ are \mathcal{X}.
- 1-faces of $C(\mathcal{X}, r), R(\mathcal{X}, r)$ are edges in usual GG on \mathcal{X}.

Geometric complexes

- $\mathcal{X} \subset \mathbb{R}^{d}$ - loc. fin. point-set. $\mathcal{X}^{(k)}$ - all distinct k-tuples in \mathcal{X}.
- Čech complex : $C(\mathcal{X}, r)-\sigma=\left[x_{0}, \ldots, x_{k}\right] \in \mathcal{X}^{(k+1)}$ a k-face if

$$
\cap B_{x_{i}}(r) \neq \emptyset .
$$

- Vietoris-Rips complex : $R(\mathcal{X}, r)-\sigma=\left[x_{0}, \ldots, x_{k}\right] \in \mathcal{X}^{(k+1)}$ a k-face if

$$
B_{x_{i}}(r) \cap B_{x_{j}}(r) \neq \emptyset, \forall i, j .
$$

- 0 -faces of $C(\mathcal{X}, r), R(\mathcal{X}, r)$ are \mathcal{X}.
- 1-faces of $C(\mathcal{X}, r), R(\mathcal{X}, r)$ are edges in usual GG on \mathcal{X}.
- k-faces of $R(\mathcal{X}, r) \equiv(k+1)$-cliques in GG on \mathcal{X}.

Geometric complexes

- $\mathcal{X} \subset \mathbb{R}^{d}$ - loc. fin. point-set. $\mathcal{X}^{(k)}$ - all distinct k-tuples in \mathcal{X}.
- Čech complex : $C(\mathcal{X}, r)-\sigma=\left[x_{0}, \ldots, x_{k}\right] \in \mathcal{X}^{(k+1)}$ a k-face if

$$
\cap B_{x_{i}}(r) \neq \emptyset .
$$

- Vietoris-Rips complex : $R(\mathcal{X}, r)-\sigma=\left[x_{0}, \ldots, x_{k}\right] \in \mathcal{X}^{(k+1)}$ a k-face if

$$
B_{x_{i}}(r) \cap B_{x_{j}}(r) \neq \emptyset, \forall i, j .
$$

- 0 -faces of $C(\mathcal{X}, r), R(\mathcal{X}, r)$ are \mathcal{X}.
- 1-faces of $C(\mathcal{X}, r), R(\mathcal{X}, r)$ are edges in usual GG on \mathcal{X}.
- k-faces of $R(\mathcal{X}, r) \equiv(k+1)$-cliques in GG on \mathcal{X}.

$$
C(\mathcal{X}, r) \subset R(\mathcal{X}, r) \subset C(\mathcal{X}, \sqrt{2} r)
$$

An example

An example

An example

- Maximal faces in $C(\mathcal{X}, 1)=\{[1,2],[2,3],[3,4],[2,4,5]\}$.

An example

- Maximal faces in $C(\mathcal{X}, 1)=\{[1,2],[2,3],[3,4],[2,4,5]\}$.
- 1-faces are down-connected but have 4 up-connected components - [1, 2], [2, 3], [3, 4], $\{[2,4],[4,5],[2,5]\}$.

An example

- Maximal faces in $C(\mathcal{X}, 1)=\{[1,2],[2,3],[3,4],[2,4,5]\}$.
- 1-faces are down-connected but have 4 up-connected components - [1, 2], [2, 3], [3, 4], $\{[2,4],[4,5],[2,5]\}$.
- Maximal faces in $R(\mathcal{X}, 1)=\{[1,2],[2,3,4],[2,4,5]\}$.

An example

- Maximal faces in $C(\mathcal{X}, 1)=\{[1,2],[2,3],[3,4],[2,4,5]\}$.
- 1-faces are down-connected but have 4 up-connected components - [1, 2], [2, 3], [3, 4], $\{[2,4],[4,5],[2,5]\}$.
- Maximal faces in $R(\mathcal{X}, 1)=\{[1,2],[2,3,4],[2,4,5]\}$.
- 1-faces are down-connected but have 2 up-connected components - [1, 2], $\{[2,3],[3,4],[2,4],[4,5],[2,5]\}$.

Homological connectivity

Homological connectivity

- Embed \mathcal{K} in \mathbb{R}^{d} for large d - i.e., no intersections.

Homological connectivity

- Embed \mathcal{K} in \mathbb{R}^{d} for large d - i.e., no intersections.
- Betti Numbers: β_{k} - Number of $(k+1)$-dimensional holes.

Homological connectivity

- Embed \mathcal{K} in \mathbb{R}^{d} for large d - i.e., no intersections.
- Betti Numbers: β_{k} - Number of $(k+1)$-dimensional holes.

Figure: $\beta_{0}=0, \beta_{1}=1$.

Homological connectivity

- Embed \mathcal{K} in \mathbb{R}^{d} for large d - i.e., no intersections.
- Betti Numbers: β_{k} - Number of $(k+1)$-dimensional holes.

Figure: $\beta_{0}=0, \beta_{1}=1$.

- "Homologically connected" in dimension k if $\beta_{k}=0$.

Homological connectivity

- Embed \mathcal{K} in \mathbb{R}^{d} for large d - i.e., no intersections.
- Betti Numbers: β_{k} - Number of $(k+1)$-dimensional holes.

Figure: $\beta_{0}=0, \beta_{1}=1$.

- "Homologically connected" in dimension k if $\beta_{k}=0$.
- up-connectivity \nRightarrow homological connectivity.

Homological connectivity

- Embed \mathcal{K} in \mathbb{R}^{d} for large d - i.e., no intersections.
- Betti Numbers: β_{k} - Number of $(k+1)$-dimensional holes.

Figure: $\beta_{0}=0, \beta_{1}=1$.

- "Homologically connected" in dimension k if $\beta_{k}=0$.
- up-connectivity \nLeftarrow homological connectivity.
- Combinatorial structure matters for up/down connectivity !

Why higher-dimensional connectivity ?

Why higher-dimensional connectivity ?

- Q-analysis for social systems : - R. Atkins 1972-78.

Why higher-dimensional connectivity ?

- Q-analysis for social systems : - R. Atkins 1972-78.
- Combinatorial / A-homotopy theory: - Barcelo, Laubenbacher et al.. 2000's.

Why higher-dimensional connectivity ?

- Q-analysis for social systems : - R. Atkins 1972-78.
- Combinatorial / A-homotopy theory : - Barcelo, Laubenbacher et al.. 2000's.
- Clique connectivity : Derenyi et al., 2005 ; Bollobas-Riordan, 2009.

Why higher-dimensional connectivity ?

- Q-analysis for social systems : - R. Atkins 1972-78.
- Combinatorial / A-homotopy theory : - Barcelo, Laubenbacher et al.. 2000's.
- Clique connectivity : Derenyi et al., 2005 ; Bollobas-Riordan, 2009.
- up- and down-Laplacian: Horak-Jorst, 2013; Parzanchevski-Rosenthal, 2016; Mukherjee-Steenbergen, 2016.

Why higher-dimensional connectivity ?

- Q-analysis for social systems : - R. Atkins 1972-78.
- Combinatorial / A-homotopy theory : - Barcelo, Laubenbacher et al.. 2000's.
- Clique connectivity : Derenyi et al., 2005 ; Bollobas-Riordan, 2009.
- up- and down-Laplacian: Horak-Jorst, 2013; Parzanchevski-Rosenthal, 2016; Mukherjee-Steenbergen, 2016.
- Topological data analysis: Carlsson, 2014 ; Adler, 2015 ; Bobrowski-Kahle, 2017.

Random geometric complexes

Random geometric complexes

- \mathcal{P}_{n} - Poisson (n) process on U. Toroidal metric.

Random geometric complexes

- \mathcal{P}_{n} - Poisson (n) process on U. Toroidal metric.
- Čech complex : $C\left(\mathcal{P}_{n}, r\right)-\sigma=\left[x_{0}, \ldots, x_{k}\right]$ a k-face if

$$
\cap B_{x_{i}}(r) \neq \emptyset
$$

Random geometric complexes

- \mathcal{P}_{n} - Poisson (n) process on U. Toroidal metric.
- Čech complex : $C\left(\mathcal{P}_{n}, r\right)-\sigma=\left[x_{0}, \ldots, x_{k}\right]$ a k-face if

$$
\cap B_{x_{i}}(r) \neq \emptyset
$$

- Vietoris-Rips complex : $R\left(\mathcal{P}_{n}, r\right)-\sigma=\left[x_{0}, \ldots, x_{k}\right]$ a k-face if

$$
B_{x_{i}}(r) \cap B_{x_{j}}(r) \neq \emptyset, \forall i, j
$$

Random geometric complexes

- \mathcal{P}_{n} - Poisson (n) process on U. Toroidal metric.
- Čech complex : $C\left(\mathcal{P}_{n}, r\right)-\sigma=\left[x_{0}, \ldots, x_{k}\right]$ a k-face if

$$
\cap B_{x_{i}}(r) \neq \emptyset
$$

- Vietoris-Rips complex : $R\left(\mathcal{P}_{n}, r\right)-\sigma=\left[x_{0}, \ldots, x_{k}\right]$ a k-face if

$$
B_{x_{i}}(r) \cap B_{x_{j}}(r) \neq \emptyset, \forall i, j
$$

- 0, 1-faces of $C\left(\mathcal{P}_{n}, r\right), R\left(\mathcal{P}_{n}, r\right)$ - RGG.

Random geometric complexes

- \mathcal{P}_{n} - Poisson (n) process on U. Toroidal metric.
- Čech complex : $C\left(\mathcal{P}_{n}, r\right)-\sigma=\left[x_{0}, \ldots, x_{k}\right]$ a k-face if

$$
\cap B_{x_{i}}(r) \neq \emptyset
$$

- Vietoris-Rips complex : $R\left(\mathcal{P}_{n}, r\right)-\sigma=\left[x_{0}, \ldots, x_{k}\right]$ a k-face if

$$
B_{x_{i}}(r) \cap B_{x_{j}}(r) \neq \emptyset, \forall i, j
$$

- 0, 1-faces of $C\left(\mathcal{P}_{n}, r\right), R\left(\mathcal{P}_{n}, r\right)$ - RGG.
- k-faces $\equiv(k+1)$-cliques in RGG.

Random geometric complexes

- \mathcal{P}_{n} - Poisson (n) process on U. Toroidal metric.
- Čech complex : $C\left(\mathcal{P}_{n}, r\right)-\sigma=\left[x_{0}, \ldots, x_{k}\right]$ a k-face if

$$
\cap B_{x_{i}}(r) \neq \emptyset
$$

- Vietoris-Rips complex : $R\left(\mathcal{P}_{n}, r\right)-\sigma=\left[x_{0}, \ldots, x_{k}\right]$ a k-face if

$$
B_{x_{i}}(r) \cap B_{x_{j}}(r) \neq \emptyset, \forall i, j
$$

- 0,1-faces of $C\left(\mathcal{P}_{n}, r\right), R\left(\mathcal{P}_{n}, r\right)$-RGG.
- k-faces $\equiv(k+1)$-cliques in RGG.
- $G_{k}^{*}\left(X_{n}(r)\right): *=U / D$ i.e., up / down.
$X_{n}(r):=X\left(\mathcal{P}_{n}, r\right), X=C / R$ i.e., Čech / Vietoris-Rips.

Homological and up-connectivity

Homological and up-connectivity

- Bobrowski-Weinberger '17 : For $\epsilon \in(0,1)$

$$
\mathrm{P}\left(\beta_{k}\left(C_{n}\left(r_{n}\right)\right)=0\right) \rightarrow \begin{cases}0 & \text { if } n \theta_{d} r_{n}^{d}=(1-\epsilon) \log n \\ 1 & \text { if } n \theta_{d} r_{n}^{d}=(1+\epsilon) \log n\end{cases}
$$

Homological and up-connectivity

- Bobrowski-Weinberger '17 : For $\epsilon \in(0,1)$

$$
\mathrm{P}\left(\beta_{k}\left(C_{n}\left(r_{n}\right)\right)=0\right) \rightarrow \begin{cases}0 & \text { if } n \theta_{d} r_{n}^{d}=(1-\epsilon) \log n \\ 1 & \text { if } n \theta_{d} r_{n}^{d}=(1+\epsilon) \log n\end{cases}
$$

- "DY-SKI (2018+)" : For $\epsilon \in(0,1)$

$$
\mathrm{P}\left(G_{k}^{U}\left(C_{n}\left(r_{n}\right)\right) \text { is connected }\right) \rightarrow \begin{cases}0 & \text { if } n \theta_{d} r_{n}^{d}=(1-\epsilon) \log n \\ 1 & \text { if } n \theta_{d} r_{n}^{d}=(1+\epsilon) \log n\end{cases}
$$

Homological and up-connectivity

- Bobrowski-Weinberger '17: For $\epsilon \in(0,1)$

$$
\mathrm{P}\left(\beta_{k}\left(C_{n}\left(r_{n}\right)\right)=0\right) \rightarrow \begin{cases}0 & \text { if } n \theta_{d} r_{n}^{d}=(1-\epsilon) \log n \\ 1 & \text { if } n \theta_{d} r_{n}^{d}=(1+\epsilon) \log n\end{cases}
$$

- "DY-SKI (2018+)" : For $\epsilon \in(0,1)$

$$
\mathrm{P}\left(G_{k}^{U}\left(C_{n}\left(r_{n}\right)\right) \text { is connected }\right) \rightarrow \begin{cases}0 & \text { if } n \theta_{d} r_{n}^{d}=(1-\epsilon) \log n \\ 1 & \text { if } n \theta_{d} r_{n}^{d}=(1+\epsilon) \log n\end{cases}
$$

- Known only for Linial-Meshulam random complex ([Kahle-Pittel, 2014]).

Homological and up-connectivity

- Bobrowski-Weinberger '17: For $\epsilon \in(0,1)$

$$
\mathrm{P}\left(\beta_{k}\left(C_{n}\left(r_{n}\right)\right)=0\right) \rightarrow \begin{cases}0 & \text { if } n \theta_{d} r_{n}^{d}=(1-\epsilon) \log n \\ 1 & \text { if } n \theta_{d} r_{n}^{d}=(1+\epsilon) \log n\end{cases}
$$

- "DY-SKI (2018+)" : For $\epsilon \in(0,1)$

$$
\mathrm{P}\left(G_{k}^{U}\left(C_{n}\left(r_{n}\right)\right) \text { is connected }\right) \rightarrow \begin{cases}0 & \text { if } n \theta_{d} r_{n}^{d}=(1-\epsilon) \log n \\ 1 & \text { if } n \theta_{d} r_{n}^{d}=(1+\epsilon) \log n\end{cases}
$$

- Known only for Linial-Meshulam random complex ([Kahle-Pittel, 2014]).
- Also threshold for coverage - ([P. Hall, 1988])

Weak thresholds for isolated faces

Weak thresholds for isolated faces

- J_{k}^{U} - Isolated k-faces in the up-connected graph.

Weak thresholds for isolated faces

- J_{k}^{U} - Isolated k-faces in the up-connected graph.
- DY-S.K.lyer : For $\epsilon \in(0,1)$

$$
\mathrm{P}\left(J_{k}^{U}\left(C_{n}\left(r_{n}\right)\right)=0\right) \rightarrow \begin{cases}0 & \text { if } n \theta_{d} r_{n}^{d}=(1-\epsilon) \log n \\ 1 & \text { if } n \theta_{d} r_{n}^{d}=(1+\epsilon) \log n\end{cases}
$$

Weak thresholds for isolated faces

- J_{k}^{U} - Isolated k-faces in the up-connected graph.
- DY-S.K.lyer : For $\epsilon \in(0,1)$

$$
\mathrm{P}\left(J_{k}^{U}\left(C_{n}\left(r_{n}\right)\right)=0\right) \rightarrow \begin{cases}0 & \text { if } n \theta_{d} r_{n}^{d}=(1-\epsilon) \log n \\ 1 & \text { if } n \theta_{d} r_{n}^{d}=(1+\epsilon) \log n\end{cases}
$$

- $m_{k}=\min \left\{\left|\cap_{i=0}^{k} B_{x_{i}}(2)\right|:\left|x_{i}-x_{j}\right| \leq 2\right\}$.

Weak thresholds for isolated faces

- J_{k}^{U} - Isolated k-faces in the up-connected graph.
- DY-S.K.lyer : For $\epsilon \in(0,1)$

$$
\mathrm{P}\left(J_{k}^{U}\left(C_{n}\left(r_{n}\right)\right)=0\right) \rightarrow \begin{cases}0 & \text { if } n \theta_{d} r_{n}^{d}=(1-\epsilon) \log n \\ 1 & \text { if } n \theta_{d} r_{n}^{d}=(1+\epsilon) \log n\end{cases}
$$

- $m_{k}=\min \left\{\left|\cap_{i=0}^{k} B_{x_{i}}(2)\right|:\left|x_{i}-x_{j}\right| \leq 2\right\}$.
- $m_{1}>m_{2}>\ldots m_{d}>\ldots \theta_{d}$.

Weak thresholds for isolated faces

- J_{k}^{U} - Isolated k-faces in the up-connected graph.
- DY-S.K.lyer : For $\epsilon \in(0,1)$

$$
\mathrm{P}\left(J_{k}^{U}\left(C_{n}\left(r_{n}\right)\right)=0\right) \rightarrow \begin{cases}0 & \text { if } n \theta_{d} r_{n}^{d}=(1-\epsilon) \log n \\ 1 & \text { if } n \theta_{d} r_{n}^{d}=(1+\epsilon) \log n\end{cases}
$$

- $m_{k}=\min \left\{\left|\cap_{i=0}^{k} B_{x_{i}}(2)\right|:\left|x_{i}-x_{j}\right| \leq 2\right\}$.
- $m_{1}>m_{2}>\ldots m_{d}>\ldots \theta_{d}$.
- DY-SKI : For $\epsilon \in(0,1)$

$$
\mathrm{P}\left(J_{k}^{U}\left(R_{n}\left(r_{n}\right)\right)=0\right) \rightarrow \begin{cases}0 & \text { if } n m_{k} r_{n}^{d}=(1-\epsilon) \log n \\ 1 & \text { if } n m_{k} r_{n}^{d}=(1+\epsilon) \log n\end{cases}
$$

Weak thresholds for isolated faces

- J_{k}^{U} - Isolated k-faces in the up-connected graph.
- DY-S.K.lyer : For $\epsilon \in(0,1)$

$$
\mathrm{P}\left(J_{k}^{U}\left(C_{n}\left(r_{n}\right)\right)=0\right) \rightarrow \begin{cases}0 & \text { if } n \theta_{d} r_{n}^{d}=(1-\epsilon) \log n \\ 1 & \text { if } n \theta_{d} r_{n}^{d}=(1+\epsilon) \log n\end{cases}
$$

- $m_{k}=\min \left\{\left|\cap_{i=0}^{k} B_{x_{i}}(2)\right|:\left|x_{i}-x_{j}\right| \leq 2\right\}$.
- $m_{1}>m_{2}>\ldots m_{d}>\ldots \theta_{d}$.
- DY-SKI : For $\epsilon \in(0,1)$

$$
\mathrm{P}\left(J_{k}^{U}\left(R_{n}\left(r_{n}\right)\right)=0\right) \rightarrow \begin{cases}0 & \text { if } n m_{k} r_{n}^{d}=(1-\epsilon) \log n \\ 1 & \text { if } n m_{k} r_{n}^{d}=(1+\epsilon) \log n\end{cases}
$$

- No finite components exist above vanishing threshold!

What do the weak thresholds tell ?

What do the weak thresholds tell ?

- Similar threshold results hold for down connectivity as well.

What do the weak thresholds tell ?

- Similar threshold results hold for down connectivity as well.
- Down \ll up. Vietoris-Rips \ll Čech.

What do the weak thresholds tell ?

- Similar threshold results hold for down connectivity as well.
- Down \ll up. Vietoris-Rips \ll Čech.
- Missing Comparison : Vietoris-Rips up and Čech down.

What do the weak thresholds tell ?

- Similar threshold results hold for down connectivity as well.
- Down <<up. Vietoris-Rips << Čech.
- Missing Comparison: Vietoris-Rips up and Čech down.
- For all k, Čech up has same weak threshold - near coverage threshold.

What do the weak thresholds tell ?

- Similar threshold results hold for down connectivity as well.
- Down <<up. Vietoris-Rips << Čech.
- Missing Comparison: Vietoris-Rips up and Čech down.
- For all k, Čech up has same weak threshold - near coverage threshold.
- Vietoris-Rips up/down, Čech down have different weak thresholds in k.

What do the weak thresholds tell ?

- Similar threshold results hold for down connectivity as well.
- Down \ll up. Vietoris-Rips \ll Čech.
- Missing Comparison: Vietoris-Rips up and Čech down.
- For all k, Čech up has same weak threshold - near coverage threshold.
- Vietoris-Rips up/down, Čech down have different weak thresholds in k.
- Thresholds for Up-connectivity, vanishing of 'Isolated’ faces and Homological connectivity seem to coincide.

What do the weak thresholds tell ?

- Similar threshold results hold for down connectivity as well.
- Down \ll up. Vietoris-Rips \ll Čech.
- Missing Comparison: Vietoris-Rips up and Čech down.
- For all k, Čech up has same weak threshold - near coverage threshold.
- Vietoris-Rips up/down, Čech down have different weak thresholds in k.
- Thresholds for Up-connectivity, vanishing of 'Isolated’ faces and Homological connectivity seem to coincide.
- Why not Connectivity thresholds ? Can there be two infinite components?

Sharp thresholds for Isolated edges:

Sharp thresholds for Isolated edges:

- $X=C$ or $R ; J_{1}^{*}\left(X_{n}(r)\right)=$ no. of edges isolated in $X_{n}(s)$ for some $s>r$.

Sharp thresholds for Isolated edges:

- $X=C$ or $R ; J_{1}^{*}\left(X_{n}(r)\right)=$ no. of edges isolated in $X_{n}(s)$ for some $s>r$.
- $\left\{J_{1}^{* U}\left(X_{n}(r)\right)=0\right\}=\cap_{s>r}\left\{J_{1}\left(X_{n}(r)\right)=0\right\}$.

Sharp thresholds for Isolated edges:

- $X=C$ or $R ; J_{1}^{*}\left(X_{n}(r)\right)=$ no. of edges isolated in $X_{n}(s)$ for some $s>r$.
- $\left\{J_{1}^{* U}\left(X_{n}(r)\right)=0\right\}=\cap_{s>r}\left\{J_{1}\left(X_{n}(r)\right)=0\right\}$.
- Same weak thresholds for $J_{1}^{* U}$ as J_{1}^{U} for both $X=C$ or R.

Sharp thresholds for Isolated edges:

- $X=C$ or $R ; J_{1}^{*}\left(X_{n}(r)\right)=$ no. of edges isolated in $X_{n}(s)$ for some $s>r$.
- $\left\{J_{1}^{* U}\left(X_{n}(r)\right)=0\right\}=\cap_{s>r}\left\{J_{1}\left(X_{n}(r)\right)=0\right\}$.
- Same weak thresholds for $J_{1}^{* U}$ as J_{1}^{U} for both $X=C$ or R.
- Sharp thresholds: For $w_{n} \rightarrow \infty$,

$$
\mathrm{E}\left(J_{1}^{U}\left(R_{n}\left(r_{n}\right)\right)\right) \rightarrow \begin{cases}\infty & \text { if } n m_{1} r_{n}^{d}=\log n-w_{n} \rightarrow \infty \\ 0 & \text { if } n m_{1} r_{n}^{d}=\log n+w_{n}\end{cases}
$$

Sharp thresholds for Isolated edges:

- $X=C$ or $R ; J_{1}^{*}\left(X_{n}(r)\right)=$ no. of edges isolated in $X_{n}(s)$ for some $s>r$.
- $\left\{J_{1}^{* U}\left(X_{n}(r)\right)=0\right\}=\cap_{s>r}\left\{J_{1}\left(X_{n}(r)\right)=0\right\}$.
- Same weak thresholds for $J_{1}^{* U}$ as J_{1}^{U} for both $X=C$ or R.
- Sharp thresholds: For $w_{n} \rightarrow \infty$,

$$
\mathrm{E}\left(J_{1}^{U}\left(R_{n}\left(r_{n}\right)\right)\right) \rightarrow \begin{cases}\infty & \text { if } n m_{1} r_{n}^{d}=\log n-w_{n} \rightarrow \infty \\ 0 & \text { if } n m_{1} r_{n}^{d}=\log n+w_{n}\end{cases}
$$

- Same for $J_{1}^{* U}\left(R_{n}\left(r_{n}\right)\right)$.

Sharp thresholds for Isolated edges:

- $X=C$ or $R ; J_{1}^{*}\left(X_{n}(r)\right)=$ no. of edges isolated in $X_{n}(s)$ for some $s>r$.
- $\left\{J_{1}^{* U}\left(X_{n}(r)\right)=0\right\}=\cap_{s>r}\left\{J_{1}\left(X_{n}(r)\right)=0\right\}$.
- Same weak thresholds for $J_{1}^{* U}$ as J_{1}^{U} for both $X=C$ or R.
- Sharp thresholds: For $w_{n} \rightarrow \infty$,

$$
\mathrm{E}\left(J_{1}^{U}\left(R_{n}\left(r_{n}\right)\right)\right) \rightarrow \begin{cases}\infty & \text { if } n m_{1} r_{n}^{d}=\log n-w_{n} \rightarrow \infty \\ 0 & \text { if } n m_{1} r_{n}^{d}=\log n+w_{n}\end{cases}
$$

- Same for $J_{1}^{* U}\left(R_{n}\left(r_{n}\right)\right)$.
- $n m_{1} r_{n}^{d}=\log n-w_{n} \rightarrow \infty \Rightarrow \mathrm{P}\left(\beta_{1}\left(R_{n}\left(r_{n}\right)\right)=0\right) \rightarrow 0$.

Non-monotonicity of Isolated edges

Non-monotonicity of Isolated edges

- $J_{1}^{* U}\left(X_{n}(r)\right)=$ no. of isolated edges in $X_{n}(s)$ for some $s>r$.

Non-monotonicity of Isolated edges

- $J_{1}^{* U}\left(X_{n}(r)\right)=$ no. of isolated edges in $X_{n}(s)$ for some $s>r$.
- For $w_{n} \rightarrow \infty$,

$$
\mathrm{E}\left(J_{1}^{U}\left(C_{n}\left(r_{n}\right)\right)\right) \rightarrow \begin{cases}\infty & \text { if } n \theta_{d} r_{n}^{d}=\log n-\log \log n-w_{n} \rightarrow \infty \\ 0 & \text { if } n \theta_{d} r_{n}^{d}=\log n-\log \log n+w_{n}\end{cases}
$$

Non-monotonicity of Isolated edges

- $J_{1}^{* U}\left(X_{n}(r)\right)=$ no. of isolated edges in $X_{n}(s)$ for some $s>r$.
- For $w_{n} \rightarrow \infty$,

$$
\mathrm{E}\left(J_{1}^{U}\left(C_{n}\left(r_{n}\right)\right)\right) \rightarrow \begin{cases}\infty & \text { if } n \theta_{d} r_{n}^{d}=\log n-\log \log n-w_{n} \rightarrow \infty \\ 0 & \text { if } n \theta_{d} r_{n}^{d}=\log n-\log \log n+w_{n}\end{cases}
$$

- For $w_{n} \rightarrow \infty$,

$$
\mathrm{E}\left(J_{1}^{* U}\left(C_{n}\left(r_{n}\right)\right)\right) \rightarrow \begin{cases}\infty & \text { if } n \theta_{d} r_{n}^{d}=\log n-w_{n} \rightarrow \infty \\ 0 & \text { if } n \theta_{d} r_{n}^{d}=\log n+w_{n}\end{cases}
$$

Non-monotonicity of Isolated edges

- $J_{1}^{* U}\left(X_{n}(r)\right)=$ no. of isolated edges in $X_{n}(s)$ for some $s>r$.
- For $w_{n} \rightarrow \infty$,

$$
\mathrm{E}\left(J_{1}^{U}\left(C_{n}\left(r_{n}\right)\right)\right) \rightarrow \begin{cases}\infty & \text { if } n \theta_{d} r_{n}^{d}=\log n-\log \log n-w_{n} \rightarrow \infty \\ 0 & \text { if } n \theta_{d} r_{n}^{d}=\log n-\log \log n+w_{n}\end{cases}
$$

- For $w_{n} \rightarrow \infty$,

$$
\mathrm{E}\left(J_{1}^{* U}\left(C_{n}\left(r_{n}\right)\right)\right) \rightarrow \begin{cases}\infty & \text { if } n \theta_{d} r_{n}^{d}=\log n-w_{n} \rightarrow \infty \\ 0 & \text { if } n \theta_{d} r_{n}^{d}=\log n+w_{n}\end{cases}
$$

- For fixed " $r \in(\log n-\log \log n, \log n)$ ", no isolated edge but infinitely many appear and disappear very quickly !

Sharp thresholds for Isolated faces: $X=R$ or C

Sharp thresholds for Isolated faces: $X=R$ or C

- For $n m_{k} r_{n}^{d}=\log n+k \log \log n+w_{n}$ with $w_{n} \rightarrow \infty$,

Sharp thresholds for Isolated faces: $X=R$ or C

- For $n m_{k} r_{n}^{d}=\log n+k \log \log n+w_{n}$ with $w_{n} \rightarrow \infty$,

$$
\mathrm{E}\left(J_{k}^{U}\left(X_{n}\left(r_{n}\right)\right)\right), \mathrm{E}\left(J_{k}^{* U}\left(X_{n}\left(r_{n}\right)\right)\right) \rightarrow 0
$$

Sharp thresholds for Isolated faces: $X=R$ or C

- For $n m_{k} r_{n}^{d}=\log n+k \log \log n+w_{n}$ with $w_{n} \rightarrow \infty$,

$$
\mathrm{E}\left(J_{k}^{U}\left(X_{n}\left(r_{n}\right)\right)\right), \mathrm{E}\left(J_{k}^{* U}\left(X_{n}\left(r_{n}\right)\right)\right) \rightarrow 0
$$

- From $k=1$, clearly not tight bounds !

Sharp thresholds for Isolated faces: $X=R$ or C

- For $n m_{k} r_{n}^{d}=\log n+k \log \log n+w_{n}$ with $w_{n} \rightarrow \infty$,

$$
\mathrm{E}\left(J_{k}^{U}\left(X_{n}\left(r_{n}\right)\right)\right), \mathrm{E}\left(J_{k}^{* U}\left(X_{n}\left(r_{n}\right)\right)\right) \rightarrow 0
$$

- From $k=1$, clearly not tight bounds !
- There exists $c_{n} \rightarrow m_{k}$ such that for

$$
n c_{n} r_{n}^{d}=\log n+k \log \log n+\alpha+\ldots
$$

Sharp thresholds for Isolated faces: $X=R$ or C

- For $n m_{k} r_{n}^{d}=\log n+k \log \log n+w_{n}$ with $w_{n} \rightarrow \infty$,

$$
\mathrm{E}\left(J_{k}^{U}\left(X_{n}\left(r_{n}\right)\right)\right), \mathrm{E}\left(J_{k}^{* U}\left(X_{n}\left(r_{n}\right)\right)\right) \rightarrow 0
$$

- From $k=1$, clearly not tight bounds !
- There exists $c_{n} \rightarrow m_{k}$ such that for

$$
n c_{n} r_{n}^{d}=\log n+k \log \log n+\alpha+\ldots
$$

we have $\mathrm{E}\left(J_{k}^{U}\left(X_{n}\left(r_{n}\right)\right)\right) \rightarrow e^{-\alpha}$.

Sharp thresholds for Isolated faces: $X=R$ or C

- For $n m_{k} r_{n}^{d}=\log n+k \log \log n+w_{n}$ with $w_{n} \rightarrow \infty$,

$$
\mathrm{E}\left(J_{k}^{U}\left(X_{n}\left(r_{n}\right)\right)\right), \mathrm{E}\left(J_{k}^{* U}\left(X_{n}\left(r_{n}\right)\right)\right) \rightarrow 0
$$

- From $k=1$, clearly not tight bounds !
- There exists $c_{n} \rightarrow m_{k}$ such that for

$$
n c_{n} r_{n}^{d}=\log n+k \log \log n+\alpha+\ldots
$$

we have $\mathrm{E}\left(J_{k}^{U}\left(X_{n}\left(r_{n}\right)\right)\right) \rightarrow e^{-\alpha}$.

- Rate of $c_{n} \rightarrow m_{k} \Rightarrow 2$ nd order term $=k \log \log n$ or $(k-2) \log \log n$ or $(k-1) \log \log n$.

Proof Ideas

Proof Ideas

- Palm calculus / Campbell-Mecke formula :

Proof Ideas

- Palm calculus / Campbell-Mecke formula :

$$
\mathrm{E}\left(J_{k}^{U}\left(X_{n}(r)\right)\right)=\frac{n\left(n r^{d}\right)^{k}}{(k+1)!} \int_{U^{k+1}} h\left(x_{0}, \ldots, x_{k}\right) e^{-n r^{d}\left|Q\left(x_{0}, \ldots, x_{k}, r\right)\right|}
$$

Proof Ideas

- Palm calculus / Campbell-Mecke formula :

$$
\mathrm{E}\left(J_{k}^{U}\left(X_{n}(r)\right)\right)=\frac{n\left(n r^{d}\right)^{k}}{(k+1)!} \int_{U^{k+1}} h\left(x_{0}, \ldots, x_{k}\right) e^{-n r^{d}\left|Q\left(x_{0}, \ldots, x_{k}, r\right)\right|}
$$

- Q in general is unions or/and intersections of balls.

Proof Ideas

- Palm calculus / Campbell-Mecke formula :

$$
\mathrm{E}\left(J_{k}^{U}\left(X_{n}(r)\right)\right)=\frac{n\left(n r^{d}\right)^{k}}{(k+1)!} \int_{U^{k+1}} h\left(x_{0}, \ldots, x_{k}\right) e^{-n r^{d}\left|Q\left(x_{0}, \ldots, x_{k}, r\right)\right|} .
$$

- Q in general is unions or/and intersections of balls.
- Laplace Method : $\min Q=: m_{k}$! How does Q behave near m_{k} ???

Proof Ideas

- Palm calculus / Campbell-Mecke formula :

$$
\mathrm{E}\left(J_{k}^{U}\left(X_{n}(r)\right)\right)=\frac{n\left(n r^{d}\right)^{k}}{(k+1)!} \int_{U^{k+1}} h\left(x_{0}, \ldots, x_{k}\right) e^{-n r^{d}\left|Q\left(x_{0}, \ldots, x_{k}, r\right)\right|} .
$$

- Q in general is unions or/and intersections of balls.
- Laplace Method : $\min Q=: m_{k}$! How does Q behave near m_{k} ???
- Use mean-value theorem to get c_{n}.

Proof Ideas

- Palm calculus / Campbell-Mecke formula :

$$
\mathrm{E}\left(J_{k}^{U}\left(X_{n}(r)\right)\right)=\frac{n\left(n r^{d}\right)^{k}}{(k+1)!} \int_{U^{k+1}} h\left(x_{0}, \ldots, x_{k}\right) e^{-n r^{d}\left|Q\left(x_{0}, \ldots, x_{k}, r\right)\right|} .
$$

- Q in general is unions or/and intersections of balls.
- Laplace Method: $\min Q=: m_{k}$! How does Q behave near m_{k} ???
- Use mean-value theorem to get c_{n}.
- Simplifies if $k=1$ - Use Steiner's formula, lens formulae,...

Proof Ideas

- Palm calculus / Campbell-Mecke formula :

$$
\mathrm{E}\left(J_{k}^{U}\left(X_{n}(r)\right)\right)=\frac{n\left(n r^{d}\right)^{k}}{(k+1)!} \int_{U^{k+1}} h\left(x_{0}, \ldots, x_{k}\right) e^{-n r^{d}\left|Q\left(x_{0}, \ldots, x_{k}, r\right)\right|} .
$$

- Q in general is unions or/and intersections of balls.
- Laplace Method : $\min Q=: m_{k}$! How does Q behave near m_{k} ???
- Use mean-value theorem to get c_{n}.
- Simplifies if $k=1$ - Use Steiner's formula, lens formulae,...
- Lower bounds involve second-moments and some more Palm calculus.

Up-connectivity of Vietoris-Rips Complexes

Up-connectivity of Vietoris-Rips Complexes

- $c_{n} \rightarrow m_{k}$ such that $n c_{n} r_{n}^{d}=\log n+k \log \log n+\alpha+\ldots$

Up-connectivity of Vietoris-Rips Complexes

- $c_{n} \rightarrow m_{k}$ such that $n c_{n} r_{n}^{d}=\log n+k \log \log n+\alpha+\ldots$

$$
\mathrm{E}\left(J_{k}^{U}\left(R_{n}\left(r_{n}\right)\right)\right) \rightarrow e^{-\alpha}
$$

Up-connectivity of Vietoris-Rips Complexes

- $c_{n} \rightarrow m_{k}$ such that $n c_{n} r_{n}^{d}=\log n+k \log \log n+\alpha+\ldots$

$$
\mathrm{E}\left(J_{k}^{U}\left(R_{n}\left(r_{n}\right)\right)\right) \rightarrow e^{-\alpha}
$$

- $k \leq d . J_{k}^{U}\left(R_{n}\left(r_{n}\right)\right) \xrightarrow{d} \operatorname{Poi}\left(e^{-\alpha}\right)$

Up-connectivity of Vietoris-Rips Complexes

- $c_{n} \rightarrow m_{k}$ such that $n c_{n} r_{n}^{d}=\log n+k \log \log n+\alpha+\ldots$

$$
\mathrm{E}\left(J_{k}^{U}\left(R_{n}\left(r_{n}\right)\right)\right) \rightarrow e^{-\alpha}
$$

- $k \leq d . J_{k}^{U}\left(R_{n}\left(r_{n}\right)\right) \xrightarrow{d} \operatorname{Poi}\left(e^{-\alpha}\right)$
- $J_{k, L}^{U}\left(R_{n}\left(r_{n}\right)\right)$ - Components of size at most L in $G^{U}\left(R_{n}\left(r_{n}\right)\right)$.

Up-connectivity of Vietoris-Rips Complexes

- $c_{n} \rightarrow m_{k}$ such that $n c_{n} r_{n}^{d}=\log n+k \log \log n+\alpha+\ldots$

$$
\mathrm{E}\left(J_{k}^{U}\left(R_{n}\left(r_{n}\right)\right)\right) \rightarrow e^{-\alpha}
$$

- $k \leq d . J_{k}^{U}\left(R_{n}\left(r_{n}\right)\right) \xrightarrow{d} \operatorname{Poi}\left(e^{-\alpha}\right)$
- $J_{k, L}^{U}\left(R_{n}\left(r_{n}\right)\right)$ - Components of size at most L in $G^{U}\left(R_{n}\left(r_{n}\right)\right)$.
- $k \leq d . J_{k, L}^{U}\left(R_{n}\left(r_{n}\right)\right) \xrightarrow{d} \operatorname{Poi}\left(e^{-\alpha}\right)$

Up-connectivity of Vietoris-Rips Complexes

- $c_{n} \rightarrow m_{k}$ such that $n c_{n} r_{n}^{d}=\log n+k \log \log n+\alpha+\ldots$

$$
\mathrm{E}\left(J_{k}^{U}\left(R_{n}\left(r_{n}\right)\right)\right) \rightarrow e^{-\alpha}
$$

- $k \leq d . J_{k}^{U}\left(R_{n}\left(r_{n}\right)\right) \xrightarrow{d} \operatorname{Poi}\left(e^{-\alpha}\right)$
- $J_{k, L}^{U}\left(R_{n}\left(r_{n}\right)\right)$ - Components of size at most L in $G^{U}\left(R_{n}\left(r_{n}\right)\right)$.
- $k \leq d . J_{k, L}^{U}\left(R_{n}\left(r_{n}\right)\right) \xrightarrow{d} \operatorname{Poi}\left(e^{-\alpha}\right)$
- Idea: Poisson approximation bound due to [Penrose16] and more second moment calculations.

Up-connectivity of Vietoris-Rips Complexes

- $c_{n} \rightarrow m_{k}$ such that $n c_{n} r_{n}^{d}=\log n+k \log \log n+\alpha+\ldots$

$$
\mathrm{E}\left(J_{k}^{U}\left(R_{n}\left(r_{n}\right)\right)\right) \rightarrow e^{-\alpha}
$$

- $k \leq d . J_{k}^{U}\left(R_{n}\left(r_{n}\right)\right) \xrightarrow{d} \operatorname{Poi}\left(e^{-\alpha}\right)$
- $J_{k, L}^{U}\left(R_{n}\left(r_{n}\right)\right)$ - Components of size at most L in $G^{U}\left(R_{n}\left(r_{n}\right)\right)$.
- $k \leq d . J_{k, L}^{U}\left(R_{n}\left(r_{n}\right)\right) \xrightarrow{d} \operatorname{Poi}\left(e^{-\alpha}\right)$
- Idea: Poisson approximation bound due to [Penrose16] and more second moment calculations.
- Key geometric Lemma: If $\mathbf{x}, \mathbf{y} \in \mathcal{X}^{(k+1)}$ are isolated k-faces $((k+1)$-cliques) in $R(\mathbf{x} \cup \mathbf{y} \cup \mathcal{P}, 1)$ then for some $\epsilon, \beta>0$, either $|Q(\mathbf{x}) \vee Q(\mathbf{y})| \geq m_{k}+\epsilon$ or $|Q(\mathbf{x}) \backslash Q(\mathbf{y})| \geq \beta$.

What more?

What more?

- Normalized Laplacian: $L=I-D^{-1 / 2} A D^{-1 / 2}$

What more?

- Normalized Laplacian: $L=I-D^{-1 / 2} A D^{-1 / 2}$
- Garland's method: Garland '73, Ballman-Świątkowski '97. : If maximal cliques in a graph G are atleast of order $(k+2)$ and $\lambda_{2}\left(k_{\sigma}\right)>1-1 / k$ for all k-cliques σ, then $\beta_{k-1}(R(G))=0$.

What more?

- Normalized Laplacian: $L=I-D^{-1 / 2} A D^{-1 / 2}$
- Garland's method: Garland '73, Ballman-Świątkowski '97. : If maximal cliques in a graph G are atleast of order $(k+2)$ and $\lambda_{2}\left(k_{\sigma}\right)>1-1 / k$ for all k-cliques σ, then $\beta_{k-1}(R(G))=0$.
- Used by Kahle '14 to show threshold for $R(G(n, p))$ -Erdös-Rényi clique complex.

What more?

- Normalized Laplacian: $L=I-D^{-1 / 2} A D^{-1 / 2}$
- Garland's method: Garland '73, Ballman-Świątkowski '97. : If maximal cliques in a graph G are atleast of order $(k+2)$ and $\lambda_{2}\left(k_{\sigma}\right)>1-1 / k$ for all k-cliques σ, then $\beta_{k-1}(R(G))=0$.
- Used by Kahle '14 to show threshold for $R(G(n, p))$ -Erdös-Rényi clique complex.
- In our case for $k=1$: To show that w.h.p., for every $X \in \mathcal{P}_{n}$, $\lambda_{2}\left(G\left(\mathcal{P}_{n} \cap B_{2 r_{n}}(X), 2 r_{n}\right)\right)>1 / 2$.

What more?

- Normalized Laplacian: $L=I-D^{-1 / 2} A D^{-1 / 2}$
- Garland's method: Garland '73, Ballman-Świątkowski '97. : If maximal cliques in a graph G are atleast of order $(k+2)$ and $\lambda_{2}\left(k_{\sigma}\right)>1-1 / k$ for all k-cliques σ, then $\beta_{k-1}(R(G))=0$.
- Used by Kahle '14 to show threshold for $R(G(n, p))$ -Erdös-Rényi clique complex.
- In our case for $k=1$: To show that w.h.p., for every $X \in \mathcal{P}_{n}$, $\lambda_{2}\left(G\left(\mathcal{P}_{n} \cap B_{2 r_{n}}(X), 2 r_{n}\right)\right)>1 / 2$.
- Equivalent to show $\lambda_{2}\left(G\left(\mathcal{P}_{n} \cap B_{1}(O), 1\right)\right)>1 / 2$.

What more?

- Normalized Laplacian: $L=I-D^{-1 / 2} A D^{-1 / 2}$
- Garland's method: Garland '73, Ballman-Świątkowski '97. : If maximal cliques in a graph G are atleast of order $(k+2)$ and $\lambda_{2}\left(k_{\sigma}\right)>1-1 / k$ for all k-cliques σ, then $\beta_{k-1}(R(G))=0$.
- Used by Kahle '14 to show threshold for $R(G(n, p))$ -Erdös-Rényi clique complex.
- In our case for $k=1$: To show that w.h.p., for every $X \in \mathcal{P}_{n}$, $\lambda_{2}\left(G\left(\mathcal{P}_{n} \cap B_{2 r_{n}}(X), 2 r_{n}\right)\right)>1 / 2$.
- Equivalent to show $\lambda_{2}\left(G\left(\mathcal{P}_{n} \cap B_{1}(O), 1\right)\right)>1 / 2$.
- "Bobrowski-D.Y." $\lambda_{2}\left(G\left(\mathcal{P}_{n} \cap B_{1}(O), 1\right)\right) \rightarrow 1 / 2$ a.s. !!!

References

- Srikanth K. lyer and D.Y. (2018). Thresholds for vanishing of 'Isolated' faces in random Čech and Vietoris-Rips complexes. arXiv:1802.08224
- O. Bobrowski and S. Weinberger (2017), On the vanishing of homology in random Čech complexes. Rand. Struct \& Alg.
- O. Bobrowski and M. Kahle (2017) Topology of random geometric complexes: A survey. J. Appl. \& Comp. Topology
- M. D. Penrose. (2016) Inhomogeneous random graphs, isolated vertices, and Poisson approximation, arXiv:1507.07132
- C. Hoffmann, M. Kahle and E. Paquette (2016), Spectral gaps of random graphs and applications to random topology. arXiv:1201.0425

