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1. Statistical mechanics of zeros



Joint density of zeros
I Gaussian entire function FR

FR(z) =
∑
n≥0

ξn
(Rz)n√

n!
, ξn i.i.d. Gaussians.

I Density of zeros (zj)j of Taylor polynomial PN,R :

fN,R(z1, . . . , zN) =
1

ZN,R

∏
1≤j<k≤N |zj − zk |2(
‖Qz‖2

L2(e−R2|w|2 )

)N+1
,

where Qz =
∏

j(z − zj), and ZN,R explicit normalizing

constant. Here scaling is N = αR2.

I Compare with two-dimensional Coulomb system/Ginibre

gN,R(z1, . . . , zN) =
1

ZN

∏
1≤j<k≤N

|zj − zk |2
N∏
j=1

e−R
2|zj |2



Notation

The logarithmic potential

Uµ(z) =

∫
log |z − w |dµ(w).

In the sense of distributions

(2π)−1∆Uµ = µ.

The energy (with discrete analogue) is

Σ(µ) =

∫
log

1

|z − w |
dµ(z)dµ(w) = −

∫
Uµdµ

Σ∗(µz) = N−1
∑
i 6=j

log
1

|zi − zj |
,

where µz = 1
N

∑
j δzj .



Statistical mechanics of zeros

I Zeitouni-Zelditch: The logarithm of the confining term

1

N2
log
(
‖Qz‖2

L2(e−R2|w|2 )

)N+1
� 1

N
log

∫
C
e2N
(
Uµ

z (w)− |w|
2

2α

)
dA(w)

where µz = N−1
∑

j δzj , can be approximated by

2Bα(µ) = 2 sup
w∈C

(
Uµ(w)− |w |

2

2α

)
.

I The Vandermonde determinant gives energy term N2Σ∗(µz)

I LDP with rate function (energy functional)

Iα(µ) = Σ(µ) + 2Bα(µ).



The extremal problem on the hole event

Interested in spatial distribution of zeros of PN,R(z), given

HN,R(G) =
{
PN,R(z) 6= 0 for z ∈ G

}
.

with N = αR2 and α large.

Problem. Find minimizer µ0 = µα,G of

Iα(µ) = Σ(µ) + 2Bα(µ)

among all probability measures µ with µ(G) = 0 for large α.



A simple reformulation

The confining term

Bα(µ) = sup
z∈C

(
Uµ(z)− |z |

2

2α

)
.

measures deviation from unconstrained minimizer.

Lemma. The constrained minimization of Iα is equivalent to:
minimizing Σ(µ) under constraint µ(G) = 0 and

Uµ(z) ≤ 1
2α |z |

2 + c0, equality for |z | large

I The constant c0 independent of G for α large enough.



3. Some words on the Ginibre
ensemble



The functional for Ginibre

The functional for the Ginibre ensemble:

Jα(µ) = Σ(µ) + α−1

∫
C
|z |2dA(z).

Minimizer µ0 among µ with µ(G) = 0 (cf. Adhikari-Reddy).

Fact from classical potential theory.
Equivalent to find the unconstrained extremal measure

JQ,α(µ) = Σ(µ) + 2α−1

∫
C
Q(z)dA(z)

where Q is the potential

Q(z) =

{
1
2 |z |

2, z ∈ Gc

+∞, z ∈ G.



The hole event for Ginibre and Brownian motion

Suppose G ⊂
√
αD (important!). Explicit modification of the

unconstrained solution U0:

U(z) = 1GPG [U0] + 1GcU0.



The hole event for Ginibre and Brownian motion

The optimal measure takes the form

µ0 = µeq1Gc +

∫
G
ωG(w , ·)dµeq(w)



4. Main results



Subharmonic functions domains

Sub-mean value property. If u is subharmonic (∆u ≥ 0) on a
disk D around z0, then

u(z0) ≤ 1

|D|

∫
D
u(z)dA(z)

If Dj are disjoint disks centered at zj , then rearranging gives∫
∪jDj

u(z)dA(z) ≥
∑
j

|Dj |u(zj)



Quadrature domains

Definition. Ω is a quadrature domain with respect to
ν =

∑
j ρjδλj , if for bounded subharmonic u,∫

Ω
u(z)dA(z) ≥

∑
j

ρju(λj)

I For each finitely supported ν, there exists a unique Ων

I Also known as smash sum of ∪jD(λj ,
√
ρj)



Quadrature domains

Definition. Ω is a quadrature domain with respect to
ν =

∑
j ρjδλj , if for bounded subharmonic u,∫

Ω
u(z)dA(z) ≥

∑
j

ρju(λj)



The forbidden region

Recall that whenever G is disk-like, the conditional limiting zero
distribition on the hole event has a circular forbidden region.

Proposition

A general extremal measure µα,G also has an associated forbidden
region.

Q. What is the shape?



General Jordan holes

Theorem
Assume that ∂G is a C 2-smooth simple Jordan curve. Then there
exists a finitely supported measure ν =

∑
λ∈Λ ρλδλ, such that the

forbidden region is the quadrature domain Ω = Ων .

Specifically, the limiting conditional zero density is

dµ =
∑
λ∈Λ

ρλdω(λ, ·,G) + χC\Ων
dA. (1)

I Algebraic boundary of Ω (a priori expect only piecewise Cω)

I Geometric connection G ∼ Ω remains unknown



4. Notions from potential theory



Dirichlet energy

The Dirichlet energy is (u ∈ H1(Ω) = W 1,2(Ω))

D(u) =

∫
Ω
|∇u|2dA.

Remark. Assume that Uµ and ∇Uµ are fixed on ∂Ω. Then

Σ(µ) = −
∫

Ω
Uµdµ = − 1

2π

∫
Ω
Uµ∆Uµ

=
1

2π

∫
Ω
∇Uµ · ∇Uµ −

∫
∂Ω

Uµ∂nU
µdσ

=
1

2π
D(Uµ) + C



The Poisson extension as an extremal function

The Poisson extension of f to Ω solves

inf
{
D(u) : u ∈ H1(Ω), u = f on ∂Ω

}
.

Indeed, let u0 be the energy minimal solution. Comparing u0 with
uε = u0 + εϕ (ϕ test function) we see that

D(uε) = D(u0) + 2ε

∫
∇u0 · ∇ϕ+ O(ε2)

Hence we must have ∫
∇u · ∇ϕ = 0,

which says ∆u = 0 in the sense of distributions.



The obstacle problem

Denote by D a domain, ψ a function on D and f a boundary
datum.

The obstacle problem. Minimize

D(u) =

∫
D
|∇u|2dA

among all u ∈ H1(D) with

u ≤ ψ, u = f on ∂D.

Remark. u is subharmonic and ∆u = 0 when u < ψ. In fact
(u − ψ)∆u = 0 characterizes the solution (∆u = ∆ψ1{u=ψ}).



The obstacle problem

Solution to the obstacle problem (left) with obstacle −|z |2 and
Dirichlet boundary datum on a square, and the associated
coincidence set (right)1

1FEniCS (numerics) and ParaView (graphics)



Mixed obstacle prolem

I Mixed obstacle: solution u0 contrained by u ≤ ψ on D and
u ≤ g on a curve Γ:

I Distributional Laplacian on Γ is given by the jump of normal
derivative.

I If the thin constraint is restrictive enough on ∂G, then u0 is
automatically harmonic inside.



Lemma (An implicit obstacle problem)

There exists a g = gα,G ∈ H
1
2 (∂G) such that the minimizer µ0 for

the hole problem on G is the Laplacian of the solution u0 to

inf

∫
D
|∇u|2dA,

among all u ∈ H1(D) with constraints

u(z) ≤ |z|
2

2 , u(z) = |z|2
2 on ∂D, u ≤ g on ∂G.

Remark
This implies existence of a forbidden region and gives the structure
of µ0



5. A family of examples



Neumann ovals

Figure: Nodes at ±1, growing symmetric masses



A trivial example

Figure: Two disjoint disks, forbidden regions disjoint disks



An example

Figure: Two disjoint disks, forbidden region turns to Neumann oval



An example

Figure: Two disjoint disks, forbidden region turns to Neumann oval



An example

Figure: Two disjoint disks, forbidden region turns to Neumann oval



An example

Figure: The inner oval is disk-like


