Random Minimal Spanning Acycles.

Yogeshwaran. D. Indian Statistical Institute, Bangalore. Joint work with Primoz Skraba & Gugan Thoppe QMU, London & IISc, Bangalore.

Univ. Luxembourg, Luxembourg, March 2020.

• Mean-field Model : $V_n := [n] = \{1, \ldots, n\},$

▶ Mean-field Model : $V_n := [n] = \{1, ..., n\}$, Weights : $w_{j,i} = w_{i,j} = U_{i,j}$ i.i.d. uniform [0, 1].

- ▶ Mean-field Model : $V_n := [n] = \{1, ..., n\}$, Weights : $w_{j,i} = w_{i,j} = U_{i,j}$ i.i.d. uniform [0, 1].
- ► NN Edges : e = (i, j) a Nearest Neighbour edge if e is the smallest edge on i or j.

- ▶ Mean-field Model : $V_n := [n] = \{1, \ldots, n\}$, Weights : $w_{j,i} = w_{i,j} = U_{i,j}$ i.i.d. uniform [0, 1].
- ► NN Edges : e = (i, j) a Nearest Neighbour edge if e is the smallest edge on i or j.
- ▶ NNG weights : $\mathcal{P}_n^F := \{w_e : e \text{ is a NN edge}\}.$

- ▶ Mean-field Model : $V_n := [n] = \{1, \dots, n\}$, Weights : $w_{j,i} = w_{i,j} = U_{i,j}$ i.i.d. uniform [0, 1].
- ► NN Edges : e = (i, j) a Nearest Neighbour edge if e is the smallest edge on i or j.
- ▶ NNG weights : $\mathcal{P}_n^F := \{w_e : e \text{ is a NN edge}\}.$
- ► MST weights : P^M_n := {w_e : e ∈ M}, M the Minimal spanning tree.

- ▶ Mean-field Model : $V_n := [n] = \{1, \dots, n\}$, Weights : $w_{j,i} = w_{i,j} = U_{i,j}$ i.i.d. uniform [0, 1].
- ► NN Edges : e = (i, j) a Nearest Neighbour edge if e is the smallest edge on i or j.
- ▶ NNG weights : $\mathcal{P}_n^F := \{w_e : e \text{ is a NN edge}\}.$
- ► MST weights : P^M_n := {w_e : e ∈ M}, M the Minimal spanning tree.
- $\mathcal{P}_n^F \subset \mathcal{P}_n^M$.

► Mean-field model : Stepanov '69, ?? $(n\mathcal{P}_n^F - \log n)[a, \infty) := \sum_{X \in \mathcal{P}_n^F} \mathbb{1}[nX - \log n \ge a] \stackrel{d}{\Rightarrow} Poi(e^{-a}).$ $(n\mathcal{P}_n^M - \log n)[a, \infty) \stackrel{d}{\Rightarrow} Poi(e^{-a}).$

▶ Mean-field model : Stepanov '69, ?? $(n\mathcal{P}_n^F - \log n)[a, \infty) := \sum_{X \in \mathcal{P}_n^F} \mathbb{1}[nX - \log n \ge a] \stackrel{d}{\Rightarrow} Poi(e^{-a}).$ $(n\mathcal{P}_n^M - \log n)[a, \infty) \stackrel{d}{\Rightarrow} Poi(e^{-a}).$

• $n(\max_{X \in \mathcal{P}_n^M} X) - \log n \stackrel{d}{\Rightarrow}$ Gumbel distribution.

- ▶ Mean-field model : Stepanov '69, ?? $(n\mathcal{P}_n^F - \log n)[a, \infty) := \sum_{X \in \mathcal{P}_n^F} \mathbb{1}[nX - \log n \ge a] \stackrel{d}{\Rightarrow} Poi(e^{-a}).$ $(n\mathcal{P}_n^M - \log n)[a, \infty) \stackrel{d}{\Rightarrow} Poi(e^{-a}).$
- ▶ $n(\max_{X \in \mathcal{P}_n^M} X) \log n \stackrel{d}{\Rightarrow}$ Gumbel distribution.
- ▶ "Stepanov++"

$$n\mathcal{P}_n^F - \log n \stackrel{d}{\Rightarrow} Poi(e^{-x} dx), \ n\mathcal{P}_n^M - \log n \stackrel{d}{\Rightarrow} Poi(e^{-x} dx).$$

- ▶ Mean-field model : Stepanov '69, ?? $(n\mathcal{P}_n^F - \log n)[a, \infty) := \sum_{X \in \mathcal{P}_n^F} \mathbb{1}[nX - \log n \ge a] \stackrel{d}{\Rightarrow} Poi(e^{-a}).$ $(n\mathcal{P}_n^M - \log n)[a, \infty) \stackrel{d}{\Rightarrow} Poi(e^{-a}).$
- ▶ $n(\max_{X \in \mathcal{P}_n^M} X) \log n \stackrel{d}{\Rightarrow}$ Gumbel distribution.
- ▶ "Stepanov++"

$$n\mathcal{P}_n^F - \log n \stackrel{d}{\Rightarrow} Poi(e^{-x} dx), \ n\mathcal{P}_n^M - \log n \stackrel{d}{\Rightarrow} Poi(e^{-x} dx).$$

 → - Weak convergence in the space of Radon counting measures equipped with vague topology.

- ▶ Mean-field model : Stepanov '69, ?? $(n\mathcal{P}_n^F - \log n)[a, \infty) := \sum_{X \in \mathcal{P}_n^F} \mathbb{1}[nX - \log n \ge a] \stackrel{d}{\Rightarrow} Poi(e^{-a}).$ $(n\mathcal{P}_n^M - \log n)[a, \infty) \stackrel{d}{\Rightarrow} Poi(e^{-a}).$
- ▶ $n(\max_{X \in \mathcal{P}_n^M} X) \log n \stackrel{d}{\Rightarrow}$ Gumbel distribution.
- ▶ "Stepanov++"

$$n\mathcal{P}_n^F - \log n \stackrel{d}{\Rightarrow} Poi(e^{-x} dx), \ n\mathcal{P}_n^M - \log n \stackrel{d}{\Rightarrow} Poi(e^{-x} dx).$$

- → Weak convergence in the space of Radon counting measures equipped with vague topology.
- ► Geometric Model : Penrose 1997, Hsing-Rootzen, 2005.

► Edge-weights induce a filtration on graphs : G_t = {e : w(e) ≤ t}, t ≥ 0.

- ► Edge-weights induce a filtration on graphs : G_t = {e : w(e) ≤ t}, t ≥ 0.
- β_0 : $\beta_0(G_t) = \sharp$ conn. components -1.

- ► Edge-weights induce a filtration on graphs : G_t = {e : w(e) ≤ t}, t ≥ 0.
- β_0 : $\beta_0(G_t) = \sharp$ conn. components -1.
- $\beta_0(G_t)$ is a non-increasing, jump function in t.

- ► Edge-weights induce a filtration on graphs : G_t = {e : w(e) ≤ t}, t ≥ 0.
- β_0 : $\beta_0(G_t) = \sharp$ conn. components -1.
- $\beta_0(G_t)$ is a non-increasing, jump function in t.
- $\mathcal{P}_n^D = \{D_i\}$ Jump times of $\beta_0(G_t)$.

- ► Edge-weights induce a filtration on graphs : G_t = {e : w(e) ≤ t}, t ≥ 0.
- β_0 : $\beta_0(G_t) = \sharp$ conn. components -1.
- $\beta_0(G_t)$ is a non-increasing, jump function in t.
- $\mathcal{P}_n^D = \{D_i\}$ Jump times of $\beta_0(G_t)$.
- \mathcal{P}_n^D Death times in the H_0 persistence diagram.

- ► Edge-weights induce a filtration on graphs : G_t = {e : w(e) ≤ t}, t ≥ 0.
- β_0 : $\beta_0(G_t) = \sharp$ conn. components -1.
- $\beta_0(G_t)$ is a non-increasing, jump function in t.
- $\mathcal{P}_n^D = \{D_i\}$ Jump times of $\beta_0(G_t)$.
- \mathcal{P}_n^D Death times in the H_0 persistence diagram.
- Kruskal's algorithm (1956): $\Rightarrow \mathcal{P}_n^M = \mathcal{P}_n^D$.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うらの

- ► Edge-weights induce a filtration on graphs : G_t = {e : w(e) ≤ t}, t ≥ 0.
- β_0 : $\beta_0(G_t) = \sharp$ conn. components -1.
- $\beta_0(G_t)$ is a non-increasing, jump function in t.
- $\mathcal{P}_n^D = \{D_i\}$ Jump times of $\beta_0(G_t)$.
- \mathcal{P}_n^D Death times in the H_0 persistence diagram.
- Kruskal's algorithm (1956): $\Rightarrow \mathcal{P}_n^M = \mathcal{P}_n^D$.
- Mean-field Model : $n\mathcal{P}_n^D \log n \xrightarrow{d} \mathcal{P}_{\infty}$.

(ロ)、(部)、(E)、(E)、 E) のQで 5 / 25

- Extreme values of Nearest Neighbour edges \equiv
- Extreme values of Minimal spanning tree \equiv
- Extrame values of death times of connected components.

- Extreme values of Nearest Neighbour edges \equiv
- Extreme values of Minimal spanning tree \equiv
- Extrame values of death times of connected components.
- Similar results for random geometric graphs Penrose 1997.

- Extreme values of Nearest Neighbour edges \equiv
- Extreme values of Minimal spanning tree \equiv
- Extrame values of death times of connected components.
- Similar results for random geometric graphs Penrose 1997.
- THIS TALK : Extension to weighted complexes higher-dimensional generalization of graphs.

- Extreme values of Nearest Neighbour edges \equiv
- Extreme values of Minimal spanning tree \equiv
- Extrame values of death times of connected components.
- Similar results for random geometric graphs Penrose 1997.
- THIS TALK : Extension to weighted complexes higher-dimensional generalization of graphs.
- ▶ Nearest neighbour edges --> Nearest neighbour faces.

- Extreme values of Nearest Neighbour edges \equiv
- Extreme values of Minimal spanning tree \equiv
- Extrame values of death times of connected components.
- Similar results for random geometric graphs Penrose 1997.
- THIS TALK : Extension to weighted complexes higher-dimensional generalization of graphs.
- ▶ Nearest neighbour edges --> Nearest neighbour faces.
- $\beta_0 - > \beta_k$, higher Betti numbers.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うらの

- Extreme values of Nearest Neighbour edges \equiv
- Extreme values of Minimal spanning tree \equiv
- Extrame values of death times of connected components.
- Similar results for random geometric graphs Penrose 1997.
- THIS TALK : Extension to weighted complexes higher-dimensional generalization of graphs.
- ▶ Nearest neighbour edges --> Nearest neighbour faces.
- $\beta_0 - > \beta_k$, higher Betti numbers.
- ▶ Minimal spanning trees --> Minimal spanning acycles.

► F_0 = vertices. F_1 = edges. $f_i = |F_i|$.

• F_0 = vertices. F_1 = edges. $f_i = |F_i|$.

▶ Boundary/Incidence matrix : $\partial_0 = [1, ..., 1] - 1 \times f_0$ matrix.

- F_0 = vertices. F_1 = edges. $f_i = |F_i|$.
- ▶ Boundary/Incidence matrix : $\partial_0 = [1, ..., 1] 1 \times f_0$ matrix.
- ▶ $\partial_1 f_0 \times f_1$ matrix. Rows are F_0 and Columns are F_1 .

- F_0 = vertices. F_1 = edges. $f_i = |F_i|$.
- Boundary/Incidence matrix : $\partial_0 = [1, \dots, 1] 1 \times f_0$ matrix.
- ▶ $\partial_1 f_0 \times f_1$ matrix. Rows are F_0 and Columns are F_1 .
- $\blacktriangleright (\partial_1(v_i, e_j) = \mathbb{1}[v_i \in e_j])_{v_i, e_j} v_i \in F_0, e_j \in F_1.$

- F_0 = vertices. F_1 = edges. $f_i = |F_i|$.
- ▶ Boundary/Incidence matrix : $\partial_0 = [1, ..., 1] 1 \times f_0$ matrix.
- ▶ $\partial_1 f_0 \times f_1$ matrix. Rows are F_0 and Columns are F_1 .
- ► $(\partial_1(v_i, e_j) = 1[v_i \in e_j])_{v_i, e_j} v_i \in F_0, e_j \in F_1.$
- ▶ Boundary map : $\partial_1 : \mathbb{Z}_2^{F_1} \to \mathbb{Z}_2^{F_0}, \ x \longmapsto \partial_1 x.$

- F_0 = vertices. F_1 = edges. $f_i = |F_i|$.
- ▶ Boundary/Incidence matrix : $\partial_0 = [1, ..., 1] 1 \times f_0$ matrix.
- ▶ $\partial_1 f_0 \times f_1$ matrix. Rows are F_0 and Columns are F_1 .
- $\blacktriangleright (\partial_1(v_i, e_j) = \mathbb{1}[v_i \in e_j])_{v_i, e_j} v_i \in F_0, e_j \in F_1.$
- ▶ Boundary map : $\partial_1 : \mathbb{Z}_2^{F_1} \to \mathbb{Z}_2^{F_0}, \ x \longmapsto \partial_1 x.$
- B₁ = Im(∂₁) ⊂ Z₂^{F₀} Column/Boundary space.

・ロン ・雪 と ・ 画 と ・ 画
- F_0 = vertices. F_1 = edges. $f_i = |F_i|$.
- Boundary/Incidence matrix : $\partial_0 = [1, \ldots, 1] 1 \times f_0$ matrix.
- ▶ $\partial_1 f_0 \times f_1$ matrix. Rows are F_0 and Columns are F_1 .
- $\blacktriangleright (\partial_1(v_i, e_j) = \mathbb{1}[v_i \in e_j])_{v_i, e_j} \ v_i \in F_0, \ e_j \in F_1.$
- ▶ Boundary map : $\partial_1 : \mathbb{Z}_2^{F_1} \to \mathbb{Z}_2^{F_0}, \ x \longmapsto \partial_1 x.$
- B₁ = Im(∂₁) ⊂ Z₂^{F₀} Column/Boundary space.
- Spanning Forest (SF) Columns that form a basis for B_1 .

- F_0 = vertices. F_1 = edges. $f_i = |F_i|$.
- Boundary/Incidence matrix : $\partial_0 = [1, \ldots, 1] 1 \times f_0$ matrix.
- ▶ $\partial_1 f_0 \times f_1$ matrix. Rows are F_0 and Columns are F_1 .
- $\blacktriangleright (\partial_1(v_i, e_j) = \mathbb{1}[v_i \in e_j])_{v_i, e_j} \ v_i \in F_0, \ e_j \in F_1.$
- ▶ Boundary map : $\partial_1 : \mathbb{Z}_2^{F_1} \to \mathbb{Z}_2^{F_0}, \ x \longmapsto \partial_1 x.$
- B₁ = Im(∂₁) ⊂ Z₂^{F₀} Column/Boundary space.
- Spanning Forest (SF) Columns that form a basis for B_1 .
- $G = F_0 \cup F_1$, graph. $S \subset F_1$ a SF if

- F_0 = vertices. F_1 = edges. $f_i = |F_i|$.
- Boundary/Incidence matrix : $\partial_0 = [1, \ldots, 1] 1 \times f_0$ matrix.
- ▶ $\partial_1 f_0 \times f_1$ matrix. Rows are F_0 and Columns are F_1 .
- $\blacktriangleright (\partial_1(v_i, e_j) = \mathbb{1}[v_i \in e_j])_{v_i, e_j} \ v_i \in F_0, \ e_j \in F_1.$
- ▶ Boundary map : $\partial_1 : \mathbb{Z}_2^{F_1} \to \mathbb{Z}_2^{F_0}, \ x \longmapsto \partial_1 x.$
- B₁ = Im(∂₁) ⊂ Z₂^{F₀} Column/Boundary space.
- Spanning Forest (SF) Columns that form a basis for B_1 .
- G = F₀ ∪ F₁, graph. S ⊂ F₁ a SF if
 (i) Columns {e}_{e∈S} span B₁ (spanning)

- F_0 = vertices. F_1 = edges. $f_i = |F_i|$.
- Boundary/Incidence matrix : $\partial_0 = [1, \ldots, 1] 1 \times f_0$ matrix.
- ▶ $\partial_1 f_0 \times f_1$ matrix. Rows are F_0 and Columns are F_1 .
- $\blacktriangleright (\partial_1(v_i, e_j) = \mathbb{1}[v_i \in e_j])_{v_i, e_j} \ v_i \in F_0, \ e_j \in F_1.$
- ▶ Boundary map : $\partial_1 : \mathbb{Z}_2^{F_1} \to \mathbb{Z}_2^{F_0}, \ x \longmapsto \partial_1 x.$
- B₁ = Im(∂₁) ⊂ Z₂^{F₀} Column/Boundary space.
- Spanning Forest (SF) Columns that form a basis for B_1 .
- G = F₀ ∪ F₁, graph. S ⊂ F₁ a SF if
 (i) Columns {e}_{e∈S} span B₁ (spanning)
 (ii) Columns {e}_{e∈S} are linearly independent (acyle)

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

- ► SF Spanning forest.
- $|SF| = f_0 \text{ no. of connected components.}$

- ► SF Spanning forest.
- $|SF| = f_0 \text{ no. of connected components.}$
- $\blacktriangleright \ \partial_0 \partial_1 \equiv 0.$

- ► SF Spanning forest.
- $|SF| = f_0 \text{ no. of connected components.}$
- $\blacktriangleright \ \partial_0 \partial_1 \equiv 0.$

$$\bullet \ B_1 := Im(\partial_1) \subset Ker(\partial_0) =: Z_0.$$

- SF Spanning forest.
- $|SF| = f_0 \text{ no. of connected components.}$
- $\blacktriangleright \ \partial_0 \partial_1 \equiv 0.$
- $\triangleright \ B_1 := Im(\partial_1) \subset Ker(\partial_0) =: Z_0.$
- (H_0 0th Homology group :) $H_0 := Z_0/B_1$.

- SF Spanning forest.
- $|SF| = f_0 \text{ no. of connected components.}$
- $\blacktriangleright \ \partial_0 \partial_1 \equiv 0.$
- $\blacktriangleright B_1 := Im(\partial_1) \subset Ker(\partial_0) =: Z_0.$
- (H_0 0th Homology group :) $H_0 := Z_0/B_1$.

7 / 25

• $\beta_0 := rk(H_0) = f_0 - 1 - r(B_1).$

- SF Spanning forest.
- $|SF| = f_0 \text{ no. of connected components.}$
- $\blacktriangleright \ \partial_0 \partial_1 \equiv 0.$
- $\triangleright \ B_1 := Im(\partial_1) \subset Ker(\partial_0) =: Z_0.$
- (H_0 0th Homology group :) $H_0 := Z_0/B_1$.

•
$$\beta_0 := rk(H_0) = f_0 - 1 - r(B_1).$$

 $\Rightarrow \beta_0 = f_0 - 1 - |SF|$, SF - spanning forest.

- SF Spanning forest.
- $|SF| = f_0 \text{ no. of connected components.}$
- $\blacktriangleright \ \partial_0 \partial_1 \equiv 0.$

$$\blacktriangleright B_1 := Im(\partial_1) \subset Ker(\partial_0) =: Z_0.$$

• (H_0 - 0th Homology group :) $H_0 := Z_0/B_1$.

►
$$\beta_0 := rk(H_0) = f_0 - 1 - r(B_1).$$

 $\Rightarrow \beta_0 = f_0 - 1 - |SF|, SF$ - spanning forest.
 $\Rightarrow \beta_0 = no.$ of connected components -1.

• $F_k \subset V^{(k+1)}$ - *k*-faces/simplices. $V = F_0$, finite.

- $F_k \subset V^{(k+1)}$ *k*-faces/simplices. $V = F_0$, finite.
- (Simplicial) complex $\mathcal{K} = \bigcup_{k=0}^{f_0-1} F_k$ such that

- $F_k \subset V^{(k+1)}$ *k*-faces/simplices. $V = F_0$, finite.
- (Simplicial) complex $\mathcal{K} = \bigcup_{k=0}^{f_0-1} F_k$ such that
 - if $\sigma \in F_k$ and $\tau \subset \sigma$, then $\tau \in F_j$ for some $j \leq k$.

- $F_k \subset V^{(k+1)}$ *k*-faces/simplices. $V = F_0$, finite.
- (Simplicial) complex $\mathcal{K} = \bigcup_{k=0}^{f_0-1} F_k$ such that
 - if $\sigma \in F_k$ and $\tau \subset \sigma$, then $\tau \in F_j$ for some $j \leq k$.
- ▶ Boundary/Incidence matrix : $\partial_d f_{d-1} \times f_d$ matrix.

- $F_k \subset V^{(k+1)}$ *k*-faces/simplices. $V = F_0$, finite.
- (Simplicial) complex $\mathcal{K} = \bigcup_{k=0}^{f_0-1} F_k$ such that
 - if $\sigma \in F_k$ and $\tau \subset \sigma$, then $\tau \in F_j$ for some $j \leq k$.
- ▶ Boundary/Incidence matrix : $\partial_d f_{d-1} \times f_d$ matrix. $\partial_d(\tau_i, \sigma_i) = \mathbf{1}[\tau_i \subset \sigma_i], \tau_i \in F_{d-1}, \sigma_i \in F_d.$

イロト 不得 トイヨト イヨト 二日

- $F_k \subset V^{(k+1)}$ *k*-faces/simplices. $V = F_0$, finite.
- (Simplicial) complex $\mathcal{K} = \bigcup_{k=0}^{f_0-1} F_k$ such that
 - if $\sigma \in F_k$ and $\tau \subset \sigma$, then $\tau \in F_j$ for some $j \leq k$.
- ▶ Boundary/Incidence matrix : $\partial_d f_{d-1} \times f_d$ matrix. $\partial_d(\tau_i, \sigma_j) = \mathbf{1}[\tau_i \subset \sigma_j], \tau_i \in F_{d-1}, \sigma_j \in F_d.$
- ▶ Boundary map : $\partial_d : \mathbb{Z}_2^{F_d} \to \mathbb{Z}_2^{F_{d-1}}, \ x \longmapsto \partial_d x.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQの

- ▶ Boundary/Incidence matrix : $\partial_d f_{d-1} \times f_d$ matrix. $\partial_d(\tau_i, \sigma_j) = \mathbf{1}[\tau_i \subset \sigma_j], \tau_i \in F_{d-1}, \sigma_j \in F_d.$
- ▶ Boundary map : $\partial_d : \mathbb{Z}_2^{F_d} \to \mathbb{Z}_2^{F_{d-1}}, \ x \longmapsto \partial_d x.$

- ▶ Boundary/Incidence matrix : $\partial_d f_{d-1} \times f_d$ matrix. $\partial_d(\tau_i, \sigma_j) = \mathbf{1}[\tau_i \subset \sigma_j], \tau_i \in F_{d-1}, \sigma_j \in F_d.$
- ▶ Boundary map : $\partial_d : \mathbb{Z}_2^{F_d} \to \mathbb{Z}_2^{F_{d-1}}, \ x \longmapsto \partial_d x.$
- Column/Boundary space: $B_d = Im(\partial_d) \subset \mathbb{Z}_2^{F_{d-1}}$.

- ▶ Boundary/Incidence matrix : $\partial_d f_{d-1} \times f_d$ matrix. $\partial_d(\tau_i, \sigma_j) = \mathbf{1}[\tau_i \subset \sigma_j], \tau_i \in F_{d-1}, \sigma_j \in F_d.$
- ▶ Boundary map : $\partial_d : \mathbb{Z}_2^{F_d} \to \mathbb{Z}_2^{F_{d-1}}, \ x \longmapsto \partial_d x.$
- Column/Boundary space: $B_d = Im(\partial_d) \subset \mathbb{Z}_2^{F_{d-1}}$.
- Cycle space : $Z_{d-1} = Ker(\partial_{d-1}) \subset \mathbb{Z}_2^{f_{d-1}}$.

イロト 不得 トイヨト イヨト 二日

- ▶ Boundary/Incidence matrix : $\partial_d f_{d-1} \times f_d$ matrix. $\partial_d(\tau_i, \sigma_j) = \mathbf{1}[\tau_i \subset \sigma_j], \tau_i \in F_{d-1}, \sigma_j \in F_d.$
- ▶ Boundary map : $\partial_d : \mathbb{Z}_2^{F_d} \to \mathbb{Z}_2^{F_{d-1}}, \ x \longmapsto \partial_d x.$
- Column/Boundary space: $B_d = Im(\partial_d) \subset \mathbb{Z}_2^{F_{d-1}}$.

9 / 25

- Cycle space : $Z_{d-1} = Ker(\partial_{d-1}) \subset \mathbb{Z}_2^{f_{d-1}}$.
- $\triangleright \ \partial_{d-1}\partial_d = 0.$

- ► Boundary/Incidence matrix : $\partial_d f_{d-1} \times f_d$ matrix. $\partial_d(\tau_i, \sigma_j) = \mathbf{1}[\tau_i \subset \sigma_j], \tau_i \in F_{d-1}, \sigma_j \in F_d.$
- ▶ Boundary map : $\partial_d : \mathbb{Z}_2^{F_d} \to \mathbb{Z}_2^{F_{d-1}}, \ x \longmapsto \partial_d x.$
- Column/Boundary space: $B_d = Im(\partial_d) \subset \mathbb{Z}_2^{F_{d-1}}$.
- Cycle space : $Z_{d-1} = Ker(\partial_{d-1}) \subset \mathbb{Z}_2^{f_{d-1}}$.
- $\triangleright \ \partial_{d-1}\partial_d = 0.$
- Betti Numbers : $\beta_{d-1}(\mathcal{K}) := r(Z_{d-1}/B_d) = r(Z_{d-1}) r(B_d).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQの

- ▶ Boundary/Incidence matrix : $\partial_d f_{d-1} \times f_d$ matrix. $\partial_d(\tau_i, \sigma_j) = \mathbf{1}[\tau_i \subset \sigma_j], \tau_i \in F_{d-1}, \sigma_j \in F_d.$
- ▶ Boundary map : $\partial_d : \mathbb{Z}_2^{F_d} \to \mathbb{Z}_2^{F_{d-1}}, \ x \longmapsto \partial_d x.$
- Column/Boundary space: $B_d = Im(\partial_d) \subset \mathbb{Z}_2^{F_{d-1}}$.
- Cycle space : $Z_{d-1} = Ker(\partial_{d-1}) \subset \mathbb{Z}_2^{f_{d-1}}$.
- $\triangleright \ \partial_{d-1}\partial_d = 0.$
- Betti Numbers : $\beta_{d-1}(\mathcal{K}) := r(Z_{d-1}/B_d) = r(Z_{d-1}) r(B_d).$
 - $\Rightarrow \beta_{d-1}(\mathcal{K}) = f_{d-1} r(B_{d-1}) r(B_d).$

• Geometric realization : To embed a complex in Euclidean space.

Geometric realization : To embed a complex in Euclidean space.
 0- faces as points ; 1-faces as edges between points ;

Geometric realization : To embed a complex in Euclidean space.
 0- faces as points ; 1-faces as edges between points ;
 2-faces as triangles, 3-faces as tetrahedrons and so on...

Geometric realization : To embed a complex in Euclidean space.
 0- faces as points ; 1-faces as edges between points ;
 2-faces as triangles, 3-faces as tetrahedrons and so on...
 Take a high-dimensional Euclidean space such that every face can be embedded "nicely"

- Geometric realization : To embed a complex in Euclidean space.
 0- faces as points ; 1-faces as edges between points ;
 2-faces as triangles, 3-faces as tetrahedrons and so on...
 Take a high-dimensional Euclidean space such that every face can be embedded "nicely"
- ▶ $\beta_{d-1}(\mathcal{K}) = " \sharp d \text{dimensional holes } / \text{ non-trivial } d$ -cycles

- Geometric realization : To embed a complex in Euclidean space.
 0- faces as points ; 1-faces as edges between points ;
 2-faces as triangles, 3-faces as tetrahedrons and so on...
 Take a high-dimensional Euclidean space such that every face can be embedded "nicely"
- ▶ $\beta_{d-1}(\mathcal{K}) = " \sharp d \text{dimensional holes } / \text{ non-trivial } d$ -cycles
- ▶ non-trivial *d*-cycles *d*-dimensional cycles that are not filled up.

Example 1 : Hollow Tetrahedron

Example 1 : Hollow Tetrahedron

► K - Complex on 4 vertices with all 1-faces (6 edges) and 2-faces (4 triangles).

Example 1 : Hollow Tetrahedron

- ▶ K Complex on 4 vertices with all 1-faces (6 edges) and 2-faces (4 triangles).
- ▶ Betti Numbers : $\beta_0 = 0, \beta_1 = 0, \beta_2 = 1, \beta_k = 0, k \ge 3.$

More Examples

2-Hemisphere $\beta_k = 0, k \ge 1$

 $\begin{array}{l} \text{2-Sphere} \\ \beta_2 = 1 \text{, else 0} \end{array}$

 $\begin{array}{l} \text{2-Torus} \\ \beta_1=2, \beta_2=1 \text{ else 0} \end{array}$

イロン イヨン イヨン イヨン

э

d-Spanning Acycle : SA
• $\partial_d(\tau_i, \sigma_i) = \mathbf{1}[\tau_i \subset \sigma_i], \tau_i \in F_{d-1}, \sigma_i \in F_d.$

- $\triangleright \ \partial_d(\tau_i,\sigma_j) = \mathbf{1}[\tau_i \subset \sigma_j], \tau_i \in F_{d-1}, \sigma_j \in F_d.$
- SA Columns (*d*-faces) that form a basis for B_d .

- $\triangleright \ \partial_d(\tau_i,\sigma_j) = \mathbf{1}[\tau_i \subset \sigma_j], \tau_i \in F_{d-1}, \sigma_j \in F_d.$
- SA Columns (*d*-faces) that form a basis for B_d .
- ▶ G. Kalai, 1983. \mathcal{K} , complex. $S \subset F_d$ a SA if

- $\triangleright \ \partial_d(\tau_i,\sigma_j) = \mathbf{1}[\tau_i \subset \sigma_j], \tau_i \in F_{d-1}, \sigma_j \in F_d.$
- SA Columns (*d*-faces) that form a basis for B_d .
- G. Kalai, 1983. K, complex. S ⊂ F_d a SA if
 (i) Columns {σ}_{σ∈S} span B_d (spanning)

- $\triangleright \ \partial_d(\tau_i,\sigma_j) = \mathbf{1}[\tau_i \subset \sigma_j], \tau_i \in F_{d-1}, \sigma_j \in F_d.$
- SA Columns (*d*-faces) that form a basis for B_d .
- G. Kalai, 1983. K, complex. S ⊂ F_d a SA if
 (i) Columns {σ}_{σ∈S} span B_d (spanning)
 - (ii) Columns $\{\sigma\}_{\sigma \in S}$ are linearly independent (acyle)

- $\triangleright \ \partial_d(\tau_i,\sigma_j) = \mathbf{1}[\tau_i \subset \sigma_j], \tau_i \in F_{d-1}, \sigma_j \in F_d.$
- SA Columns (*d*-faces) that form a basis for B_d .
- G. Kalai, 1983. *K*, complex. *S* ⊂ *F_d* a SA if
 (i) Columns {*σ*}_{*σ*∈*S*} span *B_d* (spanning)
 (ii) Columns {*σ*}_{*σ*∈*S*} are linearly independent (acyle)
- Equivalently,

- $\triangleright \ \partial_d(\tau_i,\sigma_j) = \mathbf{1}[\tau_i \subset \sigma_j], \tau_i \in F_{d-1}, \sigma_j \in F_d.$
- SA Columns (*d*-faces) that form a basis for B_d .
- G. Kalai, 1983. K, complex. S ⊂ F_d a SA if
 (i) Columns {σ}_{σ∈S} span B_d (spanning)
 (ii) Columns {σ}_{σ∈S} are linearly independent (acyle)
- Equivalently,

(i) $\beta_{d-1}(F_{d-1}\cup S) = \beta_{d-1}(\mathcal{K})$ and (ii) $\beta_d(F_{d-1}\cup S) = 0$

- $\triangleright \ \partial_d(\tau_i,\sigma_j) = \mathbf{1}[\tau_i \subset \sigma_j], \tau_i \in F_{d-1}, \sigma_j \in F_d.$
- SA Columns (*d*-faces) that form a basis for B_d .
- G. Kalai, 1983. K, complex. S ⊂ F_d a SA if
 (i) Columns {σ}_{σ∈S} span B_d (spanning)

(ii) Columns $\{\sigma\}_{\sigma\in S}$ are linearly independent (acyle)

Equivalently,

(i) $\beta_{d-1}(F_{d-1}\cup S) = \beta_{d-1}(\mathcal{K})$ and (ii) $\beta_d(F_{d-1}\cup S) = 0$

• Recall that ST is edges E such that $\beta_0(V \cup E) = \beta_0(G), \beta_1(V \cup E) = 0.$

 K - Complex on 4 vertices with all 1-faces (6 edges) and 2-faces (4 triangles).

- ▶ K Complex on 4 vertices with all 1-faces (6 edges) and 2-faces (4 triangles).
- ► 2-Spanning acycle : Any 3 of the 4 triangles/2-faces.

More Examples again

2-Hemisphere SA is itself.

2-Sphere Remove any one triangle for SA.

2-Torus Remove any one triangle for SA.

<ロ> (日) (日) (日) (日) (日)

Spanning Acycles and Betti numbers

- $\flat \ \partial_d(\tau_i,\sigma_j) = \mathbf{1}[\tau_i \subset \sigma_j], \tau_i \in F_{d-1}, \sigma_j \in F_d.$
- Boundary map : $\partial_d : \mathbb{Z}_2^{F_d} \to \mathbb{Z}_2^{F_{d-1}}, \ x \longmapsto \partial_d x.$
- Column/Boundary space: $B_d = Im(\partial_d) \subset \mathbb{Z}_2^{F_{d-1}}$.
- Cycle space : $Z_{d-1} = Ker(\partial_{d-1}) \subset \mathbb{Z}_2^{f_{d-1}}$.
- $\beta_{d-1}(\mathcal{K}) := r(Z_{d-1}/B_d) = f_{d-1} r(B_{d-1}) r(B_d).$

Spanning Acycles and Betti numbers

- $\triangleright \ \partial_d(\tau_i,\sigma_j) = \mathbf{1}[\tau_i \subset \sigma_j], \tau_i \in F_{d-1}, \sigma_j \in F_d.$
- ▶ Boundary map : $\partial_d : \mathbb{Z}_2^{F_d} \to \mathbb{Z}_2^{F_{d-1}}, \ x \longmapsto \partial_d x.$
- Column/Boundary space: $B_d = Im(\partial_d) \subset \mathbb{Z}_2^{F_{d-1}}$.
- Cycle space : $Z_{d-1} = Ker(\partial_{d-1}) \subset \mathbb{Z}_2^{f_{d-1}}$.
- $\beta_{d-1}(\mathcal{K}) := r(Z_{d-1}/B_d) = f_{d-1} r(B_{d-1}) r(B_d).$
- $\succ \gamma_d(\mathcal{K}) = \operatorname{card}(\mathbf{SA}) = r(B_d) = r(\partial_d).$

<□> < 클> < 클> < 클> < 클> 클 < 의 < ○ < ○</p>

• $F_k \subset V^{(k+1)}$ - *k*-faces/simplices. $V = F_0$, finite.

- $F_k \subset V^{(k+1)}$ *k*-faces/simplices. $V = F_0$, finite.
- Simplicial complex : $\mathcal{K} = \bigcup_{k=0}^{f_0-1} F_k$
- $w : \mathcal{K} \to [0, \infty]$ face/column weights.

- $F_k \subset V^{(k+1)}$ *k*-faces/simplices. $V = F_0$, finite.
- Simplicial complex : $\mathcal{K} = \cup_{k=0}^{f_0-1} F_k$
- $w: \mathcal{K} \to [0, \infty]$ face/column weights.
- w monotonic $w(\tau) \leq w(\sigma)$ for $\tau \subset \sigma$.

- $F_k \subset V^{(k+1)}$ *k*-faces/simplices. $V = F_0$, finite.
- Simplicial complex : $\mathcal{K} = \bigcup_{k=0}^{f_0-1} F_k$
- $w: \mathcal{K} \to [0,\infty]$ face/column weights.
- w monotonic $w(\tau) \leq w(\sigma)$ for $\tau \subset \sigma$.
 - i.e., $\mathcal{K}(t) = \{\sigma \in \mathcal{K} : w(\sigma) \leq t\}$ is a simplicial complex.

- $F_k \subset V^{(k+1)}$ *k*-faces/simplices. $V = F_0$, finite.
- Simplicial complex : $\mathcal{K} = \bigcup_{k=0}^{f_0-1} F_k$
- $w: \mathcal{K} \to [0,\infty]$ face/column weights.
- w monotonic $w(\tau) \leq w(\sigma)$ for $\tau \subset \sigma$.
 - i.e., $\mathcal{K}(t) = \{\sigma \in \mathcal{K} : w(\sigma) \leq t\}$ is a simplicial complex.

•
$$S \subset F_d, w(S) = \sum_{\sigma \in F_d} w(\sigma).$$

- $F_k \subset V^{(k+1)}$ *k*-faces/simplices. $V = F_0$, finite.
- Simplicial complex : $\mathcal{K} = \cup_{k=0}^{f_0-1} F_k$
- $w: \mathcal{K} \to [0, \infty]$ face/column weights.
- w monotonic $w(\tau) \leq w(\sigma)$ for $\tau \subset \sigma$.

i.e., $\mathcal{K}(t) = \{\sigma \in \mathcal{K} : w(\sigma) \leq t\}$ is a simplicial complex.

•
$$S \subset F_d, w(S) = \sum_{\sigma \in F_d} w(\sigma).$$

• $M_d \subset F_d$ d-MSA, if M_d is a minimal weight spanning acycle.

- $F_k \subset V^{(k+1)}$ *k*-faces/simplices. $V = F_0$, finite.
- Simplicial complex : $\mathcal{K} = \bigcup_{k=0}^{f_0-1} F_k$
- $w: \mathcal{K} \to [0, \infty]$ face/column weights.
- w monotonic $w(\tau) \leq w(\sigma)$ for $\tau \subset \sigma$.

i.e., $\mathcal{K}(t) = \{\sigma \in \mathcal{K} : w(\sigma) \leq t\}$ is a simplicial complex.

•
$$S \subset F_d, w(S) = \sum_{\sigma \in F_d} w(\sigma).$$

- $M_d \subset F_d$ d-MSA, if M_d is a minimal weight spanning acycle.
 - i.e., M_d is the set of columns that form a minimal weight basis for ∂_d .

•
$$S \subset F_d, w(S) = \sum_{\sigma \in F_d} w(\sigma).$$

• $M_d \subset F_d$ - *d*-MSA, if minimal weight spanning acycle.

- $S \subset F_d, w(S) = \sum_{\sigma \in F_d} w(\sigma).$
- $M_d \subset F_d$ *d*-MSA, if minimal weight spanning acycle.
- Basic properties (uniqueness, cut property, cycle property) holds true.

- $S \subset F_d, w(S) = \sum_{\sigma \in F_d} w(\sigma).$
- $M_d \subset F_d$ *d*-MSA, if minimal weight spanning acycle.
- Basic properties (uniqueness, cut property, cycle property) holds true.
- Simplicial version of Kruskal's (Greedy algorithm)

- $S \subset F_d, w(S) = \sum_{\sigma \in F_d} w(\sigma).$
- $M_d \subset F_d$ *d*-MSA, if minimal weight spanning acycle.
- Basic properties (uniqueness, cut property, cycle property) holds true.
- Simplicial version of Kruskal's (Greedy algorithm)
- PS,GT,DY: Jarník-Dijkstra-Prim's algorithm (under hypergraph connectivity) exists.

i.e.,
$$\mathcal{K}(t) = \{\sigma \in \mathcal{K} : w(\sigma) \leq t\}$$

• \mathcal{K} - complex with monotonic weight w.

i.e.,
$$\mathcal{K}(t) = \{ \sigma \in \mathcal{K} : w(\sigma) \leq t \}$$

• $\beta_{d-1}(\mathcal{K}(t))$ is a step-function in t but can increase or decrease

i.e.,
$$\mathcal{K}(t) = \{\sigma \in \mathcal{K} : w(\sigma) \leq t\}$$

- $\beta_{d-1}(\mathcal{K}(t))$ is a step-function in t but can increase or decrease
- Death times of β_{d-1} :

i.e.,
$$\mathcal{K}(t) = \{\sigma \in \mathcal{K} : w(\sigma) \leq t\}$$

- $\beta_{d-1}(\mathcal{K}(t))$ is a step-function in t but can increase or decrease
- Death times of β_{d-1} :

$$\mathcal{D}_{d-1} := \{d_i\} = \{t : \beta_{d-1}(\mathcal{K}(t-)) > \beta_{d-1}(\mathcal{K}(t))\}.$$

i.e.,
$$\mathcal{K}(t) = \{\sigma \in \mathcal{K} : w(\sigma) \leq t\}$$

- $\beta_{d-1}(\mathcal{K}(t))$ is a step-function in t but can increase or decrease
- Death times of β_{d-1} :
 - $\mathcal{D}_{d-1} := \{d_i\} = \{t : \beta_{d-1}(\mathcal{K}(t-)) > \beta_{d-1}(\mathcal{K}(t))\}.$
- Birth times of β_{d-1} :

• \mathcal{K} - complex with monotonic weight w.

i.e.,
$$\mathcal{K}(t) = \{\sigma \in \mathcal{K} : w(\sigma) \leq t\}$$

- $\beta_{d-1}(\mathcal{K}(t))$ is a step-function in t but can increase or decrease
- Death times of β_{d-1} :
 - $\mathcal{D}_{d-1} := \{d_i\} = \{t : \beta_{d-1}(\mathcal{K}(t-)) > \beta_{d-1}(\mathcal{K}(t))\}.$
- Birth times of β_{d-1} :
 - $\mathcal{B}_{d-1} := \{b_i\} = \{t : \beta_{d-1}(\mathcal{K}(t-)) < \beta_{d-1}(\mathcal{K}(t))\}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

• \mathcal{K} - complex with monotonic weight w.

i.e.,
$$\mathcal{K}(t) = \{\sigma \in \mathcal{K} : w(\sigma) \leq t\}$$

- $\beta_{d-1}(\mathcal{K}(t))$ is a step-function in t but can increase or decrease
- Death times of β_{d-1} :
 - $\mathcal{D}_{d-1} := \{ d_i \} = \{ t : \beta_{d-1}(\mathcal{K}(t-)) > \beta_{d-1}(\mathcal{K}(t)) \}.$
- Birth times of β_{d-1} :
 - $\mathcal{B}_{d-1} := \{b_i\} = \{t : \beta_{d-1}(\mathcal{K}(t-)) < \beta_{d-1}(\mathcal{K}(t))\}.$
- ► Theorem(PS,GT,DY) : Let $\beta_{d-1}(\mathcal{K}) = \beta_{d-2}(\mathcal{K}) = 0$. Then $\mathcal{D}_{d-1} = \{w(\sigma) : \sigma \in M_d\}.$

i.e.,
$$\mathcal{K}(t) = \{\sigma \in \mathcal{K} : w(\sigma) \leq t\}$$

- $\beta_{d-1}(\mathcal{K}(t))$ is a step-function in t but can increase or decrease
- Death times of β_{d-1} :
 - $\mathcal{D}_{d-1} := \{ d_i \} = \{ t : \beta_{d-1}(\mathcal{K}(t-)) > \beta_{d-1}(\mathcal{K}(t)) \}.$
- Birth times of β_{d-1} :
 - $\mathcal{B}_{d-1} := \{b_i\} = \{t : \beta_{d-1}(\mathcal{K}(t-)) < \beta_{d-1}(\mathcal{K}(t))\}.$
- ► Theorem(PS,GT,DY) : Let $\beta_{d-1}(\mathcal{K}) = \beta_{d-2}(\mathcal{K}) = 0$. Then $\mathcal{D}_{d-1} = \{w(\sigma) : \sigma \in M_d\}.$
- Generalizes the connection between MST and H_0 persistence.
• Persistence diagram : $PD_{d-1} = \{(b_i, d_i)\}$ (a specific pairing).

• Persistence diagram : $PD_{d-1} = \{(b_i, d_i)\}$ (a specific pairing).

 b_i is birth of a topological feature (*d*-dimensional hole) and d_i is its death

• Persistence diagram : $PD_{d-1} = \{(b_i, d_i)\}$ (a specific pairing).

 b_i is birth of a topological feature (*d*-dimensional hole) and d_i is its death

i.e., as $\mathcal{K}(t)$ increases, features are born and die - PD keeps track of births and deaths !

• Lifetime sum : $L_{d-1} = \int_0^\infty \beta_{d-1}(\mathcal{K}(t)) dt = \sum_i (d_i - b_i)$

• Persistence diagram : $PD_{d-1} = \{(b_i, d_i)\}$ (a specific pairing).

 b_i is birth of a topological feature (*d*-dimensional hole) and d_i is its death

i.e., as $\mathcal{K}(t)$ increases, features are born and die - PD keeps track of births and deaths !

- Lifetime sum : $L_{d-1} = \int_0^\infty \beta_{d-1}(\mathcal{K}(t)) dt = \sum_i (d_i b_i)$
- Corollary : $L_{d-1} = w(M_d) + w(M_{d-1}) w(F_{d-1})$.

• Persistence diagram : $PD_{d-1} = \{(b_i, d_i)\}$ (a specific pairing).

 b_i is birth of a topological feature (*d*-dimensional hole) and d_i is its death

i.e., as $\mathcal{K}(t)$ increases, features are born and die - PD keeps track of births and deaths !

- Lifetime sum : $L_{d-1} = \int_0^\infty \beta_{d-1}(\mathcal{K}(t)) dt = \sum_i (d_i b_i)$
- Corollary : $L_{d-1} = w(M_d) + w(M_{d-1}) w(F_{d-1})$.
- ► Corollary was proven by Hiraoka-Shirai '15 by different methods.

• (\mathcal{K}_d - Complete *d*-complex :) $F_j = \binom{[n]}{j+1}, \forall j \leq d$.

- (\mathcal{K}_d Complete *d*-complex :) $F_j = \binom{[n]}{j+1}$, $\forall j \leq d$.
- $f_j = |F_j| = \binom{n}{j+1}, j \leq d$; $F_j = \emptyset, j > d$.
- ► L_d Random *d*-complex : $w(\sigma)$ i.i.d. U[0, 1] on *d*-faces (F_d) and else 0.

- (\mathcal{K}_d Complete *d*-complex :) $F_j = \binom{[n]}{j+1}$, $\forall j \leq d$.
- $f_j = |F_j| = {n \choose j+1}, j \le d$; $F_j = \emptyset, j > d$.
- L_d Random *d*-complex : $w(\sigma)$ i.i.d. U[0, 1] on *d*-faces (F_d) and else 0.

i.e., Choose maximal possible $\partial_d - {[n] \choose d}$ as rows & ${[n] \choose (d+1)}$ as columns ; Matrix entries are $\mathbf{1}[\sigma \subset \tau]$.

and we assign i.i.d. weights to columns.

- (\mathcal{K}_d Complete *d*-complex :) $F_j = \binom{[n]}{j+1}$, $\forall j \leq d$.
- $f_j = |F_j| = {n \choose j+1}, j \le d$; $F_j = \emptyset, j > d$.
- L_d Random *d*-complex : $w(\sigma)$ i.i.d. U[0, 1] on *d*-faces (F_d) and else 0.

i.e., Choose maximal possible $\partial_d - \binom{[n]}{d}$ as rows & $\binom{[n]}{(d+1)}$ as columns ; Matrix entries are $\mathbf{1}[\sigma \subset \tau]$.

and we assign i.i.d. weights to columns.

► d = 1 - i.i.d. weights on edges of a complete graph on n vertices.

- (\mathcal{K}_d Complete *d*-complex :) $F_j = \binom{[n]}{j+1}$, $\forall j \leq d$.
- ► $f_j = |F_j| = \binom{n}{j+1}, j \le d$; $F_j = \emptyset, j > d$.
- L_d Random *d*-complex : $w(\sigma)$ i.i.d. U[0, 1] on *d*-faces (F_d) and else 0.

i.e., Choose maximal possible $\partial_d - \binom{[n]}{d}$ as rows & $\binom{[n]}{(d+1)}$ as columns ; Matrix entries are $\mathbf{1}[\sigma \subset \tau]$.

and we assign i.i.d. weights to columns.

- ► d = 1 i.i.d. weights on edges of a complete graph on n vertices.
- ► MSA_d d-Minimal spanning acycle i.e., minimal basis.

Simulation

▶ Point process of Weights of faces in *MSA_d* for different *d*'s

22 / 25

• Mean-field *d*-complex : w_{σ} i.i.d. U[0, 1] on *d*-faces and else 0.

• Mean-field *d*-complex : w_{σ} i.i.d. U[0, 1] on *d*-faces and else 0.

•
$$\mathcal{M}_d = \{w(\sigma) : \sigma \in M_d\}$$
; M_d - MSA.

• Mean-field *d*-complex : w_{σ} i.i.d. U[0, 1] on *d*-faces and else 0.

•
$$\mathcal{M}_d = \{w(\sigma) : \sigma \in M_d\}$$
; M_d - MSA.

 σ ∈ F_d is NN face if for τ ∈ F_{d-1}, σ smallest co-face of τ i.e., τ ⊂ σ and σ has least weight.

• Mean-field *d*-complex : w_{σ} i.i.d. U[0,1] on *d*-faces and else 0.

•
$$\mathcal{M}_d = \{w(\sigma) : \sigma \in M_d\}$$
; M_d - MSA.

 σ ∈ F_d is NN face if for τ ∈ F_{d-1}, σ smallest co-face of τ i.e., τ ⊂ σ and σ has least weight.

•
$$\sigma$$
 NNF $\Rightarrow \sigma \in M_d$.

• Mean-field *d*-complex : w_{σ} i.i.d. U[0,1] on *d*-faces and else 0.

•
$$\mathcal{M}_d = \{w(\sigma) : \sigma \in M_d\}$$
; M_d - MSA.

- σ ∈ F_d is NN face if for τ ∈ F_{d-1}, σ smallest co-face of τ
 i.e., τ ⊂ σ and σ has least weight.
- $\sigma \text{ NNF} \Rightarrow \sigma \in M_d$.
- ► $\mathcal{P}_{n,d}^M := \{nw(\sigma) d \log n \log d! : \sigma \in M_d\}$ (Scaled MSA weights)

イロト 不得下 イヨト イヨト 二日

• Mean-field *d*-complex : w_{σ} i.i.d. U[0, 1] on *d*-faces and else 0.

•
$$\mathcal{M}_d = \{w(\sigma) : \sigma \in M_d\}$$
; M_d - MSA.

 σ ∈ F_d is NN face if for τ ∈ F_{d-1}, σ smallest co-face of τ i.e., τ ⊂ σ and σ has least weight.

•
$$\sigma$$
 NNF $\Rightarrow \sigma \in M_d$.

► $\mathcal{P}_{n,d}^{M} := \{nw(\sigma) - d \log n - \log d! : \sigma \in M_d\}$ (Scaled MSA weights)

$$\blacktriangleright \mathcal{P}_{n,d}^{\mathsf{F}} := \{ nw(\sigma) - d \log n - \log d! : \sigma \text{ NNF} \}$$

イロト 不得 トイヨト イヨト 二日

• Mean-field *d*-complex : w_{σ} i.i.d. U[0,1] on *d*-faces and else 0.

•
$$\mathcal{M}_d = \{w(\sigma) : \sigma \in M_d\}$$
; M_d - MSA.

 σ ∈ F_d is NN face if for τ ∈ F_{d-1}, σ smallest co-face of τ i.e., τ ⊂ σ and σ has least weight.

•
$$\sigma$$
 NNF $\Rightarrow \sigma \in M_d$.

► $\mathcal{P}_{n,d}^{M} := \{nw(\sigma) - d \log n - \log d! : \sigma \in M_d\}$ (Scaled MSA weights)

$$\blacktriangleright \mathcal{P}_{n,d}^{\mathsf{F}} := \{ nw(\sigma) - d \log n - \log d! : \sigma \text{ NNF} \}$$

► Theorem (PS,GT,DY) : $\mathcal{P}_{n,d}^F$, $\mathcal{P}_{n,d}^M \stackrel{d}{\Rightarrow} Poi(e^{-x}dx)$.

• Mean-field *d*-complex : w_{σ} i.i.d. U[0, 1] on *d*-faces and else 0.

•
$$\mathcal{M}_d = \{w(\sigma) : \sigma \in M_d\}$$
; M_d - MSA.

 σ ∈ F_d is NN face if for τ ∈ F_{d-1}, σ smallest co-face of τ i.e., τ ⊂ σ and σ has least weight.

•
$$\sigma$$
 NNF $\Rightarrow \sigma \in M_d$.

► $\mathcal{P}_{n,d}^{M} := \{nw(\sigma) - d \log n - \log d! : \sigma \in M_d\}$ (Scaled MSA weights)

$$\blacktriangleright \mathcal{P}_{n,d}^{\mathsf{F}} := \{ nw(\sigma) - d \log n - \log d! : \sigma \text{ NNF} \}$$

- ► Theorem (PS,GT,DY) : $\mathcal{P}_{n,d}^F$, $\mathcal{P}_{n,d}^M \stackrel{d}{\Rightarrow} Poi(e^{-x}dx)$.
- Thresholds Linial-Meshulam '06, Meshulam-Wallach '09. Marginal distributions - Kahle-Pittel '14.

イロト 不得下 イヨト イヨト 二日

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 目 の Q ()
24 / 25

Stability Theorem(PS,GT,DY): *K* complex with weights *w*, *w*' and let 0 ≤ *p* ≤ ∞

Stability Theorem(PS,GT,DY): K complex with weights w, w' and let 0 ≤ p ≤ ∞

$$\inf_{\pi: M_d \to M_d'} \sum_{\sigma \in M_d} |w(\sigma) - w'(\pi(\sigma))|^p \leq \sum_{\sigma \in F_d} |w(\sigma) - w'(\sigma)|^p.$$

イロト 不得下 イヨト イヨト 二日

Stability Theorem(PS,GT,DY): K complex with weights w, w' and let 0 ≤ p ≤ ∞

$$\inf_{\pi: \mathcal{M}_d \to \mathcal{M}_d'} \sum_{\sigma \in \mathcal{M}_d} |w(\sigma) - w'(\pi(\sigma))|^p \leq \sum_{\sigma \in \mathcal{F}_d} |w(\sigma) - w'(\sigma)|^p.$$

Proof via Kruskal's algorithm.

Stability Theorem(PS,GT,DY): *K* complex with weights *w*, *w'* and let 0 ≤ *p* ≤ ∞

$$\inf_{\pi:M_d\to M_d'}\sum_{\sigma\in M_d}|w(\sigma)-w'(\pi(\sigma))|^p\leq \sum_{\sigma\in F_d}|w(\sigma)-w'(\sigma)|^p.$$

- Proof via Kruskal's algorithm.
- Useful in extending various results to models with "noisy" weights.

イロト 不得 トイヨト イヨト 二日

Some References

- P. Skraba, G. Thoppe and D.Y. Randomly weighted d-Complexes : Minimal Spanning Acycles and Persistence Diagrams. arXiv:1701.00239, 2017.
- R. Lyons Random complexes and l2-Betti numbers. J. of Topology and Analysis, 2009.
- M. Kahle Topology of random simplicial complexes : A survey. AMS Contemporary Volumes in Mathematics. 2014.
- Y. Hiraoka and T. Shirai Minimum spanning acycle and lifetime of persistent homology in the Linial-Meshulam process.*Rand. Struc. Alg.* 2018.

イロト 不得下 イヨト イヨト 二日