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Let f1, . . . , fp be random variables with nice
distributions. When does

f = max(f1, . . . , fp)

have a bounded distribution density %f and when is
%f of bounded variation, i.e., %f ∈ BV ?
The latter is slightly weaker than %′f ∈ L1(R).



Of particular interest: fi linear, quadratic forms,
second order polynomials in Gaussian r.v.
TRIVIAL:

h−1P(f ∈ [t, t + h)) ≤ h−1P(∪i{fi ∈ [t, t + h)})

≤
∑

i

h−1P(fi ∈ [t, t + h)) ≤ pM

if the distribution density of fi is bounded by M .
OF INTEREST: bounds independent of p.

Set µ ◦ f −1(B) := µ(f −1(B))



Theorem 1. Let f be a Borel function on Rd

homogeneous of order α > 0 (i.e., f (tu) = tαf (u),
t > 0), f (u) ≥ m > 0 on the unit sphere, µ a Borel
probability measure on Rd represented as the
product of a probability measure σ on the unit
sphere and a probability measure ν on (0, +∞). If
the function tα has a bounded distribution density
%ν,α with respect to ν, then µ ◦ f −1 has a bounded
distribution density %f and

%f ≤ m−1 sup
t

%ν,α(t).



Corollary 2 The hypotheses of the theorem about
µ are fulfilled if µ is the standard Gaussian measure
γd on Rd (with density (2π)−d/2 exp(−|x |2/2)) and
α ≤ d . In this case

%f ≤ C (α)m−1d (1−α)/2,

where C (α) depends only on α.



Corollary 3 Let µ = γd and

f = max(Q1, . . . , Qp),

where Qj are positive definite quadratic forms on Rd

with d > 1 such that the maximum of their minimal
eigenvalues is m > 0. Then the distribution density
%f of f does not exceed C (d)/m, where C (d)
depends only on d and is the maximum of the
distribution density of χ2

d . In particular,
%f ≤ Cd−1/2 with some absolute constant C .



BOUNDEDNESS OF VARIATION AND
SOBOLEV REGULARITY

Let W 1,k(R) denote the Sobolev class of functions
u ∈ L1(R) on the real line such that the derivative
of u of order k − 1 is absolutely continuous and
u(k) ∈ L1(R). The usual norm on W 1,k(R): by

‖u‖W 1,k = ‖u‖L1 + · · ·+ ‖u(k)‖L1.



The class BV consists of functions u ∈ L1(R) on
the real line such that the generalized derivative of
u is a bounded measure Du. The natural norm on
BV is defined by

‖u‖BV = ‖u‖L1 + ‖Du‖.

The class V k(R) with k > 1 consists of functions
u ∈ L1(R) such that u′, . . . , u(k−1) are in L1(R) and
u(k−1) ∈ BV . Its natural norm is

‖u‖L1 + · · ·+ ‖u(k−1)‖L1 + ‖Du(k−1)‖.



Let f be a Borel function on Rd homogeneous of
order α.
Theorem 4. If f 6= 0 a.e., then γd ◦ f −1 has a
density %f with

%f (t) ≤
C1(d , α)

|t|
.

If α < d/k and ∫
Sd−1

dθ

|f (θ)|k
< ∞,

then %f ∈ W 1,k . If α = d/k , then %f ∈ V k(R).



Theorem 5. Let µ be a measure on Rd with
density % ∈ W 1,1(Rd). Assume that

1

f
∈ L1(µ) and

1

f

〈∇%

%
, x

〉
∈ L1(µ).

Then %f ∈ BV .



Corollary 6. Let f be as in the previous theorem
and µ = γd . Let α < d and
m = inf{|f (θ)| : |θ| = 1} > 0. Then

‖D%f ‖ ≤ c(d , α)m−1
Q .



Theorem 7. Let f = max{f1, . . . , fp}, where
fj(x) = 〈Ajx , x〉+ 〈xj , x〉+ cj is a second order
polynomial with Aj ≥ a · I. Then

‖%′f ‖TV ≤ 15p2a−1.



Theorem 8. Let γ be a centered Radon Gaussian
measure on a locally convex space X and H its
Cameron–Martin space. One can assume that γ is
the countable power of the one-dimensional
standard Gaussian measure and X = R∞ the space
of all sequences, then H = l2.
Let Q1, . . . , Qp be γ-measurable quadratic forms on
X such that there is a 3-dimensional subspace L in
the Cameron–Martin space H of γ for which
Qj(h) ≥ |h|2H for all h ∈ L. Then
Q = max(Q1, . . . , Qp) has a density of bounded
variation.


