PERCOLATION AND CONNECTIVITY IN AB RANDOM GEOMETRIC GRAPHS by

Home Page

Contents

••

►

Page 1 of 13

Go Back

Full Screen

Close

Quit

D. YOGESHWARAN Ecole Normale Superieure - INRIA, Paris.

joint work with SRIKANTH K. IYER, Dept. of Mathematics, IISc, Bangalore.

Random Geometric Graphs

Drop points on the plane ; Link any two points within a distance r.

Home Page

Title Page

••

Page 2 of 13

Go Back

Full Screen

Close

Quit

▲

AB Random Geometric Graphs

Drop two set of points on the plane. Link any two points of the different type within a distance r.

Home Page

Title Page

Contents

▲

••

•

Page 3 of 13

Go Back

Full Screen

Close

Quit

Motivation

- Frequency division half duplex transmission scheme : Nodes have two choices of transmission-reception frequency (f_1, f_2) or (f_2, f_1) .
- Multi-level Node deployment : Air-borne nodes and ground-level nodes. Communication barred between nodes at same level.
- Secure communication : Tagged nodes broadacast a key and normal nodes which receive the same key can communicate.

Home Page

Title Page

Contents

••

•

Page 4 of 13

Go Back

Full Screen

Close

•

AB Boolean model : Percolation

- $d \ge 2$. $\Phi^{(1)} = \{X_i\}_{i\ge 1}$ and $\Phi^{(2)} = \{Y_i\}_{i\ge 1}$ be independent Poisson point processes in \mathbb{R}^d with intensities λ and μ respectively.
- Boolean Model: $G(\lambda, r) := (\Phi^{(1)}, E(\lambda, r)); \langle X_i, X_j \rangle \in E(\lambda, r) \text{ if } |X_i X_j| \le 2r.$
- Percolation in a graph \Rightarrow existence of an infinite connected subset of points.
- For Boolean model, percolation \equiv existence of unbounded connected (topological) subset in $\cup_i B_{X_i}(r)$.
- There exist $0 < \lambda_c(r) < \infty$ such that $G(\lambda, r)$ percolates a.s. iff $\lambda > \lambda_c(r)$.
- AB Boolean Model : $G(\lambda, \mu, r) := (\Phi^{(1)}, E(\lambda, \mu, r))$;

Home Page

Title Page

Contents

Page 5 of 13

Go Back

Full Screen

Close

Quit

••

- $\langle X_i, X_j \rangle \in E(\lambda, \mu, r) \text{ if } |X_i Y| \leq 2r, |X_j Y| \leq 2r, \text{ for some } Y \in \Phi^{(2)}.$
- Critical Intensity : $\mu_c(\lambda, r) := \sup\{\mu : \mathsf{P}(G(\lambda, \mu, r) \text{ percolates}) = 0\}.$

Percolation Results

Simple bounds :

- $\mu_c(\lambda, r) \ge \lambda_c(r) \lambda.$
- $\mu_c(\lambda, r) = \infty$, if $\lambda \leq \lambda_c(2r)$.

Theorem : d = 2. $\lambda > \lambda_c(2r)$ iff $\mu_c(\lambda, r) < \infty$.

Proposition $d \geq 2$.

- 1. For λ large, $\mu_c(\lambda, r) < \infty$. (i.e, Phase transition for all $d \geq 2$).
- 2. For λ large, there exists a $p(\lambda) < \frac{1}{2}$, such that $G(p\lambda, (1-p)\lambda, r)$ percolates a.s., for all $p \in (p(\lambda), 1-p(\lambda))$.

Giant component is unique.

Part (1) of the Proposition holds true for more word percolation i.e, percolation models with k types of point processes.

AB Boolean model is equivalent to word percolation with k = 2.

Quit

Home Page

Title Page

Contents

Page 6 of 13

Go Back

Full Screen

Close

••

- Fir r_1 such that $\lambda > \lambda_c(2r_1)$.
- $A_e = \{ G(\lambda, 2r_1) \text{ has left-right crossing and top-down crossing in the last boxes} \}.$
- B_e = each pair of balls with non-empty intersection in $G(\lambda, 2r_1)$, when expanded to balls of radius 2r contain at least one point of $\Phi^{(2)}$.
- Note that $A_e B_e$ percolates $\Rightarrow G(\lambda, \mu, r)$ percolates.
- Prove percolation in the discrete model via Peierls argument and 1-dependence structure.

Home Page

Title Page

Contents

Page 7 of 13

Go Back

Full Screen

Close

••

AB Random Geometric Graphs : Connectivity

- $d \ge 2$. $\mathcal{P}_n^{(1)}$ and $\mathcal{P}_n^{(2)}$ be independent homogenous Poisson point processes of intensity n in $U = [0, 1]^d$ (Toroidal metric).
- AB Random geometric graph : $G_n(m, r) := (\mathcal{P}_n^{(1)}, E_n(m, r))$; $\langle X_i, X_j \rangle \in E_n(m, r) \text{ if } d(X_i, Y) \leq r, d(X_j, Y) \leq r, \text{ for some } Y \in \mathcal{P}_m^{(2)}.$
- Aim : Study connectivity threshold in $G_n(cn, r)$ as $n \to \infty$ for c > 0.
- Radius regime: $\theta_d = ||B_O(1)||$, volume of unit ball. $\beta > 0$.

Home Page

Title Page

Contents

Page 8 of 13

Go Back

Full Screen

Close

Quit

••

$$r_n(c,\beta) = \left(\frac{\log(n/\beta)}{cn\theta_d}\right)^{\frac{1}{d}}.$$

Lemma : $W_n(r_n(c,\beta))$ be the number of isolated nodes in $G_n(cn, r_n(c,\beta))$. There exists $1 < c_0(2) < 4$ and $c_0(d) = 1, d \ge 3$ such that $\mathsf{E}(W_n(r_n(c,\beta))) \to \beta$ for $c < c_0(d)$,

$$\mathsf{E}(W_n(r_n(c,\beta))) \to \infty \quad \text{for} \quad c > 2^d.$$

Connectivity Threshold

Proposition :
$$M_n := \sup\{r \ge 0 : W_n(r) > 0\}$$
. For $0 < c < c_0(d)$,
 $W_n(r_n(c,\beta)) \stackrel{d}{\Rightarrow} Po(\beta)$,
 $\mathsf{P}(M_n \le r_n(c,\beta)) \to e^{-\beta}$.

Theorem : $\alpha_n(c) := \inf\{a : G_n(cn, a^{\frac{1}{d}}r_n(c, 1)) \text{ is connected}\}.$ Then almost surely, $\liminf_{n \to \infty} \alpha_n(c) \ge 1,$

for any $c < c_0(d)$, and for any c > 0,

 $\limsup_{n \to \infty} \alpha_n(c) \le \alpha(c),$

where $\alpha(c) \leq \left(1 + \frac{c^{\frac{1}{d}}}{2}\right)^d$ for $d \geq 2$ with equality for $d \geq 3$.

Quit

Home Page

Title Page

Contents

•

►

Page 9 of 13

Go Back

Full Screen

Close

4•

Random Geometric Graphs :

Random geometric graph : $G_n(R) := (\mathcal{P}_n^{(1)}, E_n(R))$; $\langle X_i, X_j \rangle \in E_n(R)$ if $d(X_i, X_j) \leq R$.

Radius Regime :

$$R_n(\beta) = \left(\frac{\log(n/\beta)}{n\theta_d}\right)^{\frac{1}{d}}.$$

Connectivity Threshold : $\alpha_n^* := \inf\{a : G_n(a^{\frac{1}{d}}R_n(1)) \text{ is connected}\}.$

 $\lim_{n\to\infty}\alpha_n^*=1.$

Quit

Home Page

Title Page

Contents

••

••

Page 10 of 13

Go Back

Full Screen

Close

Proofs :

Proof of Lemma :

$$\mathsf{E}(W_n(r)) = n \ \mathsf{E}(\exp(-cn\|B_O(r) \cap \mathcal{C}(n,r)\|)) = n \ \mathsf{E}(\exp(-cn\pi r^2(1-V(r)))),$$

where
$$V(r) := 1 - \frac{\|B_O(r) \cap \mathcal{C}(n,r)\|}{\pi r^2}$$
 with $\mathcal{C}(n,r) := \bigcup_{X_i \in \mathcal{P}_n^{(1)}} B_{X_i}(r)$.

Estimate P (V(r) > 0); Better estimates in d = 2.

Stein-Chen method for Poisson approximation \Rightarrow Proposition.

Proof of Theorem : For $a > \alpha(c)$, there exists A > 1 such that w.h.p. the following happens : $X_1, X_2 \in \mathcal{P}_n^{(1)}, |X_1 - X_2| \le AR_n(1)$, then $\langle X_1, X_2 \rangle \in E_c(cn, ar_n(1))$.

Quit

Home Page

Title Page

Contents

▲

••

•

Page 11 of 13

Go Back

Full Screen

Close

References

Home Page

Title Page

Contents

•••

►

Page 12 of 13

Go Back

Full Screen

Close

Quit

••

Srikanth K. Iyer and D. Yogeshwaran (2010). Percolation and Connectivity in AB Random Geometric Graphs. arXiv : 0904.0223.

> Meester, R. and Roy, R. (1996). Continuum Percolation.

Penrose, M. (2002). Random Geometric Graphs.

