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Chapter 1

Introduction

Much of motivation for this thesis work comes from wireless sensor networks. In this chapter,

we describe the models and the applications that have motivated the problems we have

considered. The problems studied are connectivity in evolving one dimensional exponential

random geometric graphs (RGGs) and target tracking in sensor networks. Though the

problems are motivated by real-life models, some of the properties studied are more due to

analytical tractability.

A one dimensional exponential random geometric graph can be described as follows: Given a

set Xn = {X1, X2, . . .Xn} where Xi are i.i.d. d-dimensional random variables with common

density f , a random geometric graph G(Xn, r) is an undirected graph with vertex set Xn

and an undirected edge set E = {(Xi, Xj) : |Xi −Xj| ≤ r}. r > 0 is called the cutoff range.

Various asymptotic topological properties of RGGs have been studied in [1]. An exponential

RGG is one where f is the exponential density. One may refer to [2] for importance and

results on the exponential RGG. In most of the studies on RGGs, the nodes are assumed to

be static. However [3] shows that networks can exploit mobility to achieve better throughput.

This necessitates the study of RGGs with nodes evolving over time.

We consider two evolution models and study one of them in detail and briefly sketch the

results for the other. In the first model, the inter-nodal gaps evolve according to an exponen-

tial AR(1) process that makes the stationary distribution of the node locations exponential.

For this model we obtain the k-step transition probabilities of connectivity conditioned on

the network being currently connected (or disconnected). We also derive the distribution of
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2 CHAPTER 1. INTRODUCTION

the first passage time for a connected network to become disconnected. We then describe

a random birth-death model where at each instant, the node locations evolve according to

an exponential AR(1) process. In addition, a node chosen at random is allowed to die while

giving birth to a node at a random location. We derive properties similar to those above.

While we restrict ourselves to the one-dimensional case but an important variation we have

introduced to the basic theme is the non-uniform distribution of nodes.

For our second problem, we turn to target tracking in sensor networks. Consider the following

model of a sensor network. The sensors are deployed according to a spatially homogenous

Poisson process in Euclidean space Rd. The sensing area of each sensor is a ball of random

radius and a point is considered k-sensed if and only if it is in the sensing area of at least k

sensors. It is easy to understand that when k-sensors spot a target, better estimate of the

location of the target is obtained as opposed to the target being sensed by a single sensor. We

analyze various measures of trackability - the ability of the network to track one dimensional

linearly moving targets.

The coverage of an operational area by sensors can be described via a a two dimensional

Boolean process. The Boolean process is a countable sequence of independent and identically

distributed (i.i.d) sets centered at points of a stationary Poisson point process. This has

been the focus of study in [4]. The tools of coverage processes facilitate a better study of

the problem of trackability described above. The focus of the study in [4] has been the area

coverage properties of a Boolean process. In order to study k-sensing, we need to extend

the results of [4] to k-coverage. A point is said to be k-covered if only it lies in atleast k of

the sets in the coverage process. We obtain a weak law of large numbers and a central limit

theorem for area covered in Chapter 3.

In Chapter 4 we analyze the trackability of a sensor network. We first show that the sensing

process induced on a straight line path by the area coverage process in R2 is a one dimensional

Boolean process which in turn can be mapped to a M/G/∞ queue. This is then used to

obtain two asymptotic results—a strong law and a central limit theorem for the fraction of

a path that is covered by k or more sensors. The asymptotic results are obtained under

the same conditions as that required for asymptotic coverage by a two dimensional Boolean

process. Interestingly, the asymptotic fraction of the area k-covered by the sensors in R2 is

the same as the fraction of a path k-sensed.



3

The strong law derived above helps us obtain the sensor density that is necessary to sense

a given fraction of an arbitrary path with very high probability is derived. Expectation

and variance of the fraction of a path covered for finite λ are also obtained. We then

characterize the ‘length to first sense’, and sensing continuity measures like holes and clumps.

Trackability measures that do not depend on the sensing radius like breach and support are

also characterized. Also discussed are some generalizations of the results like characterization

of the coverage process of m−dimensional ‘straight line paths’ by a n(> m) dimensional

sensor networks. Though we have delineated all the results in the context of sensor networks,

it also can be applied to problems in atmospheric monitoring, intruder detection etc.

Next we study the backbone-client sensor network model. The model we consider is of base

stations (backbone) and clients (sensors). The clients lie within a certain distance of the base

station and communicate with that base station alone. These clients act as the sensor nodes

which sense the target. We have considered the case when clients lie within a square of length

2R0 around the base station and each client senses within a square of length 2R1 around

itself. This backbone-client network can be modeled as a Poisson Cluster Process. We derive

the strong law and central limit theorem for fraction of the one dimensional linearly moving

target sensed. We obtain other measures like breach and length to first sense.

The thesis is a compilation of our work done in [12], [5], [25], [24]. The thesis is organized

as follows : In Chapter 2, we study the evolving one dimensional exponential RGG model

described in the beginning. In Chapter 3 we extend results to the concept of k- coverage. Its

applications to the sensor network model and other results pertaining to the model have been

elaborated in Chapter 4. Similar kind of results have been obtained for the backbone sensor

networks in Chapter 5. Finally we round off the thesis with a few remarks and possibilities

for future work in Chapter 6.
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Chapter 2

Evolving Random Geometric Graphs

2.1 Introduction and Preliminaries

Random geometric graphs (RGG) are being extensively studied in the context of wireless ad

hoc networks, wireless sensor networks, interval graphs, etc. To obtain an RGG, N nodes

are deployed according to a specified spatial probability distribution in an operational area.

The operational area is defined by the support of the node distributions. Two nodes are

connected by an edge if the distance between them, measured using a specified norm, is less

than a critical distance r. In general, r can be a function of N . Topological properties of

the resulting graph, are typically studied. [1] is an excellent introduction to this subject.

The properties are usually obtained for uniform distribution of the nodes in the unit cube

(of any dimension) and usually only asymptotic results as N → ∞ are available. [13, 14]

are notable examples where finite graphs have been considered. Using methods similar to

that for the uniform distribution in a cube, [1] also obtains results for other distributions

with finite support. An important assumption in all of the research is that the nodes are

static, i.e., once they are deployed, their locations do not change. We can say that such

stochastic characterizations of the RGGs are for ensembles. We introduce two variations

to the usual analysis assumptions described above—(1) the node positions evolve over time

according to an AR process, i.e., the nodes are mobile and (2) rather than being uniformly

distributed in the unit cube, the nodes have a non uniform distribution in (0,∞). We

restrict ourselves to the one-dimensional case. In an important study of mobility, [3] shows

5



6 CHAPTER 2. EVOLVING RANDOM GEOMETRIC GRAPHS

that ad hoc networks can exploit mobility to achieve O(1) throughput as opposed to the

O(
√

(N/ logN)) throughput obtained in [15]. While a fairly general mobility model is

assumed, the analysis of [3] does not involve modeling of the topological properties of the

network. A good introduction to node mobility models in the context of wireless networks

is available in [16]. Extensive simulation results are also provided in [16] to obtain the

performance of network protocols under different mobility patterns of the wireless network

nodes. While there is significant simulation based research in obtaining network performance

and properties when the nodes are mobile, to the best of our knowledge, there is no known

study of the evolution of the topological properties with mobile nodes and we believe this is

the first such study. We consider the following mobile, or evolving, network of N nodes in

one dimension on (0,∞). We assume that the evolution is a discrete time process. Let X t
l

denote the position of the l-th ordered node from the origin at time t, for t = 0, 1, . . . , and

l = 1, 2, . . . , N . Let Y t
l := X t

l+1 −X t
l , for l = 1, 2, . . . , N − 1. Define Y t

0 = X t
1. We consider

a network where {Y t
l } evolves according to the autoregressive process

Y t+1
l = aY t

l + Zt
l . (2.1)

Here Zt
l is a random variable independent of Y t

l and is essentially the innovation of the

AR(1) process. This corresponds to there being a constant drift of the nodes and a random

perturbation. Further we assume that Y t
0 , Y

t
1 , . . . , Y

t
N−1 are independent for all t. The above

model for Y t
l implies an AR(1) model for X t

l , X
t+1
l = aX t

l +W
t+1
l , where W t+1

l =
∑l−1

k=0 Z
t+1
l .

Two special cases will have interesting properties and we will investigate them in detail in

this paper.

Case 1: Let 0 < a < 1 and define Zt
l = U t

l × V t
l , where {U t

l }t≥0 is a sequence of i.i.d. 0/1

Bernoulli random variables of mean (1 − a) and {V t
l }t≥0 is a sequence of i.i.d. exponential

random variables of mean λl. In [17] it is shown that this corresponds to the {Y t
l }t>0 being a

stationary exponential AR(1) sequence with autocorrelation function ak, assuming that the

inter-nodal gaps Y 0
l are exponentially distributed with parameter λl. This means that the

stationary distribution of Y t
l is an exponential with mean 1/λl. The density of Zt

l , fZl(z) for

this case has been derived in [17] to be aδ(z) + (1 − a)λle
−λlz

Case 2: Here we extend Case 1 and choose λl = (N − l)λ, for l = 0, . . . , N − 1. In this

case the distribution of the node locations corresponds to that of the ordered nodes when

the node locations are i.i.d. exponential random variables with mean 1/λ. The stationary
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Figure 2.1: Inter-nodal spacings in the network evolving with time.

properties of the evolving RGGs from Case 2 correspond to the properties of the exponential

RGGs. See [2, 18] for an extensive study of such RGGs where a number of topological

properties like connectivity, span, existence of paths and components etc are obtained for

finite N and also for the limiting case of N → ∞. Here the time dependent behavior of

the topological properties of the one-dimensional RGGs that evolve according to Eqn. 2.1

is characterized. Specifically we will obtain the finite node and asymptotic analysis for the

k-step conditional probability of a connected network remaining connected and disconnected

network being connected. This is described in Section 2.2. We then characterize the first

passage time from connectivity to disconnectivity in Section 2.3 for finite N . In Section 2.4,

we describe the random birth/death model and summarize a few results. Since we consider

only a one-dimensional network, all the l∞ and l2 norms to measure the distance between

two nodes are equivalent. Further, we will assume that r is fixed.

2.2 Conditional Connectivity

Consider anN -node network with Y t
l evolving according to Case 1 above, as shown in Fig. 2.1

. Assume that at time t, the network is connected. Connectivity of the network implies that

Y t
l < r for all l. The conditional distribution and density functions for Y t

l in the connected

network, denoted by FYl|C(t) and fYl|C(t) respectively, will be

FYl|C(yl) =

{
1−e−λlyl
1−e−λlr for yl < r

1 yl ≥ r

fYl|C(yl) =

{
λle

−λlyl
1−e−λlr for yl < r

0 otherwise
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Let ψk(N) be the probability that the network is connected at time t + k, conditioned

on it being connected at time t. We begin by evaluating ψ1(N), the one-step conditional

probability of staying connected in one step.

ψ1(N) :=

Pr
(
(Y t+1

1 < r, . . . Y t+1
N−1 < r)|(Y t

1 < r, . . . Y t
N−1 < r)

)
=

N−1∏
l=1

Pr
(
Y t+1
l < r|Y t

l < r
)

(2.2)

We need to evaluate each term of the above product. For this, we have

Pr
(
Y t+1
l < r|Y t

l < r
)

= Pr
(
aY t

l + Zt
l < r|Y t

l < r
)

(2.3)

Let Y t+1
l|C denote Y t+1

l conditioned on Y t
l < r. Under the evolution model of Case 1, we

can obtain the Laplace transform of the density of Y t+1
l|C , denoted f̃Y t+1

l|C
(s), as follows. Since

Zt
l is independent of Y t

l , f̃Y t+1
l|C

(s) is the product of f̃Ztl (s) and the Laplace transform of the

conditional density of aY t
l . Since Y t

l is exponential with mean 1/λl, we can write,

f̃Y t+1
l|C

(s) =
λl

(1 − e−λlr)(s+ λl)

(
1 − e−r(as+λl)

)

Inverting the above, we obtain the density of Y t+1
l|C to be

fY t+1
l|C

(y) =
λle

−λly (U(y) − e−λlr(1−a)U(y − ar)
)

(1 − e−λlr)
(2.4)

Here U(y) is the Heaviside function. Integrating the above density from 0 to r, we get

Pr
(
Y t+1
l < r|Y t

l < r
)

=
1 − 2e−λlr + e−λlr(2−a)

1 − e−λlr
(2.5)

Substituting the above in Eqn. 2.2, we have

ψ1(N) =

N−1∏
l=1

(
1 − 2e−λlr + e−λlr(2−a)

1 − e−λlr

)
(2.6)

Lemma 2.2.1 As N → ∞, for Y t
l evolving as in Case 2, ψ1(N), the one step conditional

connectivity probability tends to a limit, i.e., limN→∞ ψ1(N) = ψ1.
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Proof: Using Eqn. 2.6, we have

ψ1(N) − ψ1(N + 1)=
N−1∏
l=1

(
1 − 2e−(N−l)λr + e−(N−l)λr(2−a)

1 − e−(N−l)λr

)

−
N∏
l=1

(
1 − 2e−(N+1−l)λr + e−(N+1−l)λr(2−a)

1 − e−(N+1−l)λr

)

=

(
e−Nλr − e−Nλr(2−a)

1 − e−Nλr

)
ψ1(N)

Clearly, the first term of the last equality above goes to zero as N → ∞. Since ψ1(N) is a

probability, ψ1(N) − ψ1(N + 1) goes to 0 as N → ∞. The limit is clearly non zero because

for the product in the expression for ψ1(N) in Eqn. 2.6, none of the individual terms goes

to 0 as a N → ∞.

Now consider the case when the critical distance varies with time and this variation is

homogeneous across the network, i.e., all nodes have the same critical distance. Let {rn}n≥0

be the sequence of critical distances. An example situation is when the power available at

the sensor nodes decreases with time and it becomes important to limit the transmission

range to conserve energy. Note though that with the development of smart batteries, the

charge may be recovered and {rn} need not be a decreasing sequence. Clearly, the density

of Y t+1
l|C depends on rt. Then, along the lines of the derivation of Eqn. 2.4, except that the

integration is from 0 to rt+1, we obtain

ψ1(N) =
N−1∏
l=1

1 − e−λlrt+1 − e−λlrt + e−λl(rt(1−a)+rt+1)

(1 − e−λlrt)

Thus, if the sequence {rn} is known, the conditional connectivity probabilities can be com-

puted by substituting the values of rt and rt+1 in the above equation.

k-Step Conditional Connectivity

Using arguments similar to those in Eqn. 2.2, we now derive the probability that the network

will be connected after k steps at time t+ k conditioned on the network being connected at

time t.

ψk(N) =

N−1∏
l=1

Pr
(
Y t+k
l < r|Y t

l < r
)

(2.7)
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We note that

Y t+k
l = aY t+k−1

l + Zt+k−1
l = akY t

l +
k∑

m=1

am−1Zt+k−m
l (2.8)

We begin by evaluating the probability density of W t
k :=

∑k
m=1 a

m−1Zt+k−m
l . Since Zt

l are

all independent, characteristic function of W t
k is given by

f̃W t
k
(s) =

k∏
m=1

ams+ λl
am−1s+ λl

=
aks+ λl
s+ λl

From Eqn. 2.8, we can write

Pr
(
Y t+k
l < r|Y t

l < r
)

= Pr
(
akY t

l +W t
k < r|Y t

l < r
)

For the evolution model of Case 1, we can obtain the Laplace transform of the density of

Y t+k
l|C , denoted by f̃Y t+k

l|C
(s), as follows. Since W t

k is independent of Y t
l , f̃Y t+k

l|C
(s) is the product

of f̃W t
k
(s) and the Laplace transform of the conditional density of akY t

l .

f̃Y t+k
l|C

(s) =
λl

(1 − e−λlr)(s+ λl)

(
1 − e−r(a

ks+λl)
)

Inverting the above, we get

fY t+k
l|C

(y) =
λle

−λly
(
U(y) − e−λlr(1−a

k)U(y − akr)
)

1 − e−λl

Integrating the above density from 0 to r, we get

Pr
(
Y t+k
l < r|Y t

l < r
)

=
1 − 2e−λlr + e−λlr(2−a

k)

1 − e−λlr

Substituting the above in Eqn. 2.7, we have

ψk(N) =
N−1∏
l=1

1 − 2e−λlr + e−λlr(2−a
k)

1 − e−λlr
(2.9)

As with the case of one step connectivity, we can obtain the asymptotics as N → ∞.

Lemma 2.2.2 As N → ∞, for Y t
l evolving as in Case 2, ψk(N), the one step conditional

connectivity probability tends to a limit, i.e., limN→∞ ψN = ψk.
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Proof: Proceeding along the same lines as the proof of Lemma 2.2.1, we have

ψk(N) − ψk(N + 1) =

(
e−Nλr − e−Nλr(2−a

k)

1 − e−Nλr

)
ψk(N)

ψk(N) − ψk(N + 1) goes to 0 as N → ∞ and the lemma follows.

As k → ∞, ψk(N) should be go to the stationary probability of the network being connected.

As we have mentioned before this is also the probability that the ‘static’ network is connected.

From [2] and also taking limits of Eqn. 2.9 ( for Case 2 ), we obtain

ψ∞(N) := lim
k→∞

ψk(N) =
N−1∏
l=1

(
1 − e−(N−l)λr)

Connectivity Conditioned on Disconnectivity

Let S be the set of edges which are disconnected at instant t. For the network to get

connected at t + k, all the edges in S need to get connected and the ones in S̄ should stay

connected. Then we have

Pr (C(t+ k)|DS(t))

:= Pr
(
network conn. at t+ k|{S} disconn.,{S̄} conn. at t

)
=
∏
l∈{S}

Pr
(
(Y t+k
l < r)|(Y t

l > r)
)
×

×
∏
l∈{S̄}

Pr
(
(Y t+k
l < r)|(Y t

l < r)
)

(2.10)

Here C(t) is the event that the network is connected at t and DS(t) is the event that the set

of edges in S is disconnected at t. Including all the different compositions S can have, we

can write

Pr (conn. at t+ k|disconn. at t)=

∑
(all S) Pr (C|DS)Pr (S)

Pr (disconn. at t)
, (2.11)

where Pr (S) is the probability of occurrence of that set of connected and disconnected edges

and is given by

Pr (S) = Pr
({S} disconn., {S̄} conn. at t

)
=

∏
l∈{S}

Pr
(
Y t
l > r

) ∏
l∈{S̄}

Pr
(
Y t
l < r

)

=
∏
l∈{S}

(
e−λlr

) ∏
l∈{S̄}

(
1 − e−λlr

)



12 CHAPTER 2. EVOLVING RANDOM GEOMETRIC GRAPHS

We note that

Pr
(
Y t+k
l < r|Y t

l > r
)

=
Pr
(
Y t+k
l < r

)−Pr (Y t
l < r)Pr

(
Y t+k
l < r|Y t

l < r
)

Pr (Y t
l > r)

Y t+k
l and Y t

l both have the same probability density function and hence Pr
(
Y t+k
l < r

)
=

Pr (Y t
l < r) = 1 − e−λlr. Using Eqn. 2.5, we have

Pr(Y t+k
l < r|Y t

l > r) =

(1 − e−λlr)
(
1 − Pr

(
Y t+k
l < r|Y t

l < r
))

e−λlr
=1 − e−λlr(1−a

k)

Substituting the above in Eqn. 2.10, we have

Pr (C|DS) =∏
l∈{S}

(
1 − e−λlr(1−a

k)
) ∏
l∈{S̄}

(
1 − 2e−λlr + e−λlr(2−a

k)

1 − e−λlr

)

Using this expression in Eqn. 2.11, we get

Pr (conn. at t+ k| disconn. at t)=
1

1 −∏N
j=1(1 − e−λjr)

×
∑

(all S)

∏
l∈{S}

(
1 − e−λlr(1−a

k)
)
e−λlr ×

∏
l∈{S̄}

(
(1 − 2e−λlr + e−λlr(2−a

k))
)

2.3 First Passage Time

We now evaluate the probability mass function of the first passage time, i.e., the probability

that a connected network at time t becomes disconnected for the first time after t at t+ k,

k > 0. Let T be the random variable corresponding to the first passage time. For T > k,

the following k inequalities need to be satisfied simultaneously for all l ∈ [1, N − 1] .

Y t+1
l < r, Y t+2

l < r . . . Y t+k−1
l < r, Y t+k

l < r
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Using Eqn. 2.8, we can translate the above equations into

Y t+1
l = aY t

l + Zt
l < r

Y t+2
l = a2Y t

l + aZt
l + Zt+1

l < r

. . .

Y t+k
l = akY t

l + ak−1Zt
l . . . aZ

t+k−2
l + Zt+k−1

l < r (2.12)

Define W j
l := ajY t

l + aj−1Zt
l . . . + aZt+j−2

l for j = 2, 3, . . . k, and W 1
l := aY t

l . From the

independence of Zt
l , the probability of the above inequalities being simultaneously satisfied

conditioned on Y t
l , Pk,l(Y

t
l ), is given by

Pk,l(Y
t
l ) =∫ r−W 1
l

ztl=0

fZtl (z
t
l ) dz

t
l . . .

∫ r−W k
l

zt+k−1
l =0

fZt+k−1
l

(zt+k−1
l ) dzt+k−1

l , (2.13)

where fZml (·) is the density of Zm
l and is given by aδ(zml ) + (1 − a)λle

−λlzml for m = t, t +

1, . . . , t+ k − 1. Note that there are a total of k integrals. Denoting the last p integrals by

Il,k+1−p = Il,k−i, we claim that this has a recursive form in i.

Lemma 2.3.1 Il,k−i for i = 0, . . . , k − 1 has the following recursive form.

Il,k−i

= 1 + (1 − a)Ck−i
1 (W k−i

l ) + (1 − a2)Ck−i
2 (W k−i

l ) . . .

+(1 − ai)Ck−i
i (W k−i

l ) + (1 − ai+1)Ck−i
i+1 (W k−i

l )

= 1 −

(1 − a)

(
i∑

j=1

(
C
k−(i−1)
j (aW k−i

l )e−λl(r−W
k−i
l )(1−aj )

))

−(1 − a)Ck
1 (W k−i

l ) +

i+1∑
j=2

(1 − aj)C
k−(i−1)
j−1 (aW k−i

l ), (2.14)

where Cj
i (W

j
l ) is the coefficient of (1 − ai) in the expression for Il,j, as a function of W j

l .

Also Ck
1 (W k

l ) = e−λl(r−W
k
l ) can be easily verified.

Proof: Proof is by induction. From Eqn. 2.13, we can write

Il,k−i−1 =

∫ r−W k−i−1
l

zt+k−i−2
l =0

Il,k−i × fZt+k−i−2
l

(zt+k−i−2
l ) dzt+k−i−2

l
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We next use the induction hypothesis, substitute for Il,k−i from Eqn. 2.14, and integrate

each term in the summation.

∫ r−W k−i−1
l

zt+k−i−2
l =0

1 × fZt+k−i−2
l

(zt+k−i−2
l ) dzt+k−i−2

l =

1 − (1 − a)e−λl(r−W
k−i−1
l ) = 1 − Ck

1 (W k−i−1
l ) (2.15)

Next, Ck−i
j (W k−i

l ), the coefficient of (1 − aj) in Ik−i, is a linear combination of terms of the

form T k−ij (W k−i
l ) = e−λl(gk−i(r)−a

j−1W k−i
l ), where g∗(r) is a linear function in r. We note that

∫ r−W k−i−i
l

zt+k−i−2
l =0

T k−ij (W k−i
l )(1 − aj)fZt+k−i−2

l
(zt+k−i−2
l )dzt+k−i−2

l

=

∫ r−W k−i−1
l

zt+k−i−2
l =0

e−λl(gk−i(r)−a
j−1W k−i

l )(1 − aj) ×

fZt+k−i−2
l

(zt+k−i−2
l ) dzt+k−i−2

l

= e−λl(gk−i(r)−a
jW k−i−1

l )(1 − aj) ×∫ r−W k−i−1
l

zt+k−i−2
l =0

eλla
jzt+k−i−2

fZt+k−i−2
l

(zt+k−i−2
l ) dzt+k−i−2

l

= T k−ij (aW k−i−1
l )(1 − aj+1) −

T k−ij (aW k−i−1
l )e−λl(r−W

k−i−1
l )(1−aj )(1 − a) (2.16)

Since Ck−i
j (W k−i

l ) is a linear combination of terms of the form T k−ij (W k−i
l ), we can conclude

from the above equation that

∫ r−W k−i−1
l

zt+k−i−2
l =0

Ck−i
j (W k−i

l )fZt+k−i−2
l

(zt+k−i−2
l ) dzt+k−i−2

l =

Ck−i
j (aW k−i−1

l )(1 − aj+1)

−Ck−i
j (aW k−i−1

l )e−λ(r−W k−i−1
l (1−aj ))(1 − a)

Hence, for all j ∈ [2, i+ 2], we have

Ck−i−1
j (W k−i−1

l ) = Ck−i
j−1(aW

k−i−1
l ).
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Also, using Eqn. 2.15 and Eqn. 2.16, we find that the coefficient of (1 − a) in Il,k−i−1,

Ck−i−1
1 (W k−i−1

l ) is given by

Ck−i−1
1 (W k−i−1

l ) =

−
i+1∑
j=1

Ck−i
j (aW k−i−1

l )e−λl(r−W
k−i−1
l )(1−aj )− Ck

1 (W k−i−1
l ).

Thus, we have

Il,k−(i+1) =

1 − (1 − a)
i+1∑
j=1

Ck−i
j (aW k−i−1

l )e−λl(r−W
k−i−1
l )(1−aj )

−(1 − a)Ck
1 (W k−i−1

l ) +

i+2∑
j=2

(1 − aj)Ck−i
j−1(aW

k−i−1
l )

Hence the induction holds true and the expression for Il,k−i is indeed given by Eqn. 2.14.

The recursive equations to compute the coefficients in the expression for Il,k−i are of the

form

Ck−i−1
j (W k−i−1

l ) = Ck−i
j−1(aW

k−i−1
l ), j ∈ [2, i+ 2]

Ck−i−1
1 (W k−i−1

l ) =

−
i+1∑
j=1

Ck−i
j (aW k−i−1

l )e−λl(r− W k−i−1
l )(1−aj )− Ck

1 (W k−i−1
l ).

To find the boundary condition, note that for i = 0, we have from Eqn. 2.13

Il,k =

∫ r−W k
l

zt+k−1
l =0

fZt+k−1
l

(zt+k−1
l ) dzt+k−1

l

= 1 − (1 − a)e−λl(r−W
k
l )

= 1 + Ck
1 (W k

l )(1 − a).

Hence, Ck
1 (W k

l ) = e−λl(r−W
k
l ) provides the boundary condition for the set of recursive equa-

tions shown above. From Eqn. 2.13, we know that the required probability Pk,l(Y
t
l ) =
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Il,k−(k−1) = Il,1. Substituting i = k − 1 in Eqn. 2.14 and noting that W 1
l = aY t

l , we get

Pk,l(Y
t
l ) =

1 −
(
k−1∑
j=1

(
C2
j (a

2Y t
l )e

−λl(r−aY tl )(1−aj )
)
+ Ck

1 (aY t
l )

)
(1 − a)

+

k∑
j=2

C2
j−1(a

2Y t
l )(1 − aj)

The probability derived above is to be conditioned on the constraint that Y t
l < r and let it

be denoted by Pk,l|C. We thus have,

Pk,l|C =

∫ r
Y tl =0

Pk,l(Y
t
l )λle

−λlytl dY t
l

1 − e−λlr

For the first passage time of the network, T > k, Eqn. 2.12 has to hold true for all l =

1, 2, . . . , N−1. Since Y t
l are all independent random variables, the corresponding probability,

denoted by Pk|C is given by

Pr (T > k) = Pk|C =
N−1∏
l=1

Pk,l|C

2.4 Random Birth-Death Model

We now consider a model in which the N node network is distributed at time t = 0 according

to ordered nodes from an exponential distribution with mean 1/λ. In this model it is the

evolution of nodes that will be governed by an exponential AR(1) process, instead of the

spacings. Let K be a positive integer valued random variable with P [K = k] = pk, k ≥ 0.

Since our model is time homogeneous, we drop the time subscripts in the equations below.

At each time instant, given the current configuration of nodes V = {x1, . . . , xN}, one of the

following two events happen:

1) Let E1 be the event that a node j, 1 ≤ j ≤ N, chosen at random, moves K-steps according

to the an exponential AR(1) model given by X ′
n+1 = aXn + Zn, where Zn is a product of a
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Bernoulli(1 − a) and an independent exponential random variable with mean 1/λ. Thus, if

the node j located at xj moves, then its new location will be

x′j = aKxj +
K∑
m=1

am−1Zm.

2) Let E2 denote the event that a node l chosen at random dies and another node j �= l chosen

at random throws a new node whose location is given by the above equation, that is if node

l dies and node j gives birth, then the new configuration will be given by the above equation

with x′j replaced by x′l. Death in our models can be thought of as a node switching off (or

going to sleep to save power) and birth as switching on. We can also decouple birth and

death events in the above case, i.e., with probability p1 event E1 happens, with probability

p2 only birth happens and with probability 1− p1 − p2 only a death happens. Note that the

ordered locations change at each time step, but it poses no problems in computing the one

step conditional probabilities. Let Θ1(V ) denote the one step conditional probability that

the new configuration after the above evolution is connected given the current configuration

V of nodes. If we denote Θ1(V ) conditioned on E1 as Ψ1(V ) and Θ1(V ) conditioned on E2

as Φ1(V ), then Θ(V ) = pΨ1(V ) + (1 − p)Φ1(V ), where Pr (E1) = p. Given a configuration

V ,

Ψ1(V ) =
1

N

N∑
i=1

Ψ1(V, i) and

Φ1(V ) =
1

N(N − 1)

N∑
l=1

N∑
i=1,i�=l

Φ1(V, l, i), (2.17)

where Ψ1(V, i) is Ψ1(V ) given that node i moves and Φ1(V, l, i) is Φ1(V ) given that node l

dies and node i gives birth. Recall that for any k ∈ N, W (k) =
∑k

m=1 a
m−1Zm has the same

distribution as a product of Bernoulli(1−ak) and an independent exponential random variable

with mean 1/λ. If Θ1(V, k) is Θ1(V ) conditioned on K = k, then Θ1(V, k), is obtained from

Θ1(V, 1) by replacing a by ak. Θ1(V ) =
∑∞

k=1 Θ1(V, k)P (K = k). We make the observation

that if in E2, when node l dies and a new node is thrown from the same location, then this

is nothing but the event E1 given that node l moves. Thus, Ψ1(V, i) = Φ1(V, i, i). Thus, it

suffices to compute Φ1(V, l, i) only for choices of l, i for which it is positive and conditioned

on K = 1. Suppose the current configuration has exactly three components. We consider

three sub cases.
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(i) If V is such that x2 − x1 > r, xj+1 − xj > r, for some 1 < j < N − 1, and xi+1 − xi ≤ r,

for i �= 1, j. In this case, only Φ1(V, 1, i) �= 0.

Φ1(V, 1, i) = [(1 − a)eλaxi [e−λ(xj+1−r) − e−λ(xj+r)]

+ aI[xj+1−r≤axi≤xj+r]].

(ii) If V is such that xN−xN−1 > r, xj+1−xj > r, for some 1 < j < N−1, and xi+1−xi ≤ r,

for i �= 1, j. In this case

]Φ1(V,N, i) = [(1 − a)eλaxi [e−λ(xj+1−r) − e−λ(xj+r)]

+ aI[xj+1−r≤axi≤xj+r]]

(iii) If x2 − x1 > r, xN − xN−1 > r and xj+1 − xj ≤ r for all 1 < j < N − 1.

Φ1(V, 1, i) = [(1 − a)eλaxi [e−λ(xN−r) − e−λ(xN−1+r)]

+ aI[xN−r≤axi≤xN−1+r]]

Φ1(V,N, i) = [(1 − a)eλaxi [e−λ(x2−r) − e−λ(x1+r)]

+ aI[x2−r≤axi≤x1+r]]

Similarly explicit formulae can be derived when V has two and one component(s). The one

step conditional probability of connectivity in all the three cases is then given by Eqn. 2.17.



Chapter 3

k-Coverage

3.1 Boolean Processes

In principle, a stochastic coverage process might be thought of as any random mechanism

governing the positioning and configuration of random sets in the Euclidean space. And the

applications of coverage processes range the gamut such as military applications, medical

applications, image processing, industrial safety, stereology, packing problems etc.

By mostly working in the continuum, we are granted access to powerful tools from stochastic

geometry and avoid the tedium of treating lattice types i.e, discrete models. We concentrate

on higher dimensions as the theory there possesses a genuine spatial flavor. One dimensional

results are essentially geometric interpretations of classical statistical theory about spacings

of order statistics.

Now, we set up the terminology for one of the well known examples of coverage processes -

the random (Poisson) distribution of sets in d-dimensional Euclidean space along the lines

of [4]. The resulting coverage pattern is called the Boolean Model. Formally we define it as

follows:

Definition 3.1.1 Let

P ≡ {ξi, i ≥ 1}
be a stationary Poisson process of intensity λ in Rd, the points ξi being indexed in any

19
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systematic order. Let S1,S2, . . . be i.i.d random sets, independent of P . Then

C ≡ {ξi + Si, i ≥ 1}

is a Boolean model.

A spatial or stationary Poisson process P of intensity λ , is defined by the following two

conditions :

• If N(A) is defined as the number of points of P in A for a Borel set A ⊂ Rd, then

N(A) ∼ Po(λ‖A‖) i.e,

Pr (N(A) = n) = [λ‖A‖]ne−λ‖A‖/n!,

for every n ∈ N. And given there are m points in A, the m points are i.i.d. uniformly

in A.

• And for A1, . . . , Al disjoint Borel sets of Rd, N(A1), . . . , N(Al) are independent pro-

cesses.

Both the conditions can be combined together to obtain

Pr (N(A1) = n1, . . . , N(Al) = nl) =
l∏
i=1

[λ‖Ai‖]ne−λ‖Ai‖/ni!,

where A1, . . . , An are any disjoint Borel sets in Rd

Though we have considered P as spatial Poisson process, in general P can be taken to be

any stochastic point process. In that case it is known as the germ-grain model. Also the

discrete or lattice analogues are described in [4].

We call the Si shapes to distinguish them from the sets ξi + Si and say that the Poisson

process P drives the Boolean model and the shapes Si generate the model. We always

assume that the Si are non-empty. Let the random shapes be distributed as S. Also we say

a set or point is said to be k− covered by the Boolean model if it is contained in at least k

of the sets ξi + Si. Formal definitions shall follow in the next section.
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Bearing in mind that a stationary Poisson process is a “random distribution of points in

space”, a Boolean model represents a sequence of random sets distributed in space.

Throughout the chapter we assume that for some t > 0, |x| < t for all x ∈ S. Hence S is

contained in a bounded domain, say A.

In [4] vacancy is defined as the content of a region not covered by a coverage process. We

extend this vacancy to k-vacancy which is defined as the content of the region which is covered

by atmost k − 1 sets of the coverage processes. Under this notation, in [4] basic properties

of 1-vacancy, and limit-theoretic approximations such as the central limit theorem and law

of large numbers have been obtained.

We derive the expectation and variance of k-vacancy. Then we proceed to obtain the central

limit theorem and law of large numbers.

3.2 k-Vacancy

Let R denote a Borel subset of Rd and C denote the d- dimensional Boolean process as in

definition 3.1.1. For k > 0 , the k-vacancy Vk within R is the d-dimensional content of the

part covered by at most k − 1 random sets of C.

Vk = Vk(R) ≡
k−1∑
m=0

∫
R

χm(x)dx, (3.1)

where,

χm(x) =

{
1 if for exactly m points in P , x ∈ ξi + Si

0 otherwise.

For the case k = 1, this is same as the definition in [4]. We denote χ(x) =
∑k−1

m=0 χm(x). At

times we write Vk as Vk(λ, S) to denote its dependence on the two variables.

E(χm(x)) = Pr (exactly m points in P , x ∈ ξi + Si)

= Pr (exactly m points in P , xii ∈ x− Si)

= Pr (exactly m points in P , ξi ∈ Si)

If points ξ1, . . . , ξN are placed independently and uniformly in A then (conditional on N)

the probability that exactly m points lie in S is NCm{1 − β/‖A‖}N−m{β/‖A‖}m. If N is
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Poisson distributed with mean λ‖A‖, then

E
(
NCm{1 − β/‖A‖}N−m) =

e−βλ(λ‖A‖)m
m!

.

Therefore,

Pr (x covered by exactly m points of P ) =
e−βλ(λβ)m

m!
. (3.2)

From (3.2) and Fubini’s theorem,

E(Vk) =

k−1∑
m=0

∫
R

E(χm(x)) dx

=
k−1∑
m=0

‖R‖Pr (O covered by exactly m points)

=

k−1∑
m=0

‖R‖e
−βλ(λβ)m

m!
. (3.3)

The variance of Vk can be calculated similarly. Indeed,

E(χ(x1)χ(x2)) =

k−1∑
m,n=0

E(χm(x1)χn(x2))

=
k−1∑
m,n=0

Pr (x1 is covered exactly by m points and

x2 is covered exactly by n points)

Note the following :

• If ξi covers x1 and x2, then ξi ∈ B1 = (x1−Si)∩(x2−Si). Also ‖B1‖ ≡ ‖(x1−x2+S)∩S‖
in distribution.

• If ξi covers x1 and not x2, then ξi ∈ B2 = (x1 − Si) ∩ (x2 − Sci ). Also ‖B2‖ ≡
‖(x1 − x2 + S) ∩ Sc‖ in distribution.

• If ξi doesn’t cover x1 but covers x2, then ξi ∈ B3 = (x1 − Sci ) ∩ (x2 − Si). Also

‖B3‖ ≡ ‖(x1 − x2 + Sc) ∩ S‖ in distribution.
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Observe that Bi’s defined above are mutually disjoint sets and B2 and B3 are identically

distributed. These observations shall be used extensively. We calculate E(χm(x1)χn(x2))

conditioned on l points falling in B1. Then it is the probability that m − l points lie in

B2 and n − l points lie in B3, which are disjoint events as the points under consideration

form a Poisson spatial process. Since Bi,i = 1, 2, 3 are random sets by the argument used in

calculation of (2), we get

E(χm(x1)χn(x2)) =

m∧n∑
l=0

[λE(‖B1‖)]l
l!

e−λE(‖B1‖)

× [λE(‖B2‖)]m−l

(m− l)!
e−λE(‖B2‖)

× [λE(‖B3‖)]n−l
(n− l)!

e−λE(‖B3‖)

= e−2λβeλ‖B1‖
m∧n∑
l=0

[λE(‖B1‖)]l
l!

× [λE(‖B2‖)]m+n−2l

(m− l)!(n− l)!
.

(3.4)

Hence,

Cov{χ(x1)χ(x2)} =

k−1∑
m,n=0

[E(χm(x1)χn(x2)) − E(χm(x1))E(χn(x2))]

= e−2λβ
k−1∑
m,n=0

{eλE(‖B1‖)
m∧n∑
l=0

[λE(‖B1‖)]l
l!

× [λE‖B2‖]m+n−2l

(m− l)!(n− l)!

− [λβ]m+n

m!n!
}. (3.5)

And hence,

VAR(Vk) =

∫ ∫
R2

Cov{χ(x1)χ(x2)}dx1dx2 =

∫ ∫
{|x1−x2|<t}

Cov{χ(x1)χ(x2)}dx1dx2. (3.6)

3.3 Asymptotic Properties of k-Vacancy

Let C(δ, λ) be the Boolean model C in which shapes are distributed as δS(δ = δ(λ)).
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Theorem 3.3.1 Let Vk denote the vacancy arising in R from the Boolean model C(δ, λ)

defined above. If δ → 0 as λ→ ∞ such that δdλ→ ρ where 0 ≤ ρ <∞, then as λ→ ∞

E(Vk) → ‖R‖E(Vk(ρ, S)) . (3.7)

E(|Vk − E(Vk) |p) → 0 (3.8)

for 1 ≤ p ≤ ∞.

λVAR(Vk) → σ2(S), (3.9)

Where

σ2(S) = ρ‖R‖e−2ρβ

[
k−1∑
m,n=0

∫
Rd

(
eρE(‖D1‖)

m∧n∑
l=0

[ρE(‖D1‖)]l
l!

× [ρE(‖D2‖)]m+n−l

(m− l)!(n− l)!

− [ρβ]m+n

m!n!
dy

)]
, (3.10)

where D1 = (y + S) ∩ S, D2 = (y + S) ∩ Sc.

Proof : (3.7) follows from (3.3) directly. The proof of remaining statements rests on (3.5)

and (3.6). First we shall prove VAR(Vk) → 0, in fact more than that. Since Vk is bounded,

VAR(Vk) is also bounded. Therefore, by dominated convergence theorem we are required to

show that for almost all x1, x2, Covχm(x1)χn(x2) → 0. For a fixed x1 and x2( �= x1),

λE(‖(x1 − x2 + δS) ∩ δS‖) = δdλE
(‖[δ−1(x1 − x2) + S] ∩ S‖) .

And from the boundedness of S, [δ−1(x1 − x2) + S] ∩ S = ∅ for δ < |x1 − x2|/t. Since

δdλ converges, for large λ we have, λE(‖(x1 − x2 + δS) ∩ δS‖) = 0. And for the same δ,

B2 = S. And hence for that δ we have Covχm(x1)χn(x2) = 0. Therefore VAR(Vk) → 0.

Hence Vk−E(Vk) converges in probability and also in L1. Since 0 ≤ ‖Vk‖ ≤ R,by dominated

convergence theorem we have (3.8).

Finally we establish (3.9). In view of (3.4), (3.5) and (3.6), it suffices to prove that

λ
∫ ∫

R2 Cov(χm(x1)χn(x2)) converges to the integral on the r.h.s of (3.10).

e2δ
dλβ

∫
R2

Cov(χm(x1)χn(x2))dx1dx2 = δd
∫
R

fδ(x)dx,
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where

fδ(x) =

∫
δ−1(x−R)

(
eδ
dλ‖D1‖

m∧n∑
l=0

[δdλE(‖D1‖)]l
l!

× [δdλE(‖D2‖)]m+n−2l

(m− l)!(n− l)!

− [δdλβ]m+n

m!n!

)
dy.

For |y| > t, we have the integrand of fδ(x) to be 0 and hence Supδ fδ(x) <∞.

Now R is Riemann measurable and ‖R‖ > 0, then for almost all x ∈ R, x − R contains a

sphere centered on the origin, in which case δ−1(x− R) → Rd as δ → 0. Hence

fδ(x) → c0 ≡
∫
Rd

(
eρE(‖D1‖)

m∧n∑
l=0

[ρE(‖D1‖)]l
l!

× [ρE(‖D2‖)]m+n−2l

(m− l)!(n− l)!
− [ρβ]m+n

m!n!

)
dy,

whence by dominated convergence,

e2δ
dλβδdλ

∫ ∫
R2

Cov(χm(x1)χn(x2)) → ρ

∫
R

c0dx = ρc0‖R‖,

as λ→ ∞. This proves (3.9).

REMARK 1: If one considers the case k = 1 as in [4], then it is enough to assume S with

finite second moment to prove the above theorems. This is so because the covariance is of

the form ex − 1 and the inequality ex − 1 ≤ xex is used in proofs of both (3.8) and (3.9) .

The above theorem is essentially a ”weak law of large numbers” for vacancy within large

regions. We complement it with a central limit theorem.

Theorem 3.3.2 We make the same assumptions as in Theorem 1. Then,

√
λ{Vk − E(Vk)} → N(0, σ2),

in distribution where σ2 is as defined in (3.10).

Proof : To get the pictorial representation of following construction, look at Fig. 3.1 (page

28). Let r be a large positive constant. Divide all of Rd into a regular lattice of d-dimensional

cubes of side length crδ, and each cube separated from its nearest neighbor by a spacing

strip of width 2cδ. Let A1 denote the union of those cubes which are wholly within R. A2
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The union of the rectangular boxes that form the spacings and contained wholly within R.

And A3, is the intersection of R with all those cubes are spacings which are not completely

within or without R. Then vacancy Vk within R may be written as,

Vk = V 1 + V 2 + V 3.

where V i is the vacancy within the region Ai. Since R is Riemann measurable then the

content of R evaluated over increasingly fine dissections, is approximable arbitrarily closely

by both inner and outer sums. In the case of dissection the difference between inner and

outer sums is greater than ‖A3‖ and so

‖A3‖ → 0. (3.11)

Furthermore the total content of all those between cubes that lie entirely within R is domi-

nated by a constant multiple of (1/crδ)cδ = r−1. Therefore,

‖A2‖ ≤ a.r−1, (3.12)

where a does not depend on r. We may deduce from (3.4) and also the fact that variance is

less than the second moment, that vacancy V i within region Ai satisfies

VAR
(
V i
) ≤

k−1∑
m,n=0

∫
Ai

dx1

∫
Rd

E(χm(x1)χn(x2)) dx2

≤ (k − 1)2M‖Ai‖.

In the last inequality we have used the fact that the second moment is bounded. In view of

(3.11) and (3.12), this implies

lim
λ→∞

λVAR
(
V 3
)

= 0, (3.13)

and

lim
r→∞

lim sup
λ→∞

λVAR
(
V 2
)

= 0. (3.14)

Consequently our goal of central limit theorem will be achieved if we prove that

{V 1 − E
(
V 1
)}/(VAR

(
V 1
)
)1/2 d→ N(0, 1) and lim

r→∞
lim sup
λ→∞

|λVAR
(
V 1
)− σ2| = 0.

(3.15)

Let n = n(λ) denote the number of small cubes of side-length crδ that make up region A1,

and let Di denote the ith of these cubes for 1 ≤ i ≤ n. Write Ui for the contribution to V 1
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from Di, then V 1 =
∑

i Ui. Since each random shape is contained within a sphere of radius

cδ and the cubes Di are distant at least 2cδ apart, then no random shape can intersect more

than one cube. Therefore the variables Ui are independently distributed, given λ. Hence

VAR
(
V 1
)

=
∑
i

VAR(Ui) = nVAR(U1)

= ne−2δdλβ
k−1∑
m,n=0

∫ ∫
D2

1

[
eλE(‖(x1−x2+δS)∩δS‖)

m∧n∑
l=0

[λE(‖(x1 − x2 + δS) ∩ δS‖)]l
l!

×

[λE(‖(x1 − x2 + δS) ∩ δSc‖)]m+n−2l

(m− l)!(n− l)!
− [δdλβ]m+n

m!n!

]
dx1dx2

∼ nδ2de−2ρβ

k−1∑
m,n=0

∫ ∫
D2

[eρE(‖B1‖)
m∧n∑
l=0

[ρE(‖B1‖)]l
l!

× [ρE(‖B2‖)]m+n−2l

(m− l)!(n− l)!

− [ρβ]m+n

m!n!
]dx1dx2,

where D is any d-dimensional cube of side length cr with the same orientation as D1. Also,

E(|Ui − E(Ui) |)3 ≤ ‖Di‖VAR(Ui) = (crδ)dVAR(Ui) ,

and so, since n = O(λ) as λ→ ∞,

{
∑
i

E(|Ui − E(Ui) |)3}/{
∑
i

VAR(Ui)}3/2 ≤ (crδ)d/{
∑
i

VAR(Ui)}1/2

= O(λ−1λ1/2) → 0.

And first part of (3.15) follows from this estimate and Lyapunov’s Central Limit theorem.

To prove Second part of (3.15) it suffices to prove

lim
r→∞

lim sup
λ→∞

|VAR(V ) − VAR(V 1)

VAR(V )
| = 0. (3.16)

Now,

|VAR(V ) − VAR
(
V 1
) | = |E({V − V 1 − E(V − V 1)}{V + V 1 −E(V + V 1)}) |

= |E ({V 2 + V 3 − E(V 2 + V 3)}
{2V − V 2 − V 3 −E(2V − V 2 − V 3)}) |

≤ 4{VAR
(
V 2
)

+ VAR
(
V 3
)}1/2

{VAR(V ) + VAR
(
V 2
)

+ VAR
(
V 3
)}1/2 (3.17)
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Fig 3.1: Definition of  A1, A2 and A3. The “cubes” Di are cross-hatched; their union is A1. 
The shaded region is A3, and the blank region within R  is A2.  ( A definition of Di is given 
following  (3.15) ) 

 
 
using  the Cauchy-Schwarz inequality. (3.16) follows from (3.10), (3.13), (3.14) and (3.17).    
                                                                                                                                                                                                      



Chapter 4

Target Tracking in Sensor Networks

4.1 Introduction

Sensor networks are formed from a large number of randomly deployed sensor nodes. These

sensor nodes sense a phenomenon, possibly process the collected sensing data in a collabo-

rative manner and route the results to an end user. The phenomenon that is being sensed

could be a localized event, e.g., an acoustic point source, or it could be a spatial phenomenon

spread throughout the operational area of the sensor network, e.g., target tracking and at-

mospheric monitoring. Each sensor node will have a footprint over which it can perform

the measurements and a random sensor network may not sense the entire operational area.

Accuracy of processing depends on the sensing granularity of the network. This is best il-

lustrated in a tracking application by the concept of trackability which is the focus of this

chapter.

Consider a sensor network for target tracking. A typical trajectory estimation algorithm for

tracking of a moving target would work as follows. Whenever the target can be sensed by a

sufficient number of sensors, point estimates of the location are obtained. These estimates

are then appropriately filtered to estimate the trajectory for the times when the target is not

sufficiently sensed. The quality of the trajectory estimates will depend on the fraction of the

trajectory that is being sensed by a specified minimum number of sensors, which therefore

is a measure of the tracking ability of the sensor network. If the complete trajectory is not

29
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being sufficiently sensed, then an immediate measure of trackability is the ‘length to first

sense,’ i.e., the distance traveled by the target in the operational area before it is sensed.

This can also be interpreted as the time to detect an intruder in an intrusion detection

network. Another measure of trackability would be the length of a continuous segment that

is tracked by a given number (or a given minimum number) of sensors, a measure of the

‘sensing continuity’. Clearly, the above properties are indicators of the accuracy with which

the network can track the target i.e., the trackability of the network. In this chapter we

analyze a random sensor network for trackability measures. In addition to obtaining the

above measures, after formally defining them, we also obtain trackability measures that have

been defined in the literature, like ‘breach’ and ‘support’ [6].

We use the following sensing model. The sensors are deployed according to a spatial Poisson

process. The sensing area of each sensor is a circle of random radius and a point is considered

sensed if and only if it is in the sensing area of at least k sensors. Thus the coverage of the

operational area by the sensors is a two dimensional Boolean process. We analyze the

properties of the coverage process on an arbitrary straight line path. Thus our interest is

in the statistical properties of the coverage of a one-dimensional path induced by a two-

dimensional coverage process of the sensors. The trackability measures are essentially the

coverage statistics of this one-dimensional process.

The area coverage properties have been extensively studied in the literature, most notably

in [4]. The properties of the induced one-dimensional process seems to have not received

the same attention and we develop a method to analyze such a process. To the best of our

knowledge this is the first such analysis. The two are clearly intimately related because non-

trivial coverage of the two dimensional region will be required to obtain non-trivial coverage

of one dimensional paths. However the nature of the relationship is not clear and we explore

it in this chapter. We will obtain asymptotic results for the one dimensional path process

under the same limiting regime as that required for obtaining non-trivial coverage results for

a two dimensional area process.
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4.2 Performance Measures and System Model

Let Ω be the operational area of the sensor network and let {si} be the set of sensors with

sensor si located at Xi ∈ Ω. The following two measures of the ‘goodness’ of deployment

with respect to sensing a path are defined in [6]. For a given deployment and a path L ⊂ Ω,

the breach of L, Br(L), is defined as

min
i

min
x∈L

||Xi − x||.

and the support for the path L, Su(L), is defined as

Su(L) = max
x∈L

||x−Xi∗||.

HereXi∗ is the distance of the closest sensor to path L and the norms above are the Euclidean

norms. Observe that these measures are independent of the sensing radius. We will obtain

the mean and variance of breach and support in Section 4.6.

To develop other trackability measures we first define the sensing process. For every (si, x),

x ∈ Ω, a sensing function, φ(si, x), that captures the ability of sensor si to sense a target

at point x. Note that φ(si, x) could be a random variable. This leads us to define a sensor

intensity function

ψ(x, θ, φ) =

{
1 if V (φ(s1, x), φ(s2, x), . . .) ≥ θ

0 otherwise.

Here V is an operator and θ is some constant. ψ(x, θ, φ) captures the summary effect of all

the sensors at point x and we consider a point to be sensed only when ψ(x, θ, φ) is 1.

φ(·) and ψ(·) defined above lead us to the next measure of trackability that we consider in

this chapter—exposure of a path L.

Definition 4.2.1 Exposure, Xψ(L), of a path L in Ω is the

Xψ(L) =

∫
x∈L ψ(x, θ, φ) dx

|L| ,

where |L| denotes the length of the path L. This is essentially the same as that defined in [7]

except that we also normalize it to the length of the path.
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0l

LF(L)
Su(L) Br(L)O

Si*

l
0

Figure 4.1: Figure shows an instance of a sensor network that performs thresholded sensing.

The dots represents the sensors and the circle is its sensing area. Path L is the segment

[0, l0]. The dotted parts of L are the clumps on it and the thick parts are its holes. LF (L)

is the length to first 1−sense, Si∗ the closest sensor to L, Br(L) its breach and Su(L) its

support.

In this chapter we will primarily discuss thresholded sensing where we assume that sensor

si has a random sensing radius Ri within which it can sense perfectly and beyond which it

cannot sense, i.e., if the location of the si is Xi, then

φT (si, x) =

{
1 if ‖x−Xi‖ ≤ Ri

0 otherwise

The subscript T refers to thresholded sensing. Further we can specialize thresholded sensing

into k-thresholded sensing where we define

ψT (x, k) =

{
1 if

∑
i φT (si, x) ≥ k

0 otherwise

Here, point x is sensed only if it is in the sensing range of at least k sensors. An example

of the use of such a sensor intensity function is in position localization that requires range

estimates from at least three sensors.

Observe that ψT (x, k), x ∈ L, is a random point process on L. The measures of trackability

which we define next are essentially statistics of this random process. Thus, exposure is the

fraction of the path that will be sensed. A measure of sensing continuity is clump that is

defined as follows for this model.
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Definition 4.2.2 For k−thresholded sensing, a clump on a path L is a contiguous segment

of L for which ψT (x, k) = 1. Any segment of L between two consecutive clumps is a hole.

The length to first sense can be defined as follows.

Definition 4.2.3 For k−thresholded sensing, we define the length-to-first-sense for a path

L, LF (L), as the distance to the first point on L where ψT (x, k) = 1. We will say that

LF (L) = l0 if the L is not sensed, l0 being the length of L.

When φ(si, x) is a continuous function, the sensing process is said to be non-thresholded. The

trackability measures for the non-thresholded sensing can be lower bounded by the measures

for an appropriately defined thresholded sensing case. We discuss this connection in detail

in Section 4.7.

We let Ω be �2 and {Xi}, the set of sensor locations, form a spatial Poisson process in �2 of

density λ. An excellent discussion on the physical interpretations of this model is available

in [4]. Further, the Poisson process has been extensively used to model the sensor locations,

e.g., [8, 19]. {Ri}{i>0} is assumed to be a sequence of positive i.i.d. random variables whose

density has finite support. Without loss of generality, we assume the support to be [0, 1]. Let

fRi(r) denote the density of Ri and let β := E(Ri). The coverage process of these sensors

deployed as above is a special case of the two dimensional Boolean process or the ‘germ-grain’

process defined in 3.1

Clearly, ψT (x, k), x ∈ �2, is a two dimensional Boolean process, the statistical properties of

which are well studied as coverage processes, e.g., [4,19,20]. However, as we have mentioned

earlier, our interest in this chapter is to study the properties of ψT (x, k), x ∈ L where L

is an arbitrary straight line path in Ω. These properties depend on the statistics of one-

dimensional sets embedded in a two-dimensional space.

We mention here that although much of the chapter is on sensor networks in �2, extensions

of some of the results to finite Ω are discussed in Section 4.7.

Prior work on trackability is primarily on intruder detection and on algorithmic studies. A

notable exception is [8] where the notion of detectability, the probability that an object on a

path L is detected, is discussed and some asymptotic results are given. Algorithmic results

have been described in [6,7,21] to identify the best and worst sensed paths in a network when
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the sensor locations and the sensing radii are known. Statistical results via simulation are

also presented in these papers. [9] studies the same properties for the case of a network with

a single sensor. [10] also obtains the probability of detecting a target and uses this to develop

a sequential deployment strategy to meet a QoS defined by the false alarm probability. Note

that detectability of [8] is the same as exposure of [10]. There have also been papers that

study connectivity and coverage together. [22] proves that if the radio-range is at least twice

the sensing range, complete coverage implies connectivity. [22, 23] propose algorithms to

schedule sleep intervals in large scale networks while meeting the required degree of coverage

and connectivity requirements.

4.3 Sensing Process on a Straight Line Path

Let L ∈ Ω be an arbitrary straight line path of finite length. Let L be the line obtained by

extending L in both directions. Since the Boolean process is shift invariant, without loss of

generality we can take L to be the X−axis of the co-ordinate axes. Since Ri has a support

of [0, 1], only sensors within a perpendicular distance of 1 from L may sense any part of L

and are of interest to us.

Construct a point process on L as follows. Mark all sensors that track some part of L, i.e.,

mark a sensor if and only if its perpendicular distance to L is less than its sensing radius Ri.

Project all the marked sensors onto L along the perpendicular to it. Denote the resulting

point process on L by F̄ .

Lemma 4.3.1 F̄ is a Poisson arrival process on L with rate λ̄ = 2λβ.

Proof:

We prove the lemma by showing that the probability of an arrival in any differential length

dl of L is λ̄dl and that the arrivals have the independent increment property.

There is an arrival of F̄ in [l − dl/2, l + dl/2] if there is a marked sensor in the differential

strip, dP , of thickness dl. Since the sensing radius has support in [0, 1], the length of the

strip over which a marked sensor could be present is within 1 unit on either side of L. We

restrict dP to this range. This strip is centered at l ∈ L. This is shown in Fig. 4.2.
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R Y

dl

2 unitsX

X̄

R̄

Figure 4.2: Figure shows the projection of a sensor onto L. The dots represent the sensors and

the circles their sensing area. The region enclosed by vertical dotted lines is the differential

region dl.

A sensor being present in dP and it being marked are independent events. Thus the proba-

bility that there is a marked sensor in dP is the product of the probability of there being a

sensor in dP , approximately (λ2dl), and the probability that this is marked. We obtain this

latter probability next.

If there is a sensor (say s with sensing radius R) in dP , then from the Poisson distribution of

the sensors its location is uniformly distributed in dP . This implies that the perpendicular

distance of the sensor in dP to L, say Y , will be uniformly distributed in [0, 1]. For s to be

marked, its R must be greater than Y . Therefore

Pr (s is marked) =

∫ 1

0

Pr(Y ≤ r)fR(r) dr

=

∫ 1

0

rfR(r) dr = β

and

Pr (Arrival in[l, l + dl]) � 2λβ dl.

To prove the independent increment property, consider two non overlapping segments on L,

L1 and L2. Arrivals of F̄ in L1 and L2 are decided by the presence of marked sensors in

the rectangular regions B1 and B2 of height 2 and width equal to the width of L1 and L2
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and centered at L1 and L2. Clearly B1 and B2 are non overlapping and by the independent

increment property of the Poisson process of the sensor deployment, the point process F̄ has

the independent increment property.

Consider an arbitrary marked sensor s located at X and having sensing radius R. Let Y be

the perpendicular distance of s to L and X̄ be the projection of X on L. Note that both

R, Y are random variables and X̄ ∈ F̄ . Recall that for thresholded sensing s will sense

all points that are within a distance of R from it. This means that on L, s will sense the

segment [X̄ − R̄, X̄ + R̄] where R̄ =
√
R2 − Y 2. See Figure 4.2

Lemma 4.3.2 R̄ is independent of X̄ and its density, fR̄(r̄), is

fR̄(r̄) =

{
r̄
β

∫ 1

r̄
fR(r)√
r2−r̄2 dr for 0 ≤ r̄ ≤ 1

0 otherwise

Proof:

Since sensor s is marked, R ≥ Y . As discussed above, the segment on L sensed by s

is [X̄ − R̄, X̄ + R̄] where R̄ =
√
R2 − Y 2. Since the sensor nodes are distributed as a

homogeneous Poisson process, Y is independent of X̄. Further, R is independent of X and

it follows that R̄ is independent of X̄. By a simple transformation of random variables the

distribution function of R̄, FR̄(r̄), can be written as

FR̄(r̄) =

∫
r,y:

√
r2−y2≤r̄

f{R,Y |R≥Y }(r, y) dr dy (4.1)

Here fR,Y (·, ·) is the joint density of R and Y . The joint density conditioned on the event

that the sensor is marked can be written as

f{R,Y |R≥Y }(r, y) =
fR,Y (r, y)

Pr(R ≥ Y )

Recall from the proof of Lemma 4.3.1 that the probability that a sensor within a distance

of 1 from L is marked is β. Further, as discussed before, Y is uniformly distributed in [0, 1]

and is independent of R. Therefore

f(R,Y |R≥Y )(r, y) =
fR(r)

β
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Substituting for f(R,Y |R≥Y ) in Eqn. 4.1 and then differentiating with respect to r̄ we get the

density function of R̄ as

fR̄(r̄) =

{
r̄
β

∫ 1

r̄
fR(r)√
r2−r̄2 dr for 0 ≤ r̄ ≤ 1

0 otherwise
(4.2)

The ‘regions’ on L that are sensed are the collection of segments {X̄i + Īi} where {X̄i} is

a Poisson process, Ii is the random interval [−R̄i, R̄i] and R̄is are i.i.d random variables.

Therefore, the sensing process on L is a one-dimensional Boolean process. This means that

the trackability of any straight line path can be studied as the coverage of a straight line of

equal length by an appropriately defined one-dimensional Boolean process. It is easy to see

that the latter is just an M/G/∞ queue where the projected sensors are akin to the customer

arrivals and the sensed segment of the path is the corresponding service time. There is one

difference though. For the one dimensional Boolean process described above, the centers of

the sensing intervals are derived from a Poisson process whereas in the M/G/∞ queue, the

left endpoints of the service period form a Poisson process. Fortunately, as seen from the

following lemma of [4], there is a statistical equivalence between the two processes.

Lemma 4.3.3 Consider a one-dimensional Boolean process {Xi+Ci} where {Xi} is a Pois-

son process, Ci is the random interval [−Ti, Ti] and the Tis are i.i.d positive random variables.

Then {Xi +Ci} has the same laws as the one-dimensional Boolean process {Xi +C ′
i} where

C ′
i is the random interval [0, 2Ti].

The above discussion now leads us to state the key theorem of this chapter.

Theorem 4.3.4 For thresholded sensing, the projected point process and the collection of

sensed segments form a one-dimensional Boolean process with laws identical to the one-

dimensional Boolean process {X̄i + C̄i} where {X̄i} is a Poisson point process of density

λ̄ = 2λβ, C̄i is the random interval [0, 2R̄i] and the R̄is are i.i.d random variables with

density as in Eqn. 4.2.

From the M/G/∞ analogy, the theorem also says that the sensing process on L is statistically

equivalent to an M/G/∞ queue with arrival rate λ̄ = 2λβ, and service time density given
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by

g(x) =




x
4β

∫ 1
x
2

fR(r)√
r2−x2

4

dr for 0 ≤ x ≤ 2

0 otherwise

It can be shown that E
(
R̄
)

=
πE(R2)
4E(R)

. For the special case when the sensing radii are fixed

at 1, fR̄(r) = r̄√
12−r̄2 for 0 ≤ r̄ ≤ 1 and 0 outside. Further, β = 1 and E

(
R̄
)

= π
4

4.4 Exposure—Fraction k-Sensed

From the previous section, the event that a fraction α of the line segment is sensed by

exactly k sensors corresponds to the event that in an M/G/∞ queue, for a fraction α of an

observation period of duration l0, there are exactly k customers in the system. From the

ergodicity of the M/G/∞ queue, as l0 → ∞, this probability has a Poisson distribution with

mean µ := λ̄2E
(
R̄
)

= πλE(R2) . Therefore, for a straight line path L of length l0, as l0 → ∞,

the limiting fraction of a path that will be k−sensed is
∑∞

i=k
µie−µ
i!

.

We now obtain asymptotic results for finite length paths with increasing density of sensor

nodes and decreasing sensing radii. The sensing radii are scaled by δ, i.e., the sensing radii

are distributed as δR, such that δ2λ→ ρ, 0 ≤ ρ <∞, as λ→ ∞. This scaling of the sensing

radii allows us to derive sensing properties in the large density limit. With this scaling, the

sensing statistics of the finite length segment L will be the same as the limiting statistics of

L as l0 → ∞ in a network where δ = 1 and the sensor density is fixed at ρ. This follows

from the discussion on the scaling properties of Boolean processes in [4]. From this we can

state the following strong law.

Theorem 4.4.1 Let ρ̄ = πρE(R2). Let δ → 0 and λ → ∞ such that δ2λ → ρ, 0 ≤ ρ < ∞.

Then, with probability 1,

αk := XψT (x,k)(L) →
∞∑
i=k

ρ̄ie−ρ̄

i!
. (4.3)

From Theorem 3.3.1 the limiting value of αk for any path is same as the fraction of any
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finite area that is almost surely k-covered in the same limiting regime! While this seems

reasonable it is not obvious that this should be the case.

We now consider the critical ρ that is required to achieve a specified αk. Eqn. 4.3 can be

solved to obtain ρc, the minimum ρ required to asymptotically sense at least a fraction α

(0 < α ≤ 1) of L ρc will be given by

ρc =
ρ̄c

πE(R2)

where ρ̄c is the solution to Eqn. 4.3. Eqn. 4.3 can be explicitly solved to obtain a closed form

for ρc only for k = 1, for which

ρc =
− ln(1 − α)

πE(R2)
.

Although the critical ρ derived above is an asymptotic result, the minimum sensor density

required to sense at least a fraction α of L in a finite network can be approximated by ρc
δ2

. We

now characterize this approximation for k = 1. From Theorem 4.3.4, λ̄ = 2βλ. Therefore,

scaling R by δ such that λ2δ → ρ as λ→ ∞ and δ → 0 implies that δλ̄→ 2βρ. This means

that Theorem 5.4.4 from Chapter 3 that gives a central limit theorem for the length of the

path that is not 1-sensed, VψT (x,1k(L), is applicable and we can adapt it to obtain a central

limit theorem for XψT (x,k)(L) by observing that XψT (x,k)(L) = 1 − VψT (x,k)(L)

l0
. We thus have

Theorem 4.4.2 If δ → 0 as λ→ ∞ such that δ2λ→ − ln(1−αk)
πE(R2)

then√
2βδλ

(
XψT (x,k)(L) − αk

) → N(0, σ2),

where

σ2(S) =
2ρ̄

(1 − αk)2
0

[
k−1∑
m,n=0

∫ 1

0

(
eρ̄
∫ 1
x

(1−FR̄(y)dy)
m∧n∑
l=0

[ρ̄(
∫∞
x

(1 − FR̄(y)dy))]l

l!

× [ρ̄(
∫ x
0
(1 − FR̄(y)dy))]m+n−l

(m− l)!(n− l)!
− [ρ̄α]m+n

m!n!
dy

)]
. (4.4)

where ρ̄ = −2βln(1−α)
πE(R2)

. and FR̄(·) is the distribution function of R̄ from Theorem 4.3.4.

For the proof note that δλ̄→ ρ̄. Also the terms in 3.10 of Chapter 3 simplify as

E(‖D1‖) =

∫ ∞

x

(1 − FR̄(y)dy),
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and

E(‖D2‖) =

∫ x

0

(1 − FR̄(y)dy).

From Theorem 3.5 of [4] note that the asymptotic variance of the fraction of a path covered

and the fraction of the area covered are not the same.

The above are asymptotic results and provide useful insights into the behavior of high density

networks and/or large operational areas. For finite λ, we can obtain the expectation and

variance of XpsiT (x,k)(L)) by a simple application of the results of Section 3.2(equations 3.3

and 3.6) as

E
(
XψT (x,k)

)
(L) = 1 −

∞∑
i=k

[λπE
(
R2
)
]ieλπE(R2)/i!

VAR
(
XψT (x,k)

)
(L) = e−2πE(R2)

[
k−1∑
m,n=0

∫ 1

0

(
e2βλ

∫∞
x

(1−FR̄(y)dy)
m∧n∑
l=0

[2βλ(
∫∞
x

(1 − FR̄(y)dy))]l

l!

× [2βλ(
∫ x
0
(1 − FR̄(y)dy))]m+n−l

(m− l)!(n− l)!
− πE(R2)

m!n!
dy

)]
.

4.5 1−Sensing: Length to First k-Sense and Sensing

Continuity

Since the Boolean process is shift invariant, without loss of generality, L can be taken to be

the segment [0, l0]. Also, in the following we consider networks with finite λ.

Length to First k-Sense

Let the regions x < 0, 0 ≤ x < l0 and l0 ≤ x in �2 be denoted byW1, W2 andW3 respectively.

Define the regions Wi(d) i = 1, 2, 3 as follows. W1(d) is the rectangle with (0, d) and (l0,−d)
as the opposite corners. W2(d), W3(d) are the semicircular regions of radius d with centers

at (0, 0) and (0, l0) respectively. See Fig. 4.3.

Let Eu := E1 ∩ E2 ∩ E3, where Ei, i = 1, 2, 3, is the event that no part of L is 1−sensed

by any sensor in Wi. Let Ed be the complement of Eu, i.e., the event that L is 1-sensed.

Since the Wis are non-overlapping, the Eis are independent and Pr (Eu) is the product of

the probabilities of the Ei. We calculate these probabilities next.
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Figure 4.3: The dotted lines mark the boundary of the regions W1(d), W2(d) and W3(d).

The two line x = 0 and x = l0 also mark the boundary of W1, W2 and W3.

Since the sensing radius has support in [0, 1], only sensors in Wi(1) can sense any part of L.

Further, since the sensor locations form a spatial Poisson process of density λ, the number of

sensors in W1(1), N1, will be a Poisson random variable with mean 2l0λ and from the proof

of Lemma 4.3.1, the probability that any of these sensors will sense L is β. Therefore

Pr (E1) = E
(
(1 − β)N1

)
= e−2l0λβ

From symmetry, the probabilities of E2 and E3 are equal and we evaluate the probability

of E2. Given that a sensor is in W2(1), its location is uniformly distributed in that region.

Hence the probability that this sensor does not sense (0, 0) is

1

2

∫ 1

0

fR(r)(1 − r2)dr =
1 − E(R2)

2

N2, the number of sensors in W2(1) is a Poisson random variable with mean λπ
2
. Therefore

Pr (E2) = E
(
(1 − E

(
R2
)
)N2
)

= e−
π
2
λE(R2)

Therefore, it follows that

Pr (Ed) = 1 − e−λ(πE(R2)+l0E(R)) (4.5)

We use this to obtain the distribution of LF (L), FLF (L)(x). Clearly, Pr (LF (L) < x), is 0 for

x < 0 and 1 for x > l0. For x ∈ [0, l0), FLF (L)(x) is the probability that [0, x) is sensed which
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can be obtained from Eqn. 4.5 by replacing l0 by x. Therefore

FLF (L)(x) =




0 if x < 0

1 − e−λπE(R2)−λE(R)x if 0 ≤ x < l0

1 if x > l0

From above, notice that the probability density of LF (L) has point masses at 0 and l0

corresponding to the probabilities of the beginning of the path being sensed and the path

not being sensed at all. Observe that this is just the truncated exponential distribution.

Easily one can extend the above formula to the case of k-tracking. The corresponding

formula is

FLF (L)(x) =




0 if x < 0

1 − e−λπE(R2)−λE(R)x∑k−1
m=0[λ

2πxE(R2) E(R)]m/m! if 0 ≤ x < l0

1 if x > l0

The remaining results are for the case of 1-sensing.

Sensing Continuity: Clumps and Holes Since the sensing process on the path is one-

dimensional Boolean process, for 1-sensing, the hole lengths are clearly exponentially dis-

tributed with rate λ̄, i.e., the hole length density is fH(x) = λ̄e−λ̄x. From Theorem 2.2 of [4]

the characteristic function, γ
Z
(s), of length of a clump, Z, is

γ
Z
(s) =

λ̄+ s

λ̄
−
(
λ̄

∫ ∞

0
exp

(
−st− λ̄

∫ t

0
(1 − FR̄(x))dx

)
dt

)−1

.

The expectation of the clump length is E(Z) = λ̄−1(e2λ̄E(R̄) − 1) and its variance is

VAR(Z) = −
(
λ̄−2(e2λ̄E(R̄) − 1)2

)
+

+
2e2λ̄E(R̄)

λ̄

∫ ∞

0

(
exp

(
λ̄

∫ ∞

y

{1 − FR̄(x)}dx
)
− 1

)
dy

Theorems 2.3 and 2.4 of [4] can be used to obtain limiting distributions for the clump lengths,

Theorem 4.5.1 As λ→ ∞, the distribution of Z
E(Z)

goes to an exponential with mean 1.

Further observe that,

log x

∫ ∞

x

{1 − FR̄(r)} → 0
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as x → 0. Here FR̄(r) is the distribution function of R̄. Therefore from Theorem 2.4 in [4]

we have

Theorem 4.5.2 If the sensing radii R are scaled by δ, δ → 0, and if λ→ ∞ such that

4E
(
R̄
)
βλδ2 = ln

(
2βδλ

u

)
+ o(1)

then, in the limit, the distribution of Z goes to an exponential with mean u, a constant.

We next obtain asymptotic results for the number of holes and clumps in L. A one-

dimensional Boolean process is essentially a renewal process on L, with renewal cycle length,

D, equal to H + Z. Since H and Z are independent

E(D) = E(H) + E(Z) =
eπE(R2)λ

2λβ

and VAR(D) = 1
λ̄2 +VAR(Z). The number of holes, NH(L), and clumps, NZ(L), in L will be

equal to, or 1 less than the number of renewals in L. Therefore, from the renewal theorem

as l0 → ∞, NH(L)
l0

and NZ(L)
l0

will converge to 2λβe−πλE(R2). This result, as in Section 4.4,

can be extended to obtain asymptotics for NH(L) and NZ(L) when l0 is finite by scaling R

to δR such that δ → 0 and δ2λ→ ρ.

Theorem 4.5.3 If δ → 0 and λ→ ∞ such that δ2λ→ ρ, 0 ≤ ρ <∞, then with probability

1
NH(L)

l0
=
NZ(L)

l0
→ 2ρβe−πρE(R

2)

Further, it is possible to derive a central limit theorem for NH and NZ from the central limit

theorem for number of renewals. Additional statistics may be obtained by suitably using the

results from Chapter 4 of [4].

4.6 Breach and Support

Recall that breach is the distance of the closest sensor to L. Therefore, FBr(L)(d) is the

probability that there is at least one sensor within a distance of d from L. The latter is the
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probability that there is at least one sensor in the region Wi(d)
⋃
W2(d)

⋃
W3(d), which is

of area 2l0d + πd2 (see Fig. 4.3). Since the sensor locations form a spatial Poisson process,

we get

FBr(L)(d) = 1 − e−(λπd2+λl0d)

To calculate the support , we first derive the distribution of Bi, the distance to L of the

closest sensor in Wi. Let Ni(d) denote the number of sensors in Wi(d) and Ei(d) denote the

event that Ni(d) �= 0.

Observe that, in the limit as d→ ∞, the region Wi(d) approaches Wi and the probability of

Ei(d) approaches 1. Thus the density of Bi can be obtained by first conditioning on Ei(d)

and then taking the limit d→ ∞. We use this strategy below to calculate the densities .

Given that there are sensors in W1(d), they will be uniformly distributed in W1(d). This

means that the perpendicular distance of the sensors to L, which is also their shortest distance

to L, has a uniform density in [0, d]. Therefore conditioned on E1(d) and N1(d), B1 will be

the minimum of N1(d) random variables that are independent and uniformly distributed in

[0, d].

fB1|E1(d)(x) =

{
E
(
N1(d)
d

(
1 − x

d

)N1(d)−1
)

if x < d;

0 otherwise

Further, conditioned on E1(d), the density of N1(d) is

p(N1(d)|E1(d))(n) =
(λl0d)

ne−λl0d

n!(1 − e−λl0d)

From the above

fB1|E1(d)(x) =

{
λl0e−l0λx
1−e−λl0d if x < d;

0 otherwise

As before, we obtain the marginal density of Bi by taking the limit as d→ ∞.

fB1(x) = λl0e
−l0λx (4.6)

Clearly B2 and B3 will be identically distributed. Further, given that there are N2(d) sensors

in W2(d), they will be independently and uniformly distributed in the region. This means

that their distance from the origin which is also their shortest distance to L, will have a
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density 2x
d2

in [0, d] and 0 outside. As in the case of B1, we obtain fB2(x) by first conditioning

on N2(d), E2(d) and evaluating the marginal. This turns out to be

fB3(x) = fB2(x) = λπx e−
λπx2

2 (4.7)

Recall, that support, Su(L), is the maximum Euclidean distance of the closest sensor from

the path L. In the case of straight line paths this will essentially be the distance of the

closest sensor to the furthest end point of the straight line.

Let Ec denote the event that the closest sensor is in W1 and Ec
c the complement event. The

density of the support, fSu(L)(x), can therefore be obtained as

fSu(L)(x) = Pr (Ec) fSu(L)|Ec(x) + Pr (Ec
c) fSu(L)|Ecc (x)

The event Ec is the event that B1 is less than B2 and B3. Therefore

Pr (Ec) =

∫ ∞

x=0

fB1(x)(1 − FB2(x))(1 − FB3(x)) dx.

Also, given Ec, Su(L) =
√
B2

1 + T̄ 2. Here T̄ is the distance of the point X̄, the projection

of the closest sensor onto L, to furthest end point of L. (See Fig. 4.3.) Since the sensors

are deployed as a homogeneous Poisson process, X̄ is uniformly distributed in [0, l0] which

means T̄ is uniformly distributed in [ l0
2
, l0]. Therefore

fSu(L)|Ec(x) =

∫ x

l0/2

2xfB1(
√
x2 − t2)

l0
√
x2 − t2

dt.

In the case when the closest is in W2 or W3 the support can be written as Su(L) =√
(B2 sin(θ))2 + (l0 +B2 cos(θ))2. Here θ is the angle made by the line joining the clos-

est sensor to the closest end of L. Since the sensor will be uniformly distributed in the

semicircular regions, θ will be uniform in [0, π]. We have not been able to obtain a closed

form expression for either the distribution or the moments of the support.

4.7 Generalizations

So far we have analyzed the thresholded sensing of straight line paths. In this section, we

extend these results to more general settings.
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Paths and Networks in Higher Dimensions

Our first generalization is to extend the results for networks and paths of higher dimensions.

As an example, consider a network deployed in three-dimensions that is used to track the

movement of a fleet of airborne objects, say a flock of birds, and also to track a specific

object or bird. Since the ‘cross section’ of the fleet or flock will be significantly higher than

a single object, we may treat the latter as a point object and the former as a planar set. To

track the fleet, the three-dimensional sensor network must sense a ‘two dimensional path’

while in tracking the individual element, a one-dimensional path must be sensed.

Consider an m−dimensional straight line path L. When m = 1, L is a straight line and when

m = 2 is a rectangle. For a general m, L will be a m−dimensional hypercuboid. Let {Xi, Ci}
form a n−dimensional Boolean process. Here {Xi} is an n-dimensional Poisson process of

intensity λ, Ci is a hypersphere of radius Ri and Ri are i.i.d random variables with density

fR(·) with support in [0, 1]. We are interested in the coverage/sensing properties of L by

{Xi, Ci}. Let L be the plane obtained by extending L along the m directions in which it is

has a non-zero measure. As before, we project marked points i.e., a point at Xi onto L if

the set Xi +Ci intersects L. This results in a point process {X̄i}. Let C̄i be the intersection

of Xi + Ci and L.
The following results can be obtained as above.

Lemma 4.7.1 The point process, {X̄i}, on L is a Poisson process of intensity 2βn−mλ where

βn−m = E
(
Rn−m
i

)
.

Proof Consider a differential element dS on L of m−dimensional volume dV . The process

{X̄i} is a Poisson point process on L if the probability there is a projected point i.e., X̄i for

some i, in dS, is λ̄dV and that the arrivals also have the independent increments property.

There is a projected point in dS if there is a corresponding X in the n−dimensional differ-

ential element, dP , centered at dS and of a 2 units length along the n −m directions that

are perpendicular to L. The probability of this event is the product of the probability that

there is a sensor in dP (which is approximately λdV ) and the probability that this sensor is

marked. We calculate this next.

Given that a sensor (say s of sensing radius R) is in dP , it will be uniformly distributed



4.7. GENERALIZATIONS 47

there and the perpendicular distance of s from L, say Y , will have a density

fY (y) =

{
(n−m)yn−m−1 0 ≤ y ≤ 1

0 otherwise
(4.8)

Therefore the probability that s is marked is

Pr (s is marked) =

∫ 1

0

Pr(Y ≤ R)fR(r)dr

=

∫ 1

0

rn−mfR(r)dr = βn−m

The argument for independent increment property is identical to the argument in proof of

Lemma 4.3.1.

Lemma 4.7.2 The set C̄i is an m−dimensional hypersphere, centered at X̄i and has a radius

R̄i where the density of Ri is

fR̄i(r̄) =




(n−m)r̄
βn−m

×∫ 1

r̄
fR(r)(r2 − r̄2)

n−m−2
2 dr if 0 ≤ r̄ ≤ 1

0 otherwise.

Proof Consider a marked sensor S at X with a sensing radius R. Let Y be its perpendicular

distance from L. Note that as the sensor is marked R > Y .

The region on L sensed by S will be the hypersphere with radius R̄ =
√
R2 − Y 2. As before,

by a transformation of random variables we have the distribution function, FR̄(·), can be

written as

FR̄(r̄) =

∫
r,y:

√
r2−y2=r̄

f(R,Y |R≥Y )(r, y) dr dy (4.9)

The probability that a sensor, which is within a unit distance from L, is marked is βn−m
(proof of Lemma 4.7.1). Further, Y is independent of R and its is density is given by Eqn. 4.8.

Therefore

f(R,Y |R>Y )(r, y) =
(n−m)fR(r)yn−m−1

βm−n
(4.10)

Substituting for f(R,Y |R>Y )(r, y) in Eqn. 4.9 and differentiating with respect to r̄ we get

fR̄i(r̄) =




(n−m)r̄
βn−m

×∫ 1

r̄
fR(r)(r2 − r̄2)

n−m−2
2 dr if 0 ≤ r̄ ≤ 1

0 otherwise.
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Theorem 4.7.3 The projected point process {X̄i} and the sets {C̄i} constitute an m−dimensional

Boolean process.

Non-Thresholded Sensing

Recall that, in non-thresholded sensing φ(Xi, x) is a continuous function that decreases as

the distance of the point from the sensor increases. In general φ(Xi, x) is taken to be η
d(Xi,x)γ

and a point is considered sensed only if
∑

i
η

d(Xi,x)γ
≥ θ. Here d(Xi, x) is the Euclidean

distance between Xi and x.

Recall, that breach and support are not dependent on the sensing model and will remain

the same. Further, it is shown in [8] that the region sensed by a network under the 1-

thresholded model with the sensing radii is fixed at
(
η
θ

)1/γ
will be a subset of the region

sensed by the network when the sensing is non-thresholded. Therefore, the exposure and

the clump lengths for the non-thresholded model are lower bounded while the length to first

sense is upper bounded by their values obtained for 1−thresholded sensing.

Finite Operational Area

Consider a square A in which sensors are deployed in a Poisson manner i.e., the number of

sensors in R ⊂ A is a Poisson random variable and is independent of the number of sensors

in any non-overlapping region. Let P be a straight line path with the two end points on

opposite edges of A. Since the sensors are distributed only inside A, the results we have

derived above, upper bound the sensing properties of P . Further, the results derived in the

limit δ → 0 hold, as in that limit, even if sensors are deployed outside A the length sensed

by these sensors will be negligible.



Chapter 5

Tracking in Backbone Networks

5.1 Introduction

From the previous chapter, one would have got an overview of the myriad applications of

sensor networks. In practice, varied models of sensor networks are employed. In great many

cases, the sensor nodes do not directly relay the information about the phenomenon sensed

by them. The information is routed through a server or a base station. A set of nodes

(sensors) are affiliated to a base station to which they send the information and the base

station routes it to the end user.

Consider such a kind of sensor network for target tracking. Whenever a target lies in the

vicinity of a node, it is considered to be sensed by that node. The node relays the information

to the base station which obtains estimates of the trajectory of the target based on the

information received from other nodes affiliated to it and other base stations by the data

available. The measures of the trackability we are interested remain the same as in the

previous chapter.

We use the following sensing model. The base stations are deployed according to a Poisson

spatial process with parameter λ > 0. In a box of radius R0 around each base station the

sensor nodes are scattered according to independent Poisson spatial processes with parameter

µ > 0. The sensing area of each node is a box of radius R1 around them. The 
∞ norm is used

here to make analysis easier. A point is considered sensed if it lies within the sensing area of

49
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atleast one of the sensor nodes. Thus the coverage of the operational area is two dimensional

Poisson cluster process. This can be viewed as two dimensional Boolean process as well. We

shall analyze the properties of the induced coverage process on an one dimensional linear

path. The measures we consider are essentially coverage statistics of this process.

In the case of a simple Boolean model, the area coverage as well as trackability has been

studied in [4], [5]. But using methods analogous to the latter work, we analyze the properties

of the induced one dimensional process. The two processes are intimately related as will be

seen in the work. We shall obtain mainly asymptotic results for the proportion of the target

tracked under this coverage process.

5.2 System Model

A (stationary) Poisson Cluster Process(PCP) on R
2 consists of three components.

1. A stationary Poisson Point Process N on R2 with intensity λ > 0.

2. A bivariate probability density f(x, y) on R
2.

3. A distribution G concentrated on positive integers with a moment generating function

φG(t).

We shall assume f(x,y) to be uniformly distributed on 
∞ ball of radius R0, R0 > 0

centered at origin. i.e,

f(x, y) =

{
1

4R2 if max(|x|, |y|) ≤ R

0 otherwise

We shall assume G to be a Poisson Spatial process with intensity µ. Hence φG(t) =

eµ(et−1).

The structure of the PCP is as follows : first the points of N act as cluster centers (called

as the process of cluster centers) and then at each cluster center are formed clusters inde-

pendently of other cluster centers, with the number of points in a cluster distributed as G.
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Conditional on this number, say k, and the location of the cluster center say (x, y), the k

points (called as the subsidiary process) of the cluster are i.i.d. about the center with density

f(v− x, w− y). Thus the subsidiary process is a Poisson spatial process with intensity µ on

the 
∞ ball of radius R0 centered at (x, y).

Now we shall describe our coverage process C0. Let {Z1, Z2, . . .} be the points of the Poisson

process N. For each i = 1, 2, . . . , let Gi be i.i.d. random variables with distribution G. Let

{Zij : 1 ≤ j ≤ Gi} be i.i.d. points distributed according to the p.d.f. f around Zi. Then the

stationary point process P0 is the collection of points P0 = {Zi +Zij ∈ R2 : 1 ≤ j ≤ Gi, i ≥
1}.
Let S0 be the 
∞ ball of radius R1 centered at the origin in R

2. Define Cij = Zi + Zij + S0,

1 ≤ j ≤ Gi, i ≥ 1. The process C0 := ∪1≤j≤Gi
i≥1

Cij is called the coverage process generated by

P0 and driven by S0 (in the terminology of Section 3.1).

We assume the operational area as R
2. The points Zi of the process N are the locations of the

backbone nodes and the sensors are located at points Zi + Zij with corresponding coverage

area Cij. Such a model of wireless network has been considered in [11] and its percolation

properties and covering algorithms has been studied in the cited reference. In general, R1 is

much smaller than R0.

Prior work on trackability of target has been done in the case of Boolean models as described

in the previous chapter. Note that C0 is a Boolean model driven by ξi = Zi and generated

by Ci = ∪1≤j≤GiZij + S0. And we consider the statistical properties of the measures defined

for a path L ⊂ Ω. Recall that ψT (x) was defined in 4.2 as the characteristic function of

coverage of x. We are interested in the random process ψT (x), where x ∈ L. Analogously,

We also show that when L is a straight line path, the sensing process on L i.e. ψT (x), x ∈ L,

has the same laws as a one-dimensional Boolean process. However in this case the induced

one-dimensional Boolean process is more complicated. Neverthless, this enables us to use

the available literature on one dimensional Boolean processes and characterize our measures

of trackability.
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5.3 Sensing Process on a straight line path

Let L ∈ Ω be an arbitrary straight line path of finite length. Let l be the line obtained by

extending L in both directions. Since the Boolean process is shift invariant, without loss of

generality we can take l to be the X−axis of the co-ordinate axes (by this we also have made

the assumption that l is perpendicular to one of the axes).

We shall now construct a 1-D Boolean Model, C. Let l be the line which is obtained by

extending the line segment MN at both ends. Without loss of generality we can assume l is

x-axis. We say a cluster center is marked iff there is a positive probability that at least one of

the subsidiary points in its cluster will be at a perpendicular distance less than the coverage

radius R1 from the X-axis. In effect, we mark all cluster centers whose subsidiary process

will observe some part of the target. Since with positive probability a subsidiary point has

to lie within a distance R1, the cluster center has to lie within a distance of R0 +R1. Hence

all cluster centers that lie within a distance of R0 +R1 are marked. Now construct the point

process P on X-axis by projecting all the marked sensors onto it. We need to show P is a

spatial Poisson process with intensity λ̄ = 2λ(R0 + R1). To prove that the P is a Poisson

point process it is sufficient to prove that the probability of a arrival in a differential length

dl of the line is λ̄dl and that this probability is independent of arrivals in any other interval.

The event that there is an arrival in the interval (l, l + dl) is equivalent to the event that

there is a marked cluster center in a corresponding differential strip, dP , of thickness dl with

center on the line l and length 2(R0 +R1). Since when a cluster center lies in dP , there is a

positive probability of one of its subsidiary points covering x-axis. Hence the probability of

an arrival in (l, l+dl) is the probability there is a cluster center in dP . Hence the probability

is λ‖dP‖ = 2λ(R0 + R1). The property of independent arrivals in non-overlapping interval

follows from the fact that the original birth process is a spatial Poisson process.

Let X̄ be the location of a marked cluster center. Then, X̄ = (X, Y ) where X ∈ P and

Y is uniformly distributed on [−R0 − R1, R0 + R1]. Let X + S = X + S(µ,R0, R1) be the

portion of the X-axis covered by the sensors within the cluster around a marked sensor.

Let SY denote S conditioned on this marked sensor being at a distance Y from the x-

axis. To this end if (X + U, V ) is the location of a sensor belonging to the cluster around

X̄, that is −R0 ≤ U ≤ R0, Y − R0 ≤ V ≤ Y + R0, then this sensor covers the region
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[X + U − R1, X + U + R1], provided |V | ≤ R1. Hence the sensor at (U, V ) is relevant to

coverage only if max(−R1, Y −R0) ≤ V ≤ min(Y +R0, R1). Projecting sensors that satisfy

this condition onto the x−axis will yield a spatial Poisson process of intensity µg(Y,R0, R1),

on [X − R0, X + R0], where g(Y,R0, R1) = 2R0(min(Y + R0, R1) − max(−R1, Y − R0)). If

X +U1, X +U2, . . . , X +UN(Y ) are the projected points then N(Y ) is Poisson with intensity

µg(Y,R0, R1), and SY = ∪NYj=1[Uj − R1, Uj + R1]. Thus the tracking of a linear target in a

Poisson cluster field is equivalent to the coverage properties of the one dimensional Boolean

model C generated by P and driven by S, that is,

C = ∪Xi∈PXi + Si,

where the Si are distributed as S. We will call C as the projection of the Boolean model C0.

We now state an important theorem. Let S be the random set described above.

Theorem 5.3.1 For thresholded sensing, the projected point process and the collection of

sensed segments form a one-dimensional Boolean process with laws identical to the one-

dimensional Boolean process {X̄i + C̄i} where {X̄i} is a Poisson point process of density

λ̄ = 2λ(R0 +R1),and the C̄i are i.i.d as S.

5.4 Exposure - Fraction Sensed

The trackability of the line L of length 
0 lying in the region B0 ∈ R2 of interest by the

coverage process C0, is the same as the coverage of L by the Boolean model C. In this section

we obtain asymptotic results for exposure Xψ(L) (defined in Section 4.2) for finite length

paths with increasing densities of sensor nodes and decreasing sensor radii.

First we calculate the exposure for a fixed λ, µ,R0, R1 and then pass onto the asymptotic

results. From [4] (Sec 3.1), we know E(Xψ(L)) = 1 − exp{−λE(‖S‖)}. In inference of prop-

erties of exposure we shall use Theorem 3.3 of [4] which guarantees that complete coverage
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of L is equivalent to Xψ(L) = 0. From symmetry of Sy about the x-axis,

E(‖S‖) =
1

2(R0 +R1)

∫ (R0+R1)

−(R0+R1)

E(‖Sy‖) dy

=
1

(R0 +R1)

∫ (R0+R1)

0

E(‖Sy‖) dy,
(5.1)

where Sy is the region covered by a Boolean model generated by a spatial Poisson process

in [0, 2R0] with intensity µg(y, R0, R1)(= 2R0(min(Y + R0, R1) − max(−R1, Y − R0)) and

driven by the set [0, 2R1]. Then E(Sy) is the exposure in [0, 2R0] ( see Remark 2) under this

Boolean model. Hence E(‖Sy‖) = 2R0 − 2R0 exp{−2µg(y)R1} . Since

∫ R1+R0

−R1−R0

exp{−2µR1g(y)} =
1

µR1

(1 − e−4µR2
1) + 2(R0 −R1)e

−4µR2
1 ,

we get from (5.1),

λE(‖S‖) = λ4(R0 +R1)R0{1 − 1

µ2R1(R0 +R1)
(1 − e−4µR2

1) +
R0 −R1

R0 +R1
e−4µR2

1} (5.2)

Let us denote the r.h.s of (5.2) as f(λ, µ,R0, R1) .

Now we consider the Boolean model C0(δ, λ, µ). This is the Boolean model C0 in which R0

is scaled to δR0 and R1 is scaled to δR1. Now we state an asymptotic result for exposure

under suitable scaling of δ, λ and µ.

Theorem 5.4.1 Let Xψ(L) be the exposure as defined in Chapter 4 and C0(δ, λ, µ) the

Boolean model as defined above. If δ → 0 as λ → ∞ and µ → ∞ such that δ2λ → ρ1 and

δ2µ→ ρ2 where 0 ≤ ρi ≤ ∞ for i = 1, 2, then

E(Xψ(L)) → 1 − e−f(ρ1,ρ2,R0,R1) (5.3)

and for each 1 ≤ a <∞
E(|Xψ(L) − E(Xψ(L)) |)a → 0

(5.3) follows from direct substitution in (5.2) and the La convergence follows as in the proof

of Theorem 3.3.1 in Chapter 3.
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REMARK 1: The difference with Hall’s result is that though both are 1-D Boolean models

the model we consider arises by projecting a 2-D coverage processes onto a line and hence the

scaling has to be as required by the 2-D model. This is intuitively clear since a non-trivial

sensing can be obtained only under a non-trivial coverage of the 2-D space where the target

moves. Hence we have δ2 as compared to δ in Hall. This is expected too. Also we can note

that the cases of either ρi,i = 1, 2 being ∞ or 0. If ρ1 = ∞ then E(Xψ(L)) = 1 which by

our observation at the beginning of the section implies that L is completely tracked.

REMARK 2: In the calculation of E(‖SY ‖) we have included the effect of points outside

of the Boolean model ( with Poisson µg(Y )) which lie outside [0, 2R0]. and also neglected

the coverage of points lying near the border covering region outside [0, 2R0]. This is justified,

since as δ → 0 they don’t really affect the vacancy within [0, 2R0].

We look at the coverage process C0. Now we shall look at the variance of the exposure.

Again from [4] (Sec 3.2) we get,

VAR(Xψ(L)) =
1


0
exp[−2λE(‖S‖)]

∫ ∫
L2

(exp[λE(‖(x1 − x2 + S) ∩ S‖)] − 1)dx1dx2

and

λE
(‖S‖2

)
exp[−2λE(‖S‖)] ≤ 
0VAR(Xψ(L)) ≤ λE

(‖S‖2
)
exp[−λE(‖S‖)]

Though we cannot compute variance explicitly the above inequality will help us to get good

bounds on it. And also for a fixed λ, variance decreases when the random set S0 undergoes

a ’random orthogonal transformation’. Since E(‖S‖2) ≤ 4R2
0 as S ⊆ [0, 2R0], from Hall we

get the following lemma.

Lemma 5.4.2 We make the same assumptions as in Theorem 5.4.1. Then,

λVAR(Xψ(L)) = O(1)

and

λVAR(Xψ(L)) → σ2(S) =
1


0
ρ1 exp[−4ρ1(R0 +R1)E(‖S(ρ2, R0, R1)‖)]∫

R

(exp[2ρ1(R1 +R0)E(‖(x+ S) ∩ S‖)] − 1)dx (5.4)
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We note that though µ doesn’t occur explicitly in (5.4), it is involved in E(‖S‖) and the term

in the exponential of the integrand. Intuitively we can observe that λ and µ need to tend

to infinity at the same rate else it will result in trivial cases as no coverage or full coverage.

And µ→ ∞ according to Theorem 5.4.1 is necessary to ensure proper convergence of E(‖S‖)
and term in the integrand.

Now we give a strong law for exposure as the area of the region of interest increases while

the sensor densities and sensor radii remain fixed. Put Bb = bB. And Lb denote the line 


within Bb of length 
b. From theorem 3.6 of Hall,

Lemma 5.4.3 As b→ ∞,

Xψ(Lb) → 1 − exp[−2λ(R+ r)E(‖S‖)] (5.5)

a.s.

In Lemmas (5.4.2),(5.4.3) expression for E(‖S‖) using (5.1) and (5.2) can be substituted to

yield explicit formulae. Theorem 5.4.1 is basically a ”weak law of large numbers” for exposure

within a large region. In general for weak laws we divide the sum of independent random

variables, but here it is replaced with scaling by δ. And also we have not independent random

variables but ’almost’ independent random variables which are exposure within smaller parts

of the region. Now we complement the weak law with a central limit theorem derived using

theorem 3.5 of [4].

Lemma 5.4.4 We make assumptions as in Theorem 5.4.1. Then

√
2δλ(R0 +R1){Xψ(L) − E(Xψ(L))} → N(0, σ2) (5.6)

where σ2 is as defined in lemma 5.4.2.

5.5 Statistical Analysis of thresholded Sensing

Since the Boolean process is shift invariant, without loss of generality, L can be taken to be

the segment [0, l0]. In this section we statistically characterize the trackability of L. In the
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following two subsections we denote by v and X a typical point of the subsidiary process

and the parent process respectively.

Breach

Let B0 and B1 denote balls of radii x and x+R0 around [0, l0]. Let Br(L) be the breach of

L.

Pr (Br(L) ≤ x) = Pr (∃ v ∈ B0)

= E(Pr (∃ v ∈ B0|∃ X ∈ B1))

=
1 − e−λ‖B1‖

‖B1‖
∫
X∈B1

(1 − e−‖B2(X,R0)∩B0‖)dX

Length to First Sense

Let E denote the event [0, x],x < l0 is not sensed. B0 and B1 are rectangles centered at

(x/2, 0) of height 2R1 and 2(R0 + R1) respectively and width 2R1 + x and 2(R0 + R1) + x

respectively. Also ‖Bp((X, Y ), R0) ∩ B0‖ = (R0 +R1 − |Y |)(R0 +R1 − |X|).
Let the length-to-first sense be LF (L). Set LF (L) = l0 when L is not sensed. Note that

Pr (LF (L) > x) =




1 if x < 0

Pr (E) if 0 ≤ x < l0

0 if x ≥ l0

Pr (E) = Pr (∃ no v ∈ B0)

= E(Pr (∃ no v ∈ B0|∃(X, Y ) ∈ B1))

=
1 − e−λ‖B1‖

‖B1‖
∫

(X,Y )∈B1

e−‖Bp((X,Y ),R0)∩B0‖dXdY

Suppose we denote by Ed the event that [0, l0] is tracked. Let B̄0 = Bq[[0, l0], R1] and

B̄1 = Bp[B̄0, R0]. Then

Pr (Ed) =
1 − e−λ‖B̄1‖

‖B̄1‖
∫

(X,Y )∈B̄1

e−‖Bp((X,Y ),R0)∩B̄0‖dXdY

and

Pr (LF (L) > x|Ed) =




1 if x < 0

Pr (E) /Pr (Ed) if 0 ≤ x < l0

0 if x ≥ l0
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Chapter 6

Conclusion

In this thesis, we have studied varied problems motivated by applications to wireless sensor

networks. In Chapter 2, we had studied evolving random geometric graphs in one dimension.

In Chapter 3, we extended the work of [4] in coverage processes with a more general definition

of coverage. This we used effectively in Chapter 4 to characterize the ability of a sensor

network to track a target moving linearly in its field. Also though not to a generic model,

but in a particular model of a backbone network, we deduced certain results regarding the

tracking of a linearly moving target in the field. Chapter 5 describes the results obtained on

the same.

Now we would like to point out further possibilities of investigation along similar lines.

• The study of evolving RGGs can be considered in higher dimensions. Also more sophis-

ticated models where all the nodes evolve can be considered. But this will complicate

the solutions to a great extent.

• We have extended only the weak law and central limit theorem of [4] to the case of

k-coverage. It might be interesting to extend results related to counting and clumping

to the case of k-coverage.

• A much interesting study of coverage processes as [4] points out is to extend the results

of coverage processes to the case of Poisson cluster processes and Cox processes (i.e,

random non-homogeneous Poisson processes). With certain approximations we have
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derived elementary results for the former case. But it might be a worthwhile study to

get better results.

• We have considered only linearly moving targets. It makes sense to consider random

walks. It might be good to start with particular cases of Self-avoiding random walks

and then study more general cases. Another interesting object might be the study of

trackability of Brownian paths which we are currently investigating. The work of Erwin

Bolthausen and Alan-Sol Sznitman around 1990 deals with some of these questions. A

good reference would be [27].

• One might even think of examining tracking in a more general backbone network. But

it might require different kind of tools and techniques. Essentially the equivalence to

a sensing process (like the Boolean process) on a line might not be possible.

• Multifarious coverage processes also can be studied as investigated in [26].
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