Random Minimal Spanning Acycles.

Yogeshwaran. D. Indian Statistical Institute, Bangalore.
Joint work with Primoz Skraba \& Gugan Thoppe QMU, London \& IISc, Bangalore.

Univ. Luxembourg, Luxembourg, March 2020.

Random metric spaces

Random metric spaces

- Mean-field Model : $V_{n}:=[n]=\{1, \ldots, n\}$,

Random metric spaces

- Mean-field Model : $V_{n}:=[n]=\{1, \ldots, n\}$, Weights : $w_{j, i}=w_{i, j}=U_{i, j}$ i.i.d. uniform $[0,1]$.

Random metric spaces

- Mean-field Model : $V_{n}:=[n]=\{1, \ldots, n\}$, Weights : $w_{j, i}=w_{i, j}=U_{i, j}$ i.i.d. uniform $[0,1]$.
- NN Edges : $e=(i, j)$ a Nearest Neighbour edge if e is the smallest edge on i or j.

Random metric spaces

- Mean-field Model : $V_{n}:=[n]=\{1, \ldots, n\}$, Weights : $w_{j, i}=w_{i, j}=U_{i, j}$ i.i.d. uniform $[0,1]$.
- NN Edges : $e=(i, j)$ a Nearest Neighbour edge if e is the smallest edge on i or j.
- NNG weights : $\mathcal{P}_{n}^{F}:=\left\{w_{e}: e\right.$ is a NN edge $\}$.

Random metric spaces

- Mean-field Model : $V_{n}:=[n]=\{1, \ldots, n\}$, Weights : $w_{j, i}=w_{i, j}=U_{i, j}$ i.i.d. uniform $[0,1]$.
- NN Edges : $e=(i, j)$ a Nearest Neighbour edge if e is the smallest edge on i or j.
- NNG weights : $\mathcal{P}_{n}^{F}:=\left\{w_{e}: e\right.$ is a NN edge $\}$.
- MST weights $: \mathcal{P}_{n}^{M}:=\left\{w_{e}: e \in M\right\}, M$ - the Minimal spanning tree.

Random metric spaces

- Mean-field Model : $V_{n}:=[n]=\{1, \ldots, n\}$, Weights : $w_{j, i}=w_{i, j}=U_{i, j}$ i.i.d. uniform $[0,1]$.
- NN Edges : $e=(i, j)$ a Nearest Neighbour edge if e is the smallest edge on i or j.
- NNG weights : $\mathcal{P}_{n}^{F}:=\left\{w_{e}: e\right.$ is a NN edge $\}$.
- MST weights $: \mathcal{P}_{n}^{M}:=\left\{w_{e}: e \in M\right\}, M$ - the Minimal spanning tree.
- $\mathcal{P}_{n}^{F} \subset \mathcal{P}_{n}^{M}$.

Extremes of NNG and MST :

Extremes of NNG and MST:

- Mean-field model : Stepanov '69, ??

$$
\begin{aligned}
& \left(n \mathcal{P}_{n}^{F}-\log n\right)[a, \infty):=\sum_{X \in \mathcal{P}_{n}^{F}} 1[n X-\log n \geq a] \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-a}\right) . \\
& \left(n \mathcal{P}_{n}^{M}-\log n\right)[a, \infty) \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-a}\right) .
\end{aligned}
$$

Extremes of NNG and MST:

- Mean-field model : Stepanov '69, ??

$$
\begin{aligned}
& \left(n \mathcal{P}_{n}^{F}-\log n\right)[a, \infty):=\sum_{X \in \mathcal{P}_{n}^{F}} 1[n X-\log n \geq a] \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-a}\right) . \\
& \left(n \mathcal{P}_{n}^{M}-\log n\right)[a, \infty) \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-a}\right) .
\end{aligned}
$$

- $n\left(\max _{X \in \mathcal{P}_{n}^{M}} X\right)-\log n \stackrel{d}{\Rightarrow}$ Gumbel distribution.

Extremes of NNG and MST :

- Mean-field model : Stepanov '69, ??

$$
\begin{aligned}
& \left(n \mathcal{P}_{n}^{F}-\log n\right)[a, \infty):=\sum_{X \in \mathcal{P}_{n}^{F}} 1[n X-\log n \geq a] \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-a}\right) . \\
& \left(n \mathcal{P}_{n}^{M}-\log n\right)[a, \infty) \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-a}\right) .
\end{aligned}
$$

- $n\left(\max _{X \in \mathcal{P}_{n}^{M}} X\right)-\log n \stackrel{d}{\Rightarrow}$ Gumbel distribution.
- "Stepanov + +"

$$
n \mathcal{P}_{n}^{F}-\log n \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-x} \mathrm{~d} x\right), n \mathcal{P}_{n}^{M}-\log n \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-x} \mathrm{~d} x\right) .
$$

Extremes of NNG and MST :

- Mean-field model : Stepanov '69, ??

$$
\begin{aligned}
& \left(n \mathcal{P}_{n}^{F}-\log n\right)[a, \infty):=\sum_{X \in \mathcal{P}_{n}^{F}} 1[n X-\log n \geq a] \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-a}\right) . \\
& \left(n \mathcal{P}_{n}^{M}-\log n\right)[a, \infty) \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-a}\right) .
\end{aligned}
$$

- $n\left(\max _{X \in \mathcal{P}_{n}^{M}} X\right)-\log n \stackrel{d}{\Rightarrow}$ Gumbel distribution.
- "Stepanov + +"

$$
n \mathcal{P}_{n}^{F}-\log n \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-x} \mathrm{~d} x\right), n \mathcal{P}_{n}^{M}-\log n \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-x} \mathrm{~d} x\right) .
$$

- $\stackrel{d}{\Rightarrow}$ - Weak convergence in the space of Radon counting measures equipped with vague topology.

Extremes of NNG and MST :

- Mean-field model : Stepanov '69, ??

$$
\begin{aligned}
& \left(n \mathcal{P}_{n}^{F}-\log n\right)[a, \infty):=\sum_{X \in \mathcal{P}_{n}^{F}} 1[n X-\log n \geq a] \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-a}\right) . \\
& \left(n \mathcal{P}_{n}^{M}-\log n\right)[a, \infty) \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-a}\right) .
\end{aligned}
$$

- $n\left(\max _{X \in \mathcal{P}_{n}^{M}} X\right)-\log n \stackrel{d}{\Rightarrow}$ Gumbel distribution.
- "Stepanov + +"

$$
n \mathcal{P}_{n}^{F}-\log n \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-x} \mathrm{~d} x\right), n \mathcal{P}_{n}^{M}-\log n \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-x} \mathrm{~d} x\right) .
$$

- $\stackrel{d}{\Rightarrow}$ - Weak convergence in the space of Radon counting measures equipped with vague topology.
- Geometric Model : Penrose 1997, Hsing-Rootzen, 2005.

The Persistence viewpoint

The Persistence viewpoint

- Edge-weights induce a filtration on graphs: $G_{t}=\{e: w(e) \leq t\}, t \geq 0$.

The Persistence viewpoint

- Edge-weights induce a filtration on graphs: $G_{t}=\{e: w(e) \leq t\}, t \geq 0$.
- $\beta_{0}: \beta_{0}\left(G_{t}\right)=\sharp$ conn. components -1 .

The Persistence viewpoint

- Edge-weights induce a filtration on graphs: $G_{t}=\{e: w(e) \leq t\}, t \geq 0$.
- $\beta_{0}: \beta_{0}\left(G_{t}\right)=\sharp$ conn. components -1 .
- $\beta_{0}\left(G_{t}\right)$ is a non-increasing, jump function in t.

The Persistence viewpoint

- Edge-weights induce a filtration on graphs: $G_{t}=\{e: w(e) \leq t\}, t \geq 0$.
- $\beta_{0}: \beta_{0}\left(G_{t}\right)=\sharp$ conn. components -1 .
- $\beta_{0}\left(G_{t}\right)$ is a non-increasing, jump function in t.
- $\mathcal{P}_{n}^{D}=\left\{D_{i}\right\}$ - Jump times of $\beta_{0}\left(G_{t}\right)$.

The Persistence viewpoint

- Edge-weights induce a filtration on graphs: $G_{t}=\{e: w(e) \leq t\}, t \geq 0$.
- $\beta_{0}: \beta_{0}\left(G_{t}\right)=\sharp$ conn. components -1 .
- $\beta_{0}\left(G_{t}\right)$ is a non-increasing, jump function in t.
- $\mathcal{P}_{n}^{D}=\left\{D_{i}\right\}$ - Jump times of $\beta_{0}\left(G_{t}\right)$.
- \mathcal{P}_{n}^{D} - Death times in the H_{0} persistence diagram.

The Persistence viewpoint

- Edge-weights induce a filtration on graphs: $G_{t}=\{e: w(e) \leq t\}, t \geq 0$.
- $\beta_{0}: \beta_{0}\left(G_{t}\right)=\sharp$ conn. components -1 .
- $\beta_{0}\left(G_{t}\right)$ is a non-increasing, jump function in t.
- $\mathcal{P}_{n}^{D}=\left\{D_{i}\right\}$ - Jump times of $\beta_{0}\left(G_{t}\right)$.
- \mathcal{P}_{n}^{D} - Death times in the H_{0} persistence diagram.
- Kruskal's algorithm (1956): $\Rightarrow \mathcal{P}_{n}^{M}=\mathcal{P}_{n}^{D}$.

The Persistence viewpoint

- Edge-weights induce a filtration on graphs: $G_{t}=\{e: w(e) \leq t\}, t \geq 0$.
- $\beta_{0}: \beta_{0}\left(G_{t}\right)=\sharp$ conn. components -1 .
- $\beta_{0}\left(G_{t}\right)$ is a non-increasing, jump function in t.
- $\mathcal{P}_{n}^{D}=\left\{D_{i}\right\}$ - Jump times of $\beta_{0}\left(G_{t}\right)$.
- \mathcal{P}_{n}^{D} - Death times in the H_{0} persistence diagram.
- Kruskal's algorithm (1956): $\Rightarrow \mathcal{P}_{n}^{M}=\mathcal{P}_{n}^{D}$.
- Mean-field Model : $n \mathcal{P}_{n}^{D}-\log n \xrightarrow{d} \mathcal{P}_{\infty}$.

Three quantitites and their relations

Three quantitites and their relations

- Extreme values of Nearest Neighbour edges \equiv
- Extreme values of Minimal spanning tree \equiv
- Extrame values of death times of connected components.

Three quantitites and their relations

- Extreme values of Nearest Neighbour edges \equiv
- Extreme values of Minimal spanning tree \equiv
- Extrame values of death times of connected components.
- Similar results for random geometric graphs - Penrose 1997.

Three quantitites and their relations

- Extreme values of Nearest Neighbour edges \equiv
- Extreme values of Minimal spanning tree \equiv
- Extrame values of death times of connected components.
- Similar results for random geometric graphs - Penrose 1997.
- THIS TALK: Extension to weighted complexes -higher-dimensional generalization of graphs.

Three quantitites and their relations

- Extreme values of Nearest Neighbour edges \equiv
- Extreme values of Minimal spanning tree \equiv
- Extrame values of death times of connected components.
- Similar results for random geometric graphs - Penrose 1997.
- THIS TALK: Extension to weighted complexes -higher-dimensional generalization of graphs.
- Nearest neighbour edges $-->$ Nearest neighbour faces.

Three quantitites and their relations

- Extreme values of Nearest Neighbour edges \equiv
- Extreme values of Minimal spanning tree \equiv
- Extrame values of death times of connected components.
- Similar results for random geometric graphs - Penrose 1997.
- THIS TALK : Extension to weighted complexes -higher-dimensional generalization of graphs.
- Nearest neighbour edges $-->$ Nearest neighbour faces.
- $\beta_{0}-->\beta_{k}$, higher Betti numbers.

Three quantitites and their relations

- Extreme values of Nearest Neighbour edges \equiv
- Extreme values of Minimal spanning tree \equiv
- Extrame values of death times of connected components.
- Similar results for random geometric graphs - Penrose 1997.
- THIS TALK : Extension to weighted complexes -higher-dimensional generalization of graphs.
- Nearest neighbour edges $-->$ Nearest neighbour faces.
- $\beta_{0}-->\beta_{k}$, higher Betti numbers.
- Minimal spanning trees $-->$ Minimal spanning acycles.

Matrix Viewpoint (over field $\mathbb{Z}_{2}=\{0,1\}$)

Matrix Viewpoint (over field $\mathbb{Z}_{2}=\{0,1\}$)

- $F_{0}=$ vertices. $F_{1}=$ edges. $f_{i}=\left|F_{i}\right|$.

Matrix Viewpoint (over field $\mathbb{Z}_{2}=\{0,1\}$)

- $F_{0}=$ vertices. $F_{1}=$ edges. $f_{i}=\left|F_{i}\right|$.
- Boundary/Incidence matrix : $\partial_{0}=[1, \ldots, 1]-1 \times f_{0}$ matrix.

Matrix Viewpoint (over field $\mathbb{Z}_{2}=\{0,1\}$)

- $F_{0}=$ vertices. $F_{1}=$ edges. $f_{i}=\left|F_{i}\right|$.
- Boundary/Incidence matrix : $\partial_{0}=[1, \ldots, 1]-1 \times f_{0}$ matrix.
- $\partial_{1}-f_{0} \times f_{1}$ matrix. Rows are F_{0} and Columns are F_{1}.

Matrix Viewpoint (over field $\mathbb{Z}_{2}=\{0,1\}$)

- $F_{0}=$ vertices. $F_{1}=$ edges. $f_{i}=\left|F_{i}\right|$.
- Boundary/Incidence matrix : $\partial_{0}=[1, \ldots, 1]-1 \times f_{0}$ matrix.
- $\partial_{1}-f_{0} \times f_{1}$ matrix. Rows are F_{0} and Columns are F_{1}.
- $\left(\partial_{1}\left(v_{i}, e_{j}\right)=1\left[v_{i} \in e_{j}\right]\right)_{v_{i}, e_{j}} v_{i} \in F_{0}, e_{j} \in F_{1}$.

Matrix Viewpoint (over field $\mathbb{Z}_{2}=\{0,1\}$)

- $F_{0}=$ vertices. $F_{1}=$ edges. $f_{i}=\left|F_{i}\right|$.
- Boundary/Incidence matrix : $\partial_{0}=[1, \ldots, 1]-1 \times f_{0}$ matrix.
- $\partial_{1}-f_{0} \times f_{1}$ matrix. Rows are F_{0} and Columns are F_{1}.
- $\left(\partial_{1}\left(v_{i}, e_{j}\right)=1\left[v_{i} \in e_{j}\right]\right)_{v_{i}, e_{j}} v_{i} \in F_{0}, e_{j} \in F_{1}$.
- Boundary map : $\partial_{1}: \mathbb{Z}_{2}^{F_{1}} \rightarrow \mathbb{Z}_{2}^{F_{0}}, x \longmapsto \partial_{1} x$.

Matrix Viewpoint (over field $\mathbb{Z}_{2}=\{0,1\}$)

- $F_{0}=$ vertices. $F_{1}=$ edges. $f_{i}=\left|F_{i}\right|$.
- Boundary/Incidence matrix : $\partial_{0}=[1, \ldots, 1]-1 \times f_{0}$ matrix.
- $\partial_{1}-f_{0} \times f_{1}$ matrix. Rows are F_{0} and Columns are F_{1}.
- $\left(\partial_{1}\left(v_{i}, e_{j}\right)=1\left[v_{i} \in e_{j}\right]\right)_{v_{i}, e_{j}} v_{i} \in F_{0}, e_{j} \in F_{1}$.
- Boundary map : $\partial_{1}: \mathbb{Z}_{2}^{F_{1}} \rightarrow \mathbb{Z}_{2}^{F_{0}}, x \longmapsto \partial_{1} x$.
- $B_{1}=\operatorname{Im}\left(\partial_{1}\right) \subset \mathbb{Z}_{2}^{F_{0}}$ - Column/Boundary space.

Matrix Viewpoint (over field $\mathbb{Z}_{2}=\{0,1\}$)

- $F_{0}=$ vertices. $F_{1}=$ edges. $f_{i}=\left|F_{i}\right|$.
- Boundary/Incidence matrix : $\partial_{0}=[1, \ldots, 1]-1 \times f_{0}$ matrix.
- $\partial_{1}-f_{0} \times f_{1}$ matrix. Rows are F_{0} and Columns are F_{1}.
- $\left(\partial_{1}\left(v_{i}, e_{j}\right)=1\left[v_{i} \in e_{j}\right]\right)_{v_{i}, e_{j}} v_{i} \in F_{0}, e_{j} \in F_{1}$.
- Boundary map : $\partial_{1}: \mathbb{Z}_{2}^{F_{1}} \rightarrow \mathbb{Z}_{2}^{F_{0}}, x \longmapsto \partial_{1} x$.
- $B_{1}=\operatorname{Im}\left(\partial_{1}\right) \subset \mathbb{Z}_{2}^{F_{0}}$ - Column/Boundary space.
- Spanning Forest (SF) - Columns that form a basis for B_{1}.

Matrix Viewpoint (over field $\mathbb{Z}_{2}=\{0,1\}$)

- $F_{0}=$ vertices. $F_{1}=$ edges. $f_{i}=\left|F_{i}\right|$.
- Boundary/Incidence matrix : $\partial_{0}=[1, \ldots, 1]-1 \times f_{0}$ matrix.
- $\partial_{1}-f_{0} \times f_{1}$ matrix. Rows are F_{0} and Columns are F_{1}.
- $\left(\partial_{1}\left(v_{i}, e_{j}\right)=1\left[v_{i} \in e_{j}\right]\right)_{v_{i}, e_{j}} v_{i} \in F_{0}, e_{j} \in F_{1}$.
- Boundary map : $\partial_{1}: \mathbb{Z}_{2}^{F_{1}} \rightarrow \mathbb{Z}_{2}^{F_{0}}, x \longmapsto \partial_{1} x$.
- $B_{1}=\operatorname{Im}\left(\partial_{1}\right) \subset \mathbb{Z}_{2}^{F_{0}}$ - Column/Boundary space.
- Spanning Forest (SF) - Columns that form a basis for B_{1}.
- $G=F_{0} \cup F_{1}$, graph. $S \subset F_{1}$ - a $S F$ if

Matrix Viewpoint (over field $\mathbb{Z}_{2}=\{0,1\}$)

- $F_{0}=$ vertices. $F_{1}=$ edges. $f_{i}=\left|F_{i}\right|$.
- Boundary/Incidence matrix : $\partial_{0}=[1, \ldots, 1]-1 \times f_{0}$ matrix.
- $\partial_{1}-f_{0} \times f_{1}$ matrix. Rows are F_{0} and Columns are F_{1}.
- $\left(\partial_{1}\left(v_{i}, e_{j}\right)=1\left[v_{i} \in e_{j}\right]\right)_{v_{i}, e_{j}} v_{i} \in F_{0}, e_{j} \in F_{1}$.
- Boundary map : $\partial_{1}: \mathbb{Z}_{2}^{F_{1}} \rightarrow \mathbb{Z}_{2}^{F_{0}}, x \longmapsto \partial_{1} x$.
- $B_{1}=\operatorname{Im}\left(\partial_{1}\right) \subset \mathbb{Z}_{2}^{F_{0}}$ - Column/Boundary space.
- Spanning Forest (SF) - Columns that form a basis for B_{1}.
- $G=F_{0} \cup F_{1}$, graph. $S \subset F_{1}$ - a SF if
(i) Columns $\{e\}_{e \in S}$ span B_{1} (spanning)

Matrix Viewpoint (over field $\mathbb{Z}_{2}=\{0,1\}$)

- $F_{0}=$ vertices. $F_{1}=$ edges. $f_{i}=\left|F_{i}\right|$.
- Boundary/Incidence matrix : $\partial_{0}=[1, \ldots, 1]-1 \times f_{0}$ matrix.
- $\partial_{1}-f_{0} \times f_{1}$ matrix. Rows are F_{0} and Columns are F_{1}.
- $\left(\partial_{1}\left(v_{i}, e_{j}\right)=1\left[v_{i} \in e_{j}\right]\right)_{v_{i}, e_{j}} v_{i} \in F_{0}, e_{j} \in F_{1}$.
- Boundary map : $\partial_{1}: \mathbb{Z}_{2}^{F_{1}} \rightarrow \mathbb{Z}_{2}^{F_{0}}, x \longmapsto \partial_{1} x$.
- $B_{1}=\operatorname{Im}\left(\partial_{1}\right) \subset \mathbb{Z}_{2}^{F_{0}}$ - Column/Boundary space.
- Spanning Forest (SF) - Columns that form a basis for B_{1}.
- $G=F_{0} \cup F_{1}$, graph. $S \subset F_{1}$ - a $S F$ if
(i) Columns $\{e\}_{e \in S}$ span B_{1} (spanning)
(ii) Columns $\{e\}_{e \in S}$ are linearly independent (acyle)

Matrix Viewpoint and β_{0}

- SF - Spanning forest.
- $|S F|=f_{0}-$ no. of connected components.

Matrix Viewpoint and β_{0}

- SF - Spanning forest.
- $|S F|=f_{0}-$ no. of connected components.
- $\partial_{0} \partial_{1} \equiv 0$.

Matrix Viewpoint and β_{0}

- SF - Spanning forest.
- $|S F|=f_{0}-$ no. of connected components.
- $\partial_{0} \partial_{1} \equiv 0$.
- $B_{1}:=\operatorname{Im}\left(\partial_{1}\right) \subset \operatorname{Ker}\left(\partial_{0}\right)=: Z_{0}$.

Matrix Viewpoint and β_{0}

- SF - Spanning forest.
- $|S F|=f_{0}-$ no. of connected components.
- $\partial_{0} \partial_{1} \equiv 0$.
- $B_{1}:=\operatorname{Im}\left(\partial_{1}\right) \subset \operatorname{Ker}\left(\partial_{0}\right)=: Z_{0}$.
- $\left(H_{0}-\right.$ Oth Homology group :) $H_{0}:=Z_{0} / B_{1}$.

Matrix Viewpoint and β_{0}

- SF - Spanning forest.
- $|S F|=f_{0}-$ no. of connected components.
- $\partial_{0} \partial_{1} \equiv 0$.
- $B_{1}:=\operatorname{Im}\left(\partial_{1}\right) \subset \operatorname{Ker}\left(\partial_{0}\right)=: Z_{0}$.
- ($H_{0}-$ Oth Homology group :) $H_{0}:=Z_{0} / B_{1}$.
- $\beta_{0}:=r k\left(H_{0}\right)=f_{0}-1-r\left(B_{1}\right)$.

Matrix Viewpoint and β_{0}

- SF - Spanning forest.
- $|S F|=f_{0}-$ no. of connected components.
- $\partial_{0} \partial_{1} \equiv 0$.
- $B_{1}:=\operatorname{Im}\left(\partial_{1}\right) \subset \operatorname{Ker}\left(\partial_{0}\right)=: Z_{0}$.
- ($H_{0}-$ Oth Homology group :) $H_{0}:=Z_{0} / B_{1}$.
- $\beta_{0}:=r k\left(H_{0}\right)=f_{0}-1-r\left(B_{1}\right)$.
$\Rightarrow \beta_{0}=f_{0}-1-|S F|, S F-$ spanning forest.

Matrix Viewpoint and β_{0}

- SF - Spanning forest.
- $|S F|=f_{0}-$ no. of connected components.
- $\partial_{0} \partial_{1} \equiv 0$.
- $B_{1}:=\operatorname{Im}\left(\partial_{1}\right) \subset \operatorname{Ker}\left(\partial_{0}\right)=: Z_{0}$.
- ($H_{0}-$ Oth Homology group :) $H_{0}:=Z_{0} / B_{1}$.
- $\beta_{0}:=r k\left(H_{0}\right)=f_{0}-1-r\left(B_{1}\right)$.
$\Rightarrow \beta_{0}=f_{0}-1-|S F|, S F-$ spanning forest.
$\Rightarrow \beta_{0}=$ no. of connected components -1 .

Higher-dimensions: (Simplicial) complex

Higher-dimensions: (Simplicial) complex

- $F_{k} \subset V^{(k+1)}-k$-faces $/$ simplices. $V=F_{0}$, finite.

Higher-dimensions : (Simplicial) complex

- $F_{k} \subset V^{(k+1)}-k$-faces $/$ simplices. $V=F_{0}$, finite.
- (Simplicial) complex $\mathcal{K}=\cup_{k=0}^{f_{0}-1} F_{k}$ such that

Higher-dimensions: (Simplicial) complex

- $F_{k} \subset V^{(k+1)}-k$-faces/simplices. $V=F_{0}$, finite.
- (Simplicial) complex $\mathcal{K}=\cup_{k=0}^{f_{0}-1} F_{k}$ such that if $\sigma \in F_{k}$ and $\tau \subset \sigma$, then $\tau \in F_{j}$ for some $j \leq k$.

Higher-dimensions: (Simplicial) complex

- $F_{k} \subset V^{(k+1)}-k$-faces $/$ simplices. $V=F_{0}$, finite.
- (Simplicial) complex $\mathcal{K}=\cup_{k=0}^{f_{0}-1} F_{k}$ such that if $\sigma \in F_{k}$ and $\tau \subset \sigma$, then $\tau \in F_{j}$ for some $j \leq k$.
- Boundary/Incidence matrix : $\partial_{d}-f_{d-1} \times f_{d}$ matrix.

Higher-dimensions: (Simplicial) complex

- $F_{k} \subset V^{(k+1)}-k$-faces $/$ simplices. $V=F_{0}$, finite.
- (Simplicial) complex $\mathcal{K}=\cup_{k=0}^{f_{0}-1} F_{k}$ such that if $\sigma \in F_{k}$ and $\tau \subset \sigma$, then $\tau \in F_{j}$ for some $j \leq k$.
- Boundary/Incidence matrix : $\partial_{d}-f_{d-1} \times f_{d}$ matrix.

$$
\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}
$$

Higher-dimensions: (Simplicial) complex

- $F_{k} \subset V^{(k+1)}-k$-faces $/$ simplices. $V=F_{0}$, finite.
- (Simplicial) complex $\mathcal{K}=\cup_{k=0}^{f_{0}-1} F_{k}$ such that if $\sigma \in F_{k}$ and $\tau \subset \sigma$, then $\tau \in F_{j}$ for some $j \leq k$.
- Boundary/Incidence matrix : $\partial_{d}-f_{d-1} \times f_{d}$ matrix.

$$
\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}
$$

- Boundary map : $\partial_{d}: \mathbb{Z}_{2}^{F_{d}} \rightarrow \mathbb{Z}_{2}^{F_{d-1}}, x \longmapsto \partial_{d} x$.

Betti numbers (formally in one slide)!

- Boundary/Incidence matrix : $\partial_{d}-f_{d-1} \times f_{d}$ matrix.

$$
\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}
$$

- Boundary map : $\partial_{d}: \mathbb{Z}_{2}^{F_{d}} \rightarrow \mathbb{Z}_{2}^{F_{d-1}}, x \longmapsto \partial_{d} x$.

Betti numbers (formally in one slide)!

- Boundary/Incidence matrix : $\partial_{d}-f_{d-1} \times f_{d}$ matrix.

$$
\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}
$$

- Boundary map : $\partial_{d}: \mathbb{Z}_{2}^{F_{d}} \rightarrow \mathbb{Z}_{2}^{F_{d-1}}, x \longmapsto \partial_{d} x$.
- Column/Boundary space: $B_{d}=\operatorname{Im}\left(\partial_{d}\right) \subset \mathbb{Z}_{2}^{F_{d-1}}$.

Betti numbers (formally in one slide)!

- Boundary/Incidence matrix : $\partial_{d}-f_{d-1} \times f_{d}$ matrix.

$$
\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}
$$

- Boundary map : $\partial_{d}: \mathbb{Z}_{2}^{F_{d}} \rightarrow \mathbb{Z}_{2}^{F_{d-1}}, x \longmapsto \partial_{d} x$.
- Column/Boundary space: $B_{d}=\operatorname{Im}\left(\partial_{d}\right) \subset \mathbb{Z}_{2}^{F_{d-1}}$.
- Cycle space : $Z_{d-1}=\operatorname{Ker}\left(\partial_{d-1}\right) \subset \mathbb{Z}_{2}^{f_{d-1}}$.

Betti numbers (formally in one slide)!

- Boundary/Incidence matrix : $\partial_{d}-f_{d-1} \times f_{d}$ matrix.

$$
\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}
$$

- Boundary map : $\partial_{d}: \mathbb{Z}_{2}^{F_{d}} \rightarrow \mathbb{Z}_{2}^{F_{d-1}}, x \longmapsto \partial_{d} x$.
- Column/Boundary space: $B_{d}=\operatorname{Im}\left(\partial_{d}\right) \subset \mathbb{Z}_{2}^{F_{d-1}}$.
- Cycle space : $Z_{d-1}=\operatorname{Ker}\left(\partial_{d-1}\right) \subset \mathbb{Z}_{2}^{f_{d-1}}$.
- $\partial_{d-1} \partial_{d}=0$.

Betti numbers (formally in one slide)!

- Boundary/Incidence matrix : $\partial_{d}-f_{d-1} \times f_{d}$ matrix.

$$
\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}
$$

- Boundary map : $\partial_{d}: \mathbb{Z}_{2}^{F_{d}} \rightarrow \mathbb{Z}_{2}^{F_{d-1}}, x \longmapsto \partial_{d} x$.
- Column/Boundary space: $B_{d}=\operatorname{Im}\left(\partial_{d}\right) \subset \mathbb{Z}_{2}^{F_{d-1}}$.
- Cycle space : $Z_{d-1}=\operatorname{Ker}\left(\partial_{d-1}\right) \subset \mathbb{Z}_{2}^{f_{d-1}}$.
- $\partial_{d-1} \partial_{d}=0$.
- Betti Numbers: $\beta_{d-1}(\mathcal{K}):=r\left(Z_{d-1} / B_{d}\right)=r\left(Z_{d-1}\right)-r\left(B_{d}\right)$.

Betti numbers (formally in one slide)!

- Boundary/Incidence matrix : $\partial_{d}-f_{d-1} \times f_{d}$ matrix.

$$
\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}
$$

- Boundary map : $\partial_{d}: \mathbb{Z}_{2}^{F_{d}} \rightarrow \mathbb{Z}_{2}^{F_{d-1}}, x \longmapsto \partial_{d} x$.
- Column/Boundary space: $B_{d}=\operatorname{Im}\left(\partial_{d}\right) \subset \mathbb{Z}_{2}^{F_{d-1}}$.
- Cycle space : $Z_{d-1}=\operatorname{Ker}\left(\partial_{d-1}\right) \subset \mathbb{Z}_{2}^{f_{d-1}}$.
- $\partial_{d-1} \partial_{d}=0$.
- Betti Numbers: $\beta_{d-1}(\mathcal{K}):=r\left(Z_{d-1} / B_{d}\right)=r\left(Z_{d-1}\right)-r\left(B_{d}\right)$.

$$
\Rightarrow \beta_{d-1}(\mathcal{K})=f_{d-1}-r\left(B_{d-1}\right)-r\left(B_{d}\right)
$$

Betti numbers (geometrically in one slide)!

Betti numbers (geometrically in one slide)!

- Geometric realization: To embed a complex in Euclidean space.

Betti numbers (geometrically in one slide)!

- Geometric realization: To embed a complex in Euclidean space. 0 - faces as points ; 1-faces as edges between points ;

Betti numbers (geometrically in one slide)!

- Geometric realization: To embed a complex in Euclidean space. 0 - faces as points; 1-faces as edges between points ; 2-faces as triangles, 3-faces as tetrahedrons and so on...

Betti numbers (geometrically in one slide)!

- Geometric realization: To embed a complex in Euclidean space. 0 - faces as points ; 1-faces as edges between points ; 2-faces as triangles, 3-faces as tetrahedrons and so on... Take a high-dimensional Euclidean space such that every face can be embedded "nicely"

Betti numbers (geometrically in one slide)!

- Geometric realization: To embed a complex in Euclidean space. 0 - faces as points ; 1-faces as edges between points ; 2-faces as triangles, 3-faces as tetrahedrons and so on... Take a high-dimensional Euclidean space such that every face can be embedded "nicely"
- $\beta_{d-1}(\mathcal{K})=" \sharp d$ - dimensional holes / non-trivial d-cycles

Betti numbers (geometrically in one slide) !

- Geometric realization: To embed a complex in Euclidean space. 0 - faces as points ; 1 -faces as edges between points ; 2-faces as triangles, 3 -faces as tetrahedrons and so on... Take a high-dimensional Euclidean space such that every face can be embedded " nicely"
- $\beta_{d-1}(\mathcal{K})=" \sharp d$ - dimensional holes / non-trivial d-cycles
- non-trivial d-cycles - d-dimensional cycles that are not filled up.

Example 1: Hollow Tetrahedron

Example 1: Hollow Tetrahedron

- \mathcal{K} - Complex on 4 vertices with all 1 -faces (6 edges) and 2 -faces (4 triangles).

Example 1: Hollow Tetrahedron

- \mathcal{K} - Complex on 4 vertices with all 1-faces (6 edges) and 2-faces (4 triangles).
- Betti Numbers: $\beta_{0}=0, \beta_{1}=0, \beta_{2}=1, \beta_{k}=0, k \geq 3$.

More Examples

2-Hemisphere
$\beta_{k}=0, k \geq 1$

2-Sphere
$\beta_{2}=1$, else 0

2-Torus
$\beta_{1}=2, \beta_{2}=1$ else 0

d-Spanning Acycle: SA

d-Spanning Acycle: SA

- $\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}$.

d-Spanning Acycle: SA

- $\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}$.
- SA - Columns (d-faces) that form a basis for B_{d}.

d-Spanning Acycle: SA

- $\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}$.
- SA - Columns (d-faces) that form a basis for B_{d}.
- G. Kalai, 1983. \mathcal{K}, complex. $S \subset F_{d}$ - a $S A$ if

d-Spanning Acycle: SA

- $\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}$.
- SA - Columns (d-faces) that form a basis for B_{d}.
- G. Kalai, 1983. \mathcal{K}, complex. $S \subset F_{d}$ - a $S A$ if
(i) Columns $\{\sigma\}_{\sigma \in S}$ span B_{d} (spanning)

d-Spanning Acycle: SA

- $\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}$.
- SA - Columns (d-faces) that form a basis for B_{d}.
- G. Kalai, 1983. \mathcal{K}, complex. $S \subset F_{d}$ - a $S A$ if
(i) Columns $\{\sigma\}_{\sigma \in S}$ span B_{d} (spanning)
(ii) Columns $\{\sigma\}_{\sigma \in S}$ are linearly independent (acyle)

d-Spanning Acycle: SA

- $\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}$.
- SA - Columns (d-faces) that form a basis for B_{d}.
- G. Kalai, 1983. \mathcal{K}, complex. $S \subset F_{d}$ - a $S A$ if
(i) Columns $\{\sigma\}_{\sigma \in S}$ span B_{d} (spanning)
(ii) Columns $\{\sigma\}_{\sigma \in S}$ are linearly independent (acyle)
- Equivalently,

d-Spanning Acycle: SA

- $\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}$.
- SA - Columns (d-faces) that form a basis for B_{d}.
- G. Kalai, 1983. \mathcal{K}, complex. $S \subset F_{d}$ - a $S A$ if
(i) Columns $\{\sigma\}_{\sigma \in S}$ span B_{d} (spanning)
(ii) Columns $\{\sigma\}_{\sigma \in S}$ are linearly independent (acyle)
- Equivalently,

$$
\text { (i) } \beta_{d-1}\left(F_{d-1} \cup S\right)=\beta_{d-1}(\mathcal{K}) \text { and (ii) } \beta_{d}\left(F_{d-1} \cup S\right)=0
$$

d-Spanning Acycle: SA

- $\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}$.
- SA - Columns (d-faces) that form a basis for B_{d}.
- G. Kalai, 1983. \mathcal{K}, complex. $S \subset F_{d}$ - a $S A$ if
(i) Columns $\{\sigma\}_{\sigma \in S}$ span B_{d} (spanning)
(ii) Columns $\{\sigma\}_{\sigma \in S}$ are linearly independent (acyle)
- Equivalently,

$$
\text { (i) } \beta_{d-1}\left(F_{d-1} \cup S\right)=\beta_{d-1}(\mathcal{K}) \text { and (ii) } \beta_{d}\left(F_{d-1} \cup S\right)=0
$$

- Recall that ST is edges E such that $\beta_{0}(V \cup E)=\beta_{0}(G), \beta_{1}(V \cup E)=0$.

Hollow Tetrahedron again

Hollow Tetrahedron again

Hollow Tetrahedron again

- \mathcal{K} - Complex on 4 vertices with all 1-faces (6 edges) and 2-faces (4 triangles).

Hollow Tetrahedron again

- \mathcal{K} - Complex on 4 vertices with all 1 -faces (6 edges) and 2 -faces (4 triangles).
- 2-Spanning acycle: Any 3 of the 4 triangles/2-faces.

More Examples again

2-Hemisphere SA is itself.

2-Sphere Remove any one triangle for SA.

2-Torus
Remove any one triangle for SA.

Spanning Acycles and Betti numbers

- $\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}$.
- Boundary map : $\partial_{d}: \mathbb{Z}_{2}^{F_{d}} \rightarrow \mathbb{Z}_{2}^{F_{d-1}}, x \longmapsto \partial_{d} x$.
- Column/Boundary space: $B_{d}=\operatorname{Im}\left(\partial_{d}\right) \subset \mathbb{Z}_{2}^{F_{d-1}}$.
- Cycle space : $Z_{d-1}=\operatorname{Ker}\left(\partial_{d-1}\right) \subset \mathbb{Z}_{2}^{f_{d-1}}$.
- $\beta_{d-1}(\mathcal{K}):=r\left(Z_{d-1} / B_{d}\right)=f_{d-1}-r\left(B_{d-1}\right)-r\left(B_{d}\right)$.

Spanning Acycles and Betti numbers

- $\partial_{d}\left(\tau_{i}, \sigma_{j}\right)=\mathbf{1}\left[\tau_{i} \subset \sigma_{j}\right], \tau_{i} \in F_{d-1}, \sigma_{j} \in F_{d}$.
- Boundary map : $\partial_{d}: \mathbb{Z}_{2}^{F_{d}} \rightarrow \mathbb{Z}_{2}^{F_{d-1}}, x \longmapsto \partial_{d} x$.
- Column/Boundary space: $B_{d}=\operatorname{Im}\left(\partial_{d}\right) \subset \mathbb{Z}_{2}^{F_{d-1}}$.
- Cycle space : $Z_{d-1}=\operatorname{Ker}\left(\partial_{d-1}\right) \subset \mathbb{Z}_{2}^{f_{d-1}}$.
- $\beta_{d-1}(\mathcal{K}):=r\left(Z_{d-1} / B_{d}\right)=f_{d-1}-r\left(B_{d-1}\right)-r\left(B_{d}\right)$.
- $\gamma_{d}(\mathcal{K})=\operatorname{card}(\mathbf{S A})=r\left(B_{d}\right)=r\left(\partial_{d}\right)$.

Minimal Spanning Acycles

Minimal Spanning Acycles

- $F_{k} \subset V^{(k+1)}-k$-faces $/$ simplices. $V=F_{0}$, finite.

Minimal Spanning Acycles

- $F_{k} \subset V^{(k+1)}-k$-faces $/$ simplices. $V=F_{0}$, finite.
- Simplicial complex : $\mathcal{K}=\cup_{k=0}^{f_{0}-1} F_{k}$
- $w: \mathcal{K} \rightarrow[0, \infty]$ - face/column weights.

Minimal Spanning Acycles

- $F_{k} \subset V^{(k+1)}-k$-faces $/$ simplices. $V=F_{0}$, finite.
- Simplicial complex : $\mathcal{K}=\cup_{k=0}^{f_{0}-1} F_{k}$
- $w: \mathcal{K} \rightarrow[0, \infty]$ - face/column weights.
- w monotonic $-w(\tau) \leq w(\sigma)$ for $\tau \subset \sigma$.

Minimal Spanning Acycles

- $F_{k} \subset V^{(k+1)}-k$-faces $/$ simplices. $V=F_{0}$, finite.
- Simplicial complex : $\mathcal{K}=\cup_{k=0}^{f_{0}-1} F_{k}$
- $w: \mathcal{K} \rightarrow[0, \infty]$ - face/column weights.
- w monotonic $-w(\tau) \leq w(\sigma)$ for $\tau \subset \sigma$.
i.e., $\mathcal{K}(t)=\{\sigma \in \mathcal{K}: w(\sigma) \leq t\}$ is a simplicial complex.

Minimal Spanning Acycles

- $F_{k} \subset V^{(k+1)}-k$-faces $/$ simplices. $V=F_{0}$, finite.
- Simplicial complex : $\mathcal{K}=\cup_{k=0}^{f_{0}-1} F_{k}$
- $w: \mathcal{K} \rightarrow[0, \infty]$ - face/column weights.
- w monotonic $-w(\tau) \leq w(\sigma)$ for $\tau \subset \sigma$.
i.e., $\mathcal{K}(t)=\{\sigma \in \mathcal{K}: w(\sigma) \leq t\}$ is a simplicial complex.
- $S \subset F_{d}, w(S)=\sum_{\sigma \in F_{d}} w(\sigma)$.

Minimal Spanning Acycles

- $F_{k} \subset V^{(k+1)}-k$-faces $/$ simplices. $V=F_{0}$, finite.
- Simplicial complex : $\mathcal{K}=\cup_{k=0}^{f_{0}-1} F_{k}$
- $w: \mathcal{K} \rightarrow[0, \infty]$ - face/column weights.
- w monotonic $-w(\tau) \leq w(\sigma)$ for $\tau \subset \sigma$.
i.e., $\mathcal{K}(t)=\{\sigma \in \mathcal{K}: w(\sigma) \leq t\}$ is a simplicial complex.
- $S \subset F_{d}, w(S)=\sum_{\sigma \in F_{d}} w(\sigma)$.
- $M_{d} \subset F_{d} d-\mathrm{MSA}$, if M_{d} is a minimal weight spanning acycle.

Minimal Spanning Acycles

- $F_{k} \subset V^{(k+1)}-k$-faces $/$ simplices. $V=F_{0}$, finite.
- Simplicial complex : $\mathcal{K}=\cup_{k=0}^{f_{0}-1} F_{k}$
- $w: \mathcal{K} \rightarrow[0, \infty]$ - face/column weights.
- w monotonic $-w(\tau) \leq w(\sigma)$ for $\tau \subset \sigma$.
i.e., $\mathcal{K}(t)=\{\sigma \in \mathcal{K}: w(\sigma) \leq t\}$ is a simplicial complex.
- $S \subset F_{d}, w(S)=\sum_{\sigma \in F_{d}} w(\sigma)$.
- $M_{d} \subset F_{d} d$-MSA, if M_{d} is a minimal weight spanning acycle.
i.e., M_{d} is the set of columns that form a minimal weight basis for ∂_{d}.

MSA : Properties and Algorithms

- $S \subset F_{d}, w(S)=\sum_{\sigma \in F_{d}} w(\sigma)$.
- $M_{d} \subset F_{d}-d-\mathrm{MSA}$, if minimal weight spanning acycle.

MSA : Properties and Algorithms

- $S \subset F_{d}, w(S)=\sum_{\sigma \in F_{d}} w(\sigma)$.
- $M_{d} \subset F_{d}-d-M S A$, if minimal weight spanning acycle.
- Basic properties (uniqueness, cut property, cycle property) holds true.

MSA : Properties and Algorithms

- $S \subset F_{d}, w(S)=\sum_{\sigma \in F_{d}} w(\sigma)$.
- $M_{d} \subset F_{d}-d-M S A$, if minimal weight spanning acycle.
- Basic properties (uniqueness, cut property, cycle property) holds true.
- Simplicial version of Kruskal's (Greedy algorithm)

MSA : Properties and Algorithms

- $S \subset F_{d}, w(S)=\sum_{\sigma \in F_{d}} w(\sigma)$.
- $M_{d} \subset F_{d}-d-M S A$, if minimal weight spanning acycle.
- Basic properties (uniqueness, cut property, cycle property) holds true.
- Simplicial version of Kruskal's (Greedy algorithm)
- PS,GT,DY: Jarník-Dijkstra-Prim's algorithm (under hypergraph connectivity) exists.

Persistent Homology and MSA

Persistent Homology and MSA

- \mathcal{K} - complex with monotonic weight w.

$$
\text { i.e., } \mathcal{K}(t)=\{\sigma \in \mathcal{K}: w(\sigma) \leq t\}
$$

Persistent Homology and MSA

- \mathcal{K} - complex with monotonic weight w.
i.e., $\mathcal{K}(t)=\{\sigma \in \mathcal{K}: w(\sigma) \leq t\}$
- $\beta_{d-1}(\mathcal{K}(t))$ is a step-function in t but can increase or decrease

Persistent Homology and MSA

- \mathcal{K} - complex with monotonic weight w.
i.e., $\mathcal{K}(t)=\{\sigma \in \mathcal{K}: w(\sigma) \leq t\}$
- $\beta_{d-1}(\mathcal{K}(t))$ is a step-function in t but can increase or decrease
- Death times of β_{d-1} :

Persistent Homology and MSA

- \mathcal{K} - complex with monotonic weight w.
i.e., $\mathcal{K}(t)=\{\sigma \in \mathcal{K}: w(\sigma) \leq t\}$
- $\beta_{d-1}(\mathcal{K}(t))$ is a step-function in t but can increase or decrease
- Death times of β_{d-1} :

$$
\mathcal{D}_{d-1}:=\left\{d_{i}\right\}=\left\{t: \beta_{d-1}(\mathcal{K}(t-))>\beta_{d-1}(\mathcal{K}(t))\right\}
$$

Persistent Homology and MSA

- \mathcal{K} - complex with monotonic weight w.
i.e., $\mathcal{K}(t)=\{\sigma \in \mathcal{K}: w(\sigma) \leq t\}$
- $\beta_{d-1}(\mathcal{K}(t))$ is a step-function in t but can increase or decrease
- Death times of β_{d-1} :

$$
\mathcal{D}_{d-1}:=\left\{d_{i}\right\}=\left\{t: \beta_{d-1}(\mathcal{K}(t-))>\beta_{d-1}(\mathcal{K}(t))\right\} .
$$

- Birth times of β_{d-1} :

Persistent Homology and MSA

- \mathcal{K} - complex with monotonic weight w.
i.e., $\mathcal{K}(t)=\{\sigma \in \mathcal{K}: w(\sigma) \leq t\}$
- $\beta_{d-1}(\mathcal{K}(t))$ is a step-function in t but can increase or decrease
- Death times of β_{d-1} :
$\mathcal{D}_{d-1}:=\left\{d_{i}\right\}=\left\{t: \beta_{d-1}(\mathcal{K}(t-))>\beta_{d-1}(\mathcal{K}(t))\right\}$.
- Birth times of β_{d-1} :

$$
\mathcal{B}_{d-1}:=\left\{b_{i}\right\}=\left\{t: \beta_{d-1}(\mathcal{K}(t-))<\beta_{d-1}(\mathcal{K}(t))\right\} .
$$

Persistent Homology and MSA

- \mathcal{K} - complex with monotonic weight w.
i.e., $\mathcal{K}(t)=\{\sigma \in \mathcal{K}: w(\sigma) \leq t\}$
- $\beta_{d-1}(\mathcal{K}(t))$ is a step-function in t but can increase or decrease
- Death times of β_{d-1} :
$\mathcal{D}_{d-1}:=\left\{d_{i}\right\}=\left\{t: \beta_{d-1}(\mathcal{K}(t-))>\beta_{d-1}(\mathcal{K}(t))\right\}$.
- Birth times of β_{d-1} :
$\mathcal{B}_{d-1}:=\left\{b_{i}\right\}=\left\{t: \beta_{d-1}(\mathcal{K}(t-))<\beta_{d-1}(\mathcal{K}(t))\right\}$.
- Theorem(PS,GT,DY) : Let $\beta_{d-1}(\mathcal{K})=\beta_{d-2}(\mathcal{K})=0$. Then $\mathcal{D}_{d-1}=\left\{w(\sigma): \sigma \in M_{d}\right\}$.

Persistent Homology and MSA

- \mathcal{K} - complex with monotonic weight w.
i.e., $\mathcal{K}(t)=\{\sigma \in \mathcal{K}: w(\sigma) \leq t\}$
- $\beta_{d-1}(\mathcal{K}(t))$ is a step-function in t but can increase or decrease
- Death times of β_{d-1} :
$\mathcal{D}_{d-1}:=\left\{d_{i}\right\}=\left\{t: \beta_{d-1}(\mathcal{K}(t-))>\beta_{d-1}(\mathcal{K}(t))\right\}$.
- Birth times of β_{d-1} :
$\mathcal{B}_{d-1}:=\left\{b_{i}\right\}=\left\{t: \beta_{d-1}(\mathcal{K}(t-))<\beta_{d-1}(\mathcal{K}(t))\right\}$.
- Theorem(PS,GT,DY) : Let $\beta_{d-1}(\mathcal{K})=\beta_{d-2}(\mathcal{K})=0$. Then $\mathcal{D}_{d-1}=\left\{w(\sigma): \sigma \in M_{d}\right\}$.
- Generalizes the connection between MST and H_{0} persistence.

Persistent Homology and MSA

Persistent Homology and MSA

- Persistence diagram : $P D_{d-1}=\left\{\left(b_{i}, d_{i}\right)\right\}$ (a specific pairing).

Persistent Homology and MSA

- Persistence diagram : $P D_{d-1}=\left\{\left(b_{i}, d_{i}\right)\right\}$ (a specific pairing). b_{i} is birth of a topological feature (d-dimensional hole) and d_{i} is its death

Persistent Homology and MSA

- Persistence diagram : $P D_{d-1}=\left\{\left(b_{i}, d_{i}\right)\right\}$ (a specific pairing). b_{i} is birth of a topological feature (d-dimensional hole) and d_{i} is its death
i.e., as $\mathcal{K}(t)$ increases, features are born and die - PD keeps track of births and deaths !
- Lifetime sum : $L_{d-1}=\int_{0}^{\infty} \beta_{d-1}(\mathcal{K}(t)) \mathrm{d} t=\sum_{i}\left(d_{i}-b_{i}\right)$

Persistent Homology and MSA

- Persistence diagram : $P D_{d-1}=\left\{\left(b_{i}, d_{i}\right)\right\}$ (a specific pairing). b_{i} is birth of a topological feature (d-dimensional hole) and d_{i} is its death
i.e., as $\mathcal{K}(t)$ increases, features are born and die - PD keeps track of births and deaths !
- Lifetime sum : $L_{d-1}=\int_{0}^{\infty} \beta_{d-1}(\mathcal{K}(t)) \mathrm{d} t=\sum_{i}\left(d_{i}-b_{i}\right)$
- Corollary: $L_{d-1}=w\left(M_{d}\right)+w\left(M_{d-1}\right)-w\left(F_{d-1}\right)$.

Persistent Homology and MSA

- Persistence diagram : $P D_{d-1}=\left\{\left(b_{i}, d_{i}\right)\right\}$ (a specific pairing). b_{i} is birth of a topological feature (d-dimensional hole) and d_{i} is its death
i.e., as $\mathcal{K}(t)$ increases, features are born and die - PD keeps track of births and deaths !
- Lifetime sum : $L_{d-1}=\int_{0}^{\infty} \beta_{d-1}(\mathcal{K}(t)) \mathrm{d} t=\sum_{i}\left(d_{i}-b_{i}\right)$
- Corollary: $L_{d-1}=w\left(M_{d}\right)+w\left(M_{d-1}\right)-w\left(F_{d-1}\right)$.
- Corollary was proven by Hiraoka-Shirai '15 by different methods.

Mean-field model for random complexes

Mean-field model for random complexes

- $\left(\mathcal{K}_{d}\right.$ - Complete d-complex :) $F_{j}=\binom{[n]}{j+1}, \forall j \leq d$.

Mean-field model for random complexes

- $\left(\mathcal{K}_{d}\right.$ - Complete d-complex :) $F_{j}=\binom{[n]}{j+1}, \forall j \leq d$.
- $f_{j}=\left|F_{j}\right|=\binom{n}{j+1}, j \leq d ; F_{j}=\emptyset, j>d$.
- L_{d} - Random d-complex : $w(\sigma)$ i.i.d. $U[0,1]$ on d-faces $\left(F_{d}\right)$ and else 0 .

Mean-field model for random complexes

- (\mathcal{K}_{d} - Complete d-complex :) $F_{j}=\binom{[n]}{j+1}, \forall j \leq d$.
- $f_{j}=\left|F_{j}\right|=\binom{n}{j+1}, j \leq d ; F_{j}=\emptyset, j>d$.
- L_{d} - Random d-complex : $w(\sigma)$ i.i.d. $U[0,1]$ on d-faces $\left(F_{d}\right)$ and else 0 .
 columns ; Matrix entries are $\mathbf{1}[\sigma \subset \tau]$. and we assign i.i.d. weights to columns.

Mean-field model for random complexes

- (\mathcal{K}_{d} - Complete d-complex :) $F_{j}=\binom{[n]}{j+1}, \forall j \leq d$.
- $f_{j}=\left|F_{j}\right|=\binom{n}{j+1}, j \leq d ; F_{j}=\emptyset, j>d$.
- L_{d} - Random d-complex : $w(\sigma)$ i.i.d. $U[0,1]$ on d-faces $\left(F_{d}\right)$ and else 0 .
 columns ; Matrix entries are $\mathbf{1}[\sigma \subset \tau]$. and we assign i.i.d. weights to columns.
- $d=1$ - i.i.d. weights on edges of a complete graph on n vertices.

Mean-field model for random complexes

- (\mathcal{K}_{d} - Complete d-complex :) $F_{j}=\binom{[n]}{j+1}, \forall j \leq d$.
- $f_{j}=\left|F_{j}\right|=\binom{n}{j+1}, j \leq d ; F_{j}=\emptyset, j>d$.
- L_{d} - Random d-complex : $w(\sigma)$ i.i.d. $U[0,1]$ on d-faces $\left(F_{d}\right)$ and else 0 .
 columns ; Matrix entries are $\mathbf{1}[\sigma \subset \tau]$. and we assign i.i.d. weights to columns.
- $d=1$ - i.i.d. weights on edges of a complete graph on n vertices.
- $M S A_{d}-d$-Minimal spanning acycle i.e., minimal basis.

Simulation

- Point process of Weights of faces in $M S A_{d}$ for different d's

Extremes of Random Minimal spanning acycles

Extremes of Random Minimal spanning acycles

- Mean-field d-complex: w_{σ} i.i.d. $U[0,1]$ on d-faces and else 0 .

Extremes of Random Minimal spanning acycles

- Mean-field d-complex: w_{σ} i.i.d. $U[0,1]$ on d-faces and else 0 .
- $\mathcal{M}_{d}=\left\{w(\sigma): \sigma \in M_{d}\right\} ; M_{d}$ - MSA.

Extremes of Random Minimal spanning acycles

- Mean-field d-complex: w_{σ} i.i.d. $U[0,1]$ on d-faces and else 0 .
- $\mathcal{M}_{d}=\left\{w(\sigma): \sigma \in M_{d}\right\} ; M_{d}$ - MSA.
- $\sigma \in F_{d}$ is NN face if for $\tau \in F_{d-1}, \sigma$ smallest co-face of τ i.e., $\tau \subset \sigma$ and σ has least weight.

Extremes of Random Minimal spanning acycles

- Mean-field d-complex: w_{σ} i.i.d. $U[0,1]$ on d-faces and else 0 .
- $\mathcal{M}_{d}=\left\{w(\sigma): \sigma \in M_{d}\right\} ; M_{d}$ - MSA.
- $\sigma \in F_{d}$ is NN face if for $\tau \in F_{d-1}, \sigma$ smallest co-face of τ i.e., $\tau \subset \sigma$ and σ has least weight.
- σ NNF $\Rightarrow \sigma \in M_{d}$.

Extremes of Random Minimal spanning acycles

- Mean-field d-complex: w_{σ} i.i.d. $U[0,1]$ on d-faces and else 0 .
- $\mathcal{M}_{d}=\left\{w(\sigma): \sigma \in M_{d}\right\} ; M_{d}$ - MSA.
- $\sigma \in F_{d}$ is NN face if for $\tau \in F_{d-1}, \sigma$ smallest co-face of τ i.e., $\tau \subset \sigma$ and σ has least weight.
- σ NNF $\Rightarrow \sigma \in M_{d}$.
- $\mathcal{P}_{n, d}^{M}:=\left\{n w(\sigma)-d \log n-\log d!: \sigma \in M_{d}\right\}$ (Scaled MSA weights)

Extremes of Random Minimal spanning acycles

- Mean-field d-complex: w_{σ} i.i.d. $U[0,1]$ on d-faces and else 0 .
- $\mathcal{M}_{d}=\left\{w(\sigma): \sigma \in M_{d}\right\} ; M_{d}$ - MSA.
- $\sigma \in F_{d}$ is NN face if for $\tau \in F_{d-1}, \sigma$ smallest co-face of τ i.e., $\tau \subset \sigma$ and σ has least weight.
- σ NNF $\Rightarrow \sigma \in M_{d}$.
- $\mathcal{P}_{n, d}^{M}:=\left\{n w(\sigma)-d \log n-\log d!: \sigma \in M_{d}\right\}$ (Scaled MSA weights)
- $\mathcal{P}_{n, d}^{F}:=\{n w(\sigma)-d \log n-\log d!: \sigma N N F\}$

Extremes of Random Minimal spanning acycles

- Mean-field d-complex: w_{σ} i.i.d. $U[0,1]$ on d-faces and else 0 .
- $\mathcal{M}_{d}=\left\{w(\sigma): \sigma \in M_{d}\right\} ; M_{d}$ - MSA.
- $\sigma \in F_{d}$ is NN face if for $\tau \in F_{d-1}, \sigma$ smallest co-face of τ i.e., $\tau \subset \sigma$ and σ has least weight.
- σ NNF $\Rightarrow \sigma \in M_{d}$.
- $\mathcal{P}_{n, d}^{M}:=\left\{n w(\sigma)-d \log n-\log d!: \sigma \in M_{d}\right\}$ (Scaled MSA weights)
- $\mathcal{P}_{n, d}^{F}:=\{n w(\sigma)-d \log n-\log d!: \sigma N N F\}$
- Theorem (PS,GT,DY) : $\mathcal{P}_{n, d}^{F}, \mathcal{P}_{n, d}^{M} \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-x} \mathrm{~d} x\right)$.

Extremes of Random Minimal spanning acycles

- Mean-field d-complex: w_{σ} i.i.d. $U[0,1]$ on d-faces and else 0 .
- $\mathcal{M}_{d}=\left\{w(\sigma): \sigma \in M_{d}\right\} ; M_{d}$ - MSA.
- $\sigma \in F_{d}$ is NN face if for $\tau \in F_{d-1}, \sigma$ smallest co-face of τ i.e., $\tau \subset \sigma$ and σ has least weight.
- σ NNF $\Rightarrow \sigma \in M_{d}$.
- $\mathcal{P}_{n, d}^{M}:=\left\{n w(\sigma)-d \log n-\log d!: \sigma \in M_{d}\right\}$ (Scaled MSA weights)
- $\mathcal{P}_{n, d}^{F}:=\{n w(\sigma)-d \log n-\log d!: \sigma N N F\}$
- Theorem (PS,GT,DY) : $\mathcal{P}_{n, d}^{F}, \mathcal{P}_{n, d}^{M} \stackrel{d}{\Rightarrow} \operatorname{Poi}\left(e^{-x} \mathrm{~d} x\right)$.
- Thresholds - Linial-Meshulam '06, Meshulam-Wallach '09. Marginal distributions - Kahle-Pittel '14.

Stability Theorem

Stability Theorem

- Stability Theorem(PS,GT,DY): \mathcal{K} complex with weights w, w^{\prime} and let $0 \leq p \leq \infty$

Stability Theorem

- Stability Theorem(PS,GT,DY): \mathcal{K} complex with weights w, w^{\prime} and let $0 \leq p \leq \infty$

$$
\inf _{\pi: M_{d} \rightarrow M_{d}^{\prime}} \sum_{\sigma \in M_{d}}\left|w(\sigma)-w^{\prime}(\pi(\sigma))\right|^{p} \leq \sum_{\sigma \in F_{d}}\left|w(\sigma)-w^{\prime}(\sigma)\right|^{p}
$$

Stability Theorem

- Stability Theorem(PS,GT,DY): \mathcal{K} complex with weights w, w^{\prime} and let $0 \leq p \leq \infty$

$$
\inf _{\pi: M_{d} \rightarrow M_{d}^{\prime}} \sum_{\sigma \in M_{d}}\left|w(\sigma)-w^{\prime}(\pi(\sigma))\right|^{p} \leq \sum_{\sigma \in F_{d}}\left|w(\sigma)-w^{\prime}(\sigma)\right|^{p} .
$$

- Proof via Kruskal's algorithm.

Stability Theorem

- Stability Theorem(PS,GT,DY): \mathcal{K} complex with weights w, w^{\prime} and let $0 \leq p \leq \infty$

$$
\inf _{\pi: M_{d} \rightarrow M_{d}^{\prime}} \sum_{\sigma \in M_{d}}\left|w(\sigma)-w^{\prime}(\pi(\sigma))\right|^{p} \leq \sum_{\sigma \in F_{d}}\left|w(\sigma)-w^{\prime}(\sigma)\right|^{p} .
$$

- Proof via Kruskal's algorithm.
- Useful in extending various results to models with "noisy" weights.

Some References

- P. Skraba, G. Thoppe and D.Y. - Randomly weighted d-Complexes: Minimal Spanning Acycles and Persistence Diagrams. arXiv:1701.00239, 2017.
- R. Lyons - Random complexes and $\ell 2$-Betti numbers. J. of Topology and Analysis, 2009.
- M. Kahle - Topology of random simplicial complexes : A survey. AMS Contemporary Volumes in Mathematics. 2014.
- Y. Hiraoka and T. Shirai - Minimum spanning acycle and lifetime of persistent homology in the Linial-Meshulam process.Rand. Struc. Alg. 2018.

