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Random Geometric Graphs

Drop points on the plane ; Link any two points within a distance 7.




AB Random Geometric Graphs

Drop two set of points on the plane.
Link any two points of the different type within a distance 7.




Motivation

e Frequency division half duplex transmission scheme : Nodes have two choices of transmission-reception

frequency - (f1, f2) or (fa, f1).

e Multi-level Node deployment : Air-borne nodes and ground-level nodes. Communication barred between
nodes at same level.

e Secure communication : Tagged nodes broadacast a key and normal nodes which receive the same key can
communicate.



AB Boolean model : Percolation

od>2 ®W = {X,},5; and ? = {Y;},-, be independent Poisson point processes in R¢ with intensities
A and p respectively.

e Boolean Model: G(\, ) := (®W, E(\, 7)) ; (X, X;) € E(\r)if | X; — X;| < 2r.

e Percolation in a graph = existence of an infinite connected subset of points.

e For Boolean model, percolation = existence of unbounded connected (topological) subset in U; By, (7).
e There exist 0 < A.(r) < oo such that G(\, r) percolates a.s. iff A > A.(r).

e AB Boolean Model : G(\, i, ) := (PV, E(\, 1, 7)) ;

(X5, X;) € EO\p,r)if | X; = Y] <27 |X; = Y| < 2r, forsome Y € OO,

e Critical Intensity : . (A, r) := sup{u : P (G(A, p, ) percolates) = 0}.



Percolation Results

Simple bounds :
> :uc<)\7 T’) > >\C<T> — A
o (.( A\, 1) =00, if A < A.(2r).

Theorem : d = 2. A > A\.(2r) iff p.(\, 1) < oo.

Proposition d > 2.
1. For A large, ji.(\, r) < oo. (i.e, Phase transition for all d > 2).

2. For A large, there exists a p(A) < %, such that G(pA, (1 — p)A, r) percolates a.s., forall p € (p(A),1 —
P(A))-

Giant component is unique.

Part (1) of the Proposition holds true for more word percolation i.e, percolation models with k types of point
processes.
AB Boolean model is equivalent to word percolation with k& = 2.



Proof

b3 |—

e Fir r; such that A > \.(2r).
o A, = { G(\, 2r)) has left-right crossing and top-down crossing in the last boxes }.

e B, = each pair of balls with non-empty intersection in G(\, 2r;), when expanded to balls of radius 2r
contain atleast one point of ¢

e Note that A, B, percolates = G(\, i1, 1) percolates.

e Prove percolation in the discrete model via Peierls argument and 1-dependence structure.



AB Random Geometric Graphs : Connectivity

od > 2. 777(11) and 777(12) be independent homogenous Poisson point processes of intensity n in U = [0, 1]
(Toroidal metric).

e AB Random geometric graph : G,,(m,r) := (PW, E,(m,7)) ;

n

(X;, X;) € E,(m,r)ifd(X;,Y) <r,dX;,Y)<r, forsomeY € P?.
e Aim : Study connectivity threshold in G,,(cn, 1) as n — oo for ¢ > 0.

e Radius regime: 6; = ||Bo(1)||, volume of unit ball. 5 > 0.

ra(c, B) = (MY :

cnby

Lemma : W,,(r,(c, 3)) be the number of isolated nodes in G,,(cn, ,,(c, B)). There exists 1 < ¢o(2) < 4 and
co(d) = 1,d > 3 such that
E(W,.(r,(c,3))) — B for ¢ < cy(d),

E(W,(r.(c,3))) — oo for ¢ > 27



Connectivity Threshold

Proposition : M,, :=sup{r > 0: W, (r) > 0}. For 0 < ¢ < ¢y(d),

Wi(ra(c, 8)) = Po(B),
P(M, <r,(c,[)) — e P,

Theorem : oy, (c) := inf{a : G,,(cn, air,(c,1))is connected}. Then almost surely,

liminf o, (c) > 1,
for any ¢ < ¢y(d), and for any ¢ > 0,
lim sup a,(¢) < a(ce),

n—oo

1\ d
where a(c) < (1 + %) for d > 2 with equality for d > 3.



Random Geometric Graphs :

Random geometric graph : G,,(R) := (P, E,(R)) ; (X;, X;) € E,(R)if d(X;, X;) < R.

n

Radius Regime :

Ru(B) = (M)

n@d

Connectivity Threshold : o := inf{a : G, (a1R,(1)) is connected}.

lim o) = 1.

n—:~o0




Proof of Lemma :

n E(exp(—cnl||Bo(r) N C(n,r)||)) =n E(exp(—cnwr?‘(l — V(T)))) :

where V (1) =1 — ||BO(T3T:§(”’T)“ with C(n, ) := Uy o0 Bx,(r).

Estimate P (V' (1) > 0); Better estimates in d = 2.
Stein-Chen method for Poisson approximation = Proposition.

Proof of Theorem : For a > «/(c), there exists A > 1 such that w.h.p. the following happens :

X1, X, € PY | X, — X5| < AR, (1), then < X, X, >€ E,(cn,ar,(1)).
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