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The world according to Mark



• World War II =⇒ rise in prominence of aerodynamics,

fluid mechanics, solid mechanics, · · ·

• These and allied areas promoted in British science

(Lighthill), come to dominate applied mathematics in

UK

• Relatively less emphasis on other aspects of applied

mathematics, leading to their decline

(Fallout in India.)



Good reasons for the rise of numerical ODE and

PDE, fluid mechanics, · · · :

Classical ‘core’ engineering areas: mechanical, civil,

chemical, electrical power, metallurgy, aerospace

Deal with: materials and energy generation, storage,

distribution, utilization



‘Physics’ of the tasks calls for the mathematics of above

flavor

=⇒ these strands of mathematics form the

core ‘engineering mathematics’ courses

(cf. books by Thomas, Kreyszig)

Typical fare: matrices, multivariable calculus, basic com-

plex analysis, transforms, linear ODE solved by trans-

form techniques or by plugging in series, elementary PDE

(e.g., separation of variables), some discrete probability



The other side of engineering

Generation, storage, distribution and utilization

of information ≈ abstract symbols (‘signals’)

Primary customers:

Electrical engineering: control and communications

Computer science and information technology

Industrial engineering and operations research



ISSUES:

1. Training for these is available in courses that are at

best scattered and not cohesively organized. It is

rare that such tracks are even flagged as a legitimate

strand.

2. Not much guidance or direction is available for

interested students at undergraduate level, exposure is

often left to chance. Paucity of expository or popular

material.



Consequence:

1. low awareness of modern developments in many of

these areas among students and faculty, major devel-

opments passing us by

2. activity mainly in engineering departments with more

utilitarian focus. In comparison, the activity in mathe-

matics community is low in numbers, often ‘fossilized’

≈ trapped in a time bubble, expended on contrived,

tangential problems (More on this later)



3. high quality activity on these themes in mathematics

community is sporadic and scattered, hardly a com-

munity. Falls between two stools: not much support

from either the pure mathematics community or the

traditional applied mathematics community



Three examples:

1. Crawling for ephemeral content

2. ‘Gossip’ type algorithms

3. Rumour source detection



Problem 1:

Crawling for ephemeral content

(joint with K. Avrachenkov, INRIA,

supported by IFCPAR)



Some news items:

• ’Just for animals’ terminal at JFK Airport

• Half of Britain does not believe in God

• Messi motivates me to scale greater heights: Ronaldo

• Cyrus Broacha bonds with son over cricket



‘Ephemeral content’:

Web content of immediate interest, but interest

rapidly decays with time.

Problem:

How to schedule web crawlers to capture

ephemeral web content?



THE MODEL (Empirically validated)

1. Xi(n) := ‘web content’ at location i at time n,

1 ≤ i ≤ N .

2. αi ∈ (0,1) decay rate of ‘interest’

3. ui := mean arrival rate of ‘content’ per epoch



Then the dynamics is:

Xi(n+ 1) = αiXi(n) + ui if not crawled,

Xi(n+ 1) = ui if crawled.

Control variable: vi(t) = 1 if crawled, 0 otherwise.



Objective: Maximize average reward

lim sup
t↑∞

N∑
i=1

1

t

t∑
m=0

Xi(m)vi(m)

subject to

N∑
i=1

vi(m) = M ∀ m ≥ 0.



This problem is hard, so use the Whittle

relaxation:

(per stage constraint→ time-averaged constraint)

lim
t↑∞

N∑
i=1

1

t

t∑
m=0

vi(m) = M.

This is an instance of ‘restless bandits’.



Multi-armed bandits:

N processes (Markov chains), out of which M < N can

be operated at a time (‘active’ arms), while the rest

remain frozen (‘passive’ arms).

Problem:

Optimal scheduling



Typical solution: ‘index rule’ (Gittins): to each process

is assigned a state-dependent index, use the bandit with

the maximum index. (Optimal)

Restless bandits: Passive bandits drift according to

a neutral dynamics.

Only a heuristic is available, even after relaxing the rigid

condition of ‘M out of N ’ to ‘M out of N on average’.



Whittle index:

Consider the ‘M out of N on average’ version.

For each process i, introduce subsidy λi for

remaining passive.

If the set of states at which it is optimal to remain

passive monotonically increases from ‘none’ to ‘all’

as the subsidy increases from −∞ to ∞ for each i,

the problem is Whittle indexable.



Whittle index of i = the λi at which active and passive

are equally desirable, as a function of state.

Index policy: Operate top M according to diminishing

order of indices

This is suboptimal, but asymptotically optimal as N ↑ ∞

(Weiss-Weber).

Known to perform well in practice.



Some applications:

Sensor scheduling

Multi-UAV coordination

Congestion control

Cognitive radio

Real time wireless multicast



Intuition:

• Consider the ‘M out of N on the average’ problem

with the latter cast as an additional average cost con-

straint.

• This makes it a ‘constrained Markov decision process’.

• Important special feature: separable cost and

separable constraint.



• Consider the standard ‘LP formulation’ in terms

of occupation measures: Maximize

∑
i

∫
fidµi s.t.

∑
i

∫
gidµi ≤ C.

• Use Lagrange multiplier to formulate the equivalent

unconstrained problem: Maximize

∑
i

∫
(fi − λgi)dµi.



• Separability of cost and constraint =⇒ given the

Lagrange multiplier λ, the problem decouples

• Each separate average cost control problem involves

a binary decision variable:

to be or not to be (active / passive)

=⇒ decision boundary comes from an inequality of the

type ‘a function of state ≤ λ’ specifying the passive

states.



• Whittle indexability =⇒ the feasible set of this

inequality (passive set) increases from empty set

to the whole space as λ ↑ ∞.

• This suggests that for any single process, the value of

λ for which active and passive modes become equally

desirable is a measure of selection for activity.

(λ can be interpreted as ‘subsidy for passivity’)



• Set ‘Whittle index’ := the value of λ for which this

equality is achieved, as a function of state for each

process.

• Whittle’s heuristic: Choose the top M according to

decreasing value of indices for the current profile of

state variables.



Back to crawling

For the crawling problem, let

ζi(x) :=

log+
αi

ui − (1− αi)x
αiui

 .

Then the Whittle index is (for non-boundary cases)

γi(x) := (1+ζi(x)((1−αi)x−ui)+

αζi(x)
i +

1− αζi(x)
i

1− αi


ui.

‘Boundary cases’ (always/never crawl) can be treated

separately.



Proof technique:

1. Consider a separate unconstrained control problem

with subsidy for each i.

2. Consider ‘discounted reward’
∑
n β

nE[· · ·], β ∈ (0,1),

and establish the corresponding dynamic program-

ming equation.

3. Justify the ‘average reward dynamic programming

equation’ for each i by the ‘vanishing discount’

argument. (Uses ‘coupling’ argument.)



4. Check that the corresponding ‘value function’ is

monotone increasing and convex, and also has the

‘increasing differences’ property:

V (λ+ a, x+ b)− V (λ+ a, x) ≥ V (λ, x+ b)− V (λ, x)

for a, b > 0.

5. Get threshold policy: passive up to a level, then

active, with threshold monotone with λ.

=⇒ Whittle indexability.



6. Use the definition of Whittle index and the dynamic

programming equation to derive the Whittle index as

a function of state.

(Not always possible =⇒ need computational schemes

for its approximate evaluation of Whittle indices.)



Problem 2:

‘Nonlinear’ gossip

(joint with A. Mathkar, Goldman Sachs,

supported by DST)



STOCHASTIC APPROXIMATION

Consider the Robbins-Monro scheme in Rd:

x(n+ 1) = x(n) + a(n)[h(x(n)) +M(n+ 1)].

Here:

• h : Rd 7→ Rd Lipschitz,

• {M(n)} a martingale difference sequence w.r.t.

Fn := σ (x(m),M(m),m ≤ n) , n ≥ 0, i.e.,

E [M(n+ 1)|Fn] = 0.



Also, there exists K ∈ (0,∞) such that

E
[
‖M(n+ 1)‖2|Fn

]
≤ K

(
1 + ‖x(n)‖2

)
.

• Step-sizes a(n) > 0 satisfy:

∑
n
a(n) =∞,

∑
n
a(n)2 <∞.



‘ODE Approach’ (Derevitskii-Fradkov-Ljung)

View the iteration as a noisy discretization of the ODE

ẋ(t) = h(x(t)), t ≥ 0.

This is well posed under our hypotheses.

Definition: A set A is invariant if

x(0) ∈ A =⇒ x(t) ∈ A ∀ t ∈ R.



Definition (continued):

A is Internally Chain Transitive if given any x, y ∈ A,

and ε > 0, T > 0, we can find n ≥ 1, and

x0, x1, · · · , xn−1, xn = y ∈ A

such that ‖x − x0‖ < ε and for 0 ≤ i < n, the trajectory

xi(t), t ≥ 0, of

ẋi(t) = h(xi(t)), xi(0) = xi,

satisfies ‖xi(t)− xi+1‖ < ε for some t ≥ T .



Benaim’s theorem:

If supn ‖x(n)‖ <∞ a.s., then x(n)→ a compact

connected nonempty internally chain transitive

invariant set of the ODE, a.s.

(Starting point for finer results using problem specifics)



THE TSITSIKLIS MODEL

• ‘Agents’/processors placed at the nodes of an

irreducible directed graph G with node set V with

|V| := N and edge set E. N (i) := {i’s neighbors}.

• For i ∈ V and P = [[p(j|i)]] stochastic, G-compatible,

xi(n+ 1) =
∑
j
p(j|i)xj(n) +a(n)[h(xi(n)) +Mi(n+ 1)].



• At each instant, every node takes,

– a weighted average of its neigbhbors’ values

(‘gossip’ component), and,

– adds a correction based on its own computation

(‘learning’ component).

• Delays, asynchrony, etc. (shall worry about it later).

Similar models (albeit in continuous time, possibly

‘second order’) in synchronization, flocking/coordination,

· · ·.
Objective: CONSENSUS



Usual approaches:

• Product of (possibly random) stochastic matrices

(Chatterjee-Seneta, etc.)

• ‘Coupling from the past’

Alternative viewpoint:

• View the iteration as a slowly vanishing regular

perturbation of vanilla gossip =⇒ two time scales



• ‘Gossip’: a marginally stable system with one dimen-

sional invariant subspace (= the Perron–Frobenius

eigenvector)

• Convergence to the invariant subspace (consensus) +

selection via the slower dynamics



I: quasi-linear case

For each i ∈ V, consider the d-dimensional iteration

xi(n+ 1) =
∑

j∈N (i)
px(n)(j|i)xj(n) +

a(n) [hi(xi(n)) +Mi(n+ 1)] .

Here, Px is an irreducible stochastic matrix where

x 7→ Px is Lipschitz, with (min)+
j px(j|i) ≥∆ > 0.



For a fully distributed algorithm, the ith row of

Px(n) should depend only on xj(n), j ∈ N (i) ∪ {i}.

We use x(n) without loss of generality.

Can also have hi(x(n)) instead of hi(xi(n)).



Let πx := the unique stationary distribution under Px.

CONSENSUS:

if supi,n ‖xi(n)‖ <∞ a.s., then

‖xi(n)− xj(n)‖ → 0 a.s.

(Not surprising, standard arguments work.)



MAIN RESULT (d = 1):

Let A := {c1 : c ∈ R}. Let x(n) = [x1(n), · · · , xN(n)]T .

If supi,n ‖xi(n)‖ <∞ a.s., then almost surely,

x(n)→ A0 := an internally chain transitive invariant set

of N-fold copy of the ODE

ẏ(t) =
∑
k
πy(t)1(k)hk(y(t)), t ≥ 0,

contained in A.



General case: Define

A := {x = [(x1)T : · · · : (xN)T ]T ∈ Rd×N :

xi = [xi1, · · · , xid]
T ,1 ≤ i ≤ N ; xik = x

j
k ∀ i, j}.

Consider

ẏ(t) =
N∑
i=0

πψ(y(t))(i)hi(y(t)).

where ψ(y) := [yT : yT : · · · : yT ]T for y ∈ Rd.

Then A is invariant under this dynamics.



Theorem supn ‖xn‖ < ∞ a.s. =⇒ x(n)
n↑∞→ a compact

connected non-empty internally chain transitive invariant

set A0 ⊂ A of the N-fold product of the above dynamics,

a.s.

(That is, dynamics in RN wherein each component

satisfies the above o.d.e.)

Stronger results possible for special cases

(e.g., convergence for d = 1!)



Example: Consider hi = −∇f ∀i. Let |N (i)| = M ∀i
and for a prescribed T > 0 (‘temperature’)

px(j|i) =
1

M
e−

(f(xj)−f(xi))+

T , j ∈ N (i),

= 0, j /∈ N (i), j 6= i,

= 1−
∑

k∈N (i)
px(k|i), j = i.

Then

πx =
e−

f(xi)
T

∑
j e
−
f(xj)

T

.



This puts more weight on low values of f

(spatial annealing).

Can think of this scheme as a ‘leaderless swarm’ by

analogy with Particle Swarm Optimization, wherein

each particle uses information from self, neighbors,

and the ‘best so far’, i.e., a leader. Here the last

piece is ‘emergent’ from a distributed gossip.

Another example: Dependence of Px on x due

to mobility.



Some intuition:

Think of this as a two time scale phenomenon:

◦ gossip on fast ‘natural’ time scale n = 0,1,2, · · · · · ·,

and,

◦ learning on the slow ‘ODE’ time scale:

t(0) = 0, t(1) = a(0), · · · , t(n) =
∑n−1
i=0 a(i), · · ·.



Compare with traditional two time scale schemes:

x(n+ 1) = x(n) + a(n)[h(x(n), y(n)) +M(n+ 1)],

y(n+ 1) = y(n) + b(n)[g(x(n), y(n)) +M ′(n+ 1)],

with b(n) = o(a(n)).

In contrast, the two time scales are now a part of the

same iteration.

(akin to ‘Markov noise’:

x(n+ 1) = x(n) + a(n)[h(x(n), Y (n)) +M(n+ 1)].)



Also, a ‘stability test’: Define

g(x) :=
∑
i
πx(i)hi(x),

gc(x) :=
g(cx)

c
for c > 0,

g∞(x) := lim
c↑∞

gc(x),

assumed to exist. Then gc, g∞ are Lipschitz.



Consider the ODE (‘scaling limit’)

ẋ∞(t) = g∞(x∞(t)), t ≥ 0.

If this has the origin as the unique asymptotically stable

equilibrium, then supn ‖x(n)‖ <∞ a.s.

Intuition: Iterates large in absolute value track this o.d.e.

after scaling, hence exhibit stabilizing drift.



II: fully nonlinear case

For each i ∈ V, consider the d-dimensional iteration

xi(n+ 1) = fi(x(n)) + a(n) [hi(xi(n)) +Mi(n+ 1)] .

Here:

• f := [f1, · · · , fN ]T : (Rd)N 7→ (Rd)N is continuous,

and,



• P (x) = limn↑∞ f
(n)(x) (:= f ◦f ◦· · ·◦f , n times) exists,

with the limit being uniform on compacts.

Then

P (P (x)) = P (f(x))

= f(P (x))

= P (x)

∈ C := {x : P (x) = x}.



Assumptions:

1. P is Frechet differentiable with its Frechet derivative

P̄x(·) continuous in x.

2. P̄f(·)h(·) is Lipschitz. (Ideally, should be ‘local’, but

we ignore this issue.)

3. E
[
‖M(n+ 1)‖4|Fn

]
≤ F (x(n)) for some continuous F .



Assume supn ‖x(n)‖ <∞ a.s.

Consider the ODE

ẋ(t) = P̄x(t)(h(x(t))).

MAIN RESULT: x(n)→ a compact connected

nonempty internally chain transitive invariant set of

the above ODE contained in C, a.s.



Example: P := a projection to a convex set,

x(n + 1) = f(x(n)) an iterative scheme for calculating

the projection.

In this case, we get a projected version of the distributed

stochastic approximation scheme.

=⇒ Need distributed scheme for computing projections

on, e.g., intersection of convex sets.

(More on this later.)



Standard issues in distributed computation:

1. Interprocessor delays

2. Asynchrony: not all updates at the same time

3. Updates may be on ‘local clock’



Under suitable modifications, earlier results hold:

1. Bounded delays ‘squeezed out’ (i.e., they lead to asymp-

totically negligible error) due to time scaling (more

generally, conditional moment conditions suffice)

2. Asynchrony / local clocks compensated for by the

choice of stepsize (get back the original limiting ODE

modulo time-scaling)



Application: Projected stochastic approxima-

tion in a convex set C given as intersection of

convex sets {Ci}

Classical approach: projection at each step, leads to the

limiting ODE

ẋ(t) = Π̄x(t)(h(x(t))).

where Π̄ : Frechet derivative of the projection operator

(differential inclusion in case of non-smooth boundaries)

(Kushner-Clark)



Objective: distributed scheme where node i has access

only to Ci

• ‘Fast’ time scale: iterative scheme for computing the

projection to C in a distributed manner

(Distributed Boyle-Dykstra-Han algorithm,

joint work with Soham Phade)



• ‘Slow’ scale: stochastic approximation

Combined scheme can be shown to be stable and

convergent with probability one, and tracks the projected

stochastic approximation scheme as desired

(joint work with Suhail Shah)



Problem 3:

Rumour source detection

(joint work with Ankit Kumar, Samsung,

and Nikhil Karamchandani, IITB,

supported by IFCPAR)



(Shah and Zaman ’11, ’12)

Problem: find the source of rumour given a snapshot of

how far it has spread.

Shah-Zaman approach:

• SI model of spread.

• exact MLE for tree graphs (‘rumour centrality’).



• Apply the same to BFS trees in general graphs.

• Effective heuristics for sparse graphs.

• Sophisticated asymptotics for random graphs.



Alternative model:

• Partial pairwise influence data available.

• Assume all compatible spread patterns equally likely.

• Find the node with the largest number of compatible

spread patterns.



Our approach:

• Use Markov chain tree theorem:

stationary distribution of a node is proportional to

sum of weights of arborescences∗ rooted in it, where

the latter is the product of edge weights (transition

probabilities) associated with the arborescence

∗maximal rooted trees with at most one outgoing edge

per node



• Stationary distribution for random walk on a

connected undirected graph is proportional

to its degree

=⇒

• Ranking based a quantity proportional to the number

of arborescences rooted at a node
(
∝ π(i)

d(i)

)
.

Nontrivial pre-processing (pruning) required.



• adapt Aldous’s algorithm based on Markov Chain Monte

Carlo (MCMC) for counting spanning trees in order

to estimate the rumour source

(Another option: Wilson’s algorithm)



Good performance observed for :

• dense graphs (Shah-Zaman scheme based on ‘most

likely (BFS) tree’, works well in the sparse case)

• mismatched models (e.g., ‘Big Fat Tree’ algorithm

for IC model applied to SI model)

Reason: model-free, uses only counting (does not use

timing information)



Extension to the harder case when information non-local,

i.e., of the form ‘i infected before j’ where i, j may not

be neighbours: based on rejection sampling.

Above scheme slow, currently trying an ‘arborescence-

valued MCMC’ based on a construct of Anantharam and

Tsoucas, with matrix analytic gimmicks such as the

Sherman-Morrrison-Woodbury formula to simplify

computations. Gives promising results.

(joint with Anand Kalvit, Nikhil Karamchandani)



CODA:

On being trapped in a time bubble –

• There’s more to computational mathematics than

plotting the flow between a cylinder with octahedral

cross-section rotating inside another with oblong

cross-section

( computational topology, high dimensional

optimization, ...)



• There’s more to probability than numerical approx-

imation of the transient response of two queues in

tandem.

(queuing networks, limiting measure-valued processes,

...)



• There’s more to optimization than trivial extensions

of KKT conditions to, say, ‘asymptotically lower

semi-(α, β, γ)-quasi-convex’ functions†.

(semi-definite programming, polynomial optimization,

...)

• There’s more to theory of computation than fuzzy

compact operators applied to the model of a traffic

junction.

(kernel methods, reinforcement learning, ...)
†not to be confused with ‘supercalifragilisticexpialidocious’



• There’s more to graph theory than properties of vertex-

crazy edge-indifferent hypergraphs.

(random graphs, graph limits, ...)

Though exaggerated, these ‘examples’ are not too

far off the mark, as evidenced by submissions one

gets for our mathematics journals.



A PARTING MESSAGE‡:

• new collection of ideas/problems emerging because

of changing technological landscape, e.g., around the

broad theme of ‘networks’ (internet, world wide web,

social networks, sensor networks, robotic swarms, ‘big

data’, · · ·)

• draws upon unconventional mixes of methods from

linear algebra, (high dimensional) probability, statis-

tics, optimization, algorithmic complexity, · · ·
‡cf. Nevanlinna Award speech of Jon Kleinberg



• deserves to be flagged as a distinct new domain of

applied mathematics with associated coursework and

programs

Unless we nurture these under-represented

strands of applied mathematics, several

important modern developments will pass us by.



And while we were busy admiring the spring blossoms,

the caravan passed us by and we were left staring at

the dust in its wake.

– Neeraj (freely translated from Hindi)



THANK YOU

and Best Wishes to Ram !


