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Deterministic Transport Equation

Transport equation: 9:0 + div(pu) = 0, 9|t=0 = 0o0.

Assume that u is incompressible, i.e., divu = 0.
Diperna-Lions'89:
m Let p,p € [1,0], and u € LLWLA(T?), divu = 0.
m For any g € LP(T?), there exists unique distributional solution
0 € LPLE(T), provided ; + £ < 1.
What happens if

1 1 1 1 1
—+=>1 (or—+ - >1+ ).
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Non-uniqueness results by Modena-Sattig-Szekelyhidi,
Brue-Colombo-De Lellis.



Deterministic Transport Equation

@ Result:
W Let p,p € [1,00), and %—i—% > 1+%.
B Given any smooth, mean-zero g, and a smooth divergence free : consider
the set
E ={te|[0, T]: 0o+ div(od) = 0}.

Then there exists o € C°LE, and u € CPL)’i, nc¢e WhP st
B O:o+div(ou) = 0,divu=0inD’.
B o(t) = o(t), and u(t) = a(t) for all t € E.
@ Non-uniqueness:

B Pick a smooth, mean-zero function a, and

0, t e [0, T/3]

=0, p(t,x)= {a(x), t€[2T/3,T)].

B Note that (g, ) is a solution on [0, T/3]U[2T /3, T] C E.
m Existence of a solution s.t. ¢(0) =0, and o(T) = a.



Stochastic Transport-Diffusion Equation

@ Stochastic transport equation:

dp(t, x) + div(u(t,x)p(t,x)) dt = Apdt + G(p)dB(t),

V.-u=0,
p(0,x) = p"(x), x € T9

@ Three different types of noise:

1. additive noise; i.e., G(p)dB = dB where B is a certain GG*-Wiener
process;

2. linear multiplicative noise in Itd's interpretation; i.e., G(p)dB = pdB
where B is a R-valued Wiener process;

3. transport noise in Stratonovich's interpretation; i.e.,
G(p)dB=-%17, (,%_po dB;j where B = (B, ..., By) is a Brownian
motion.

@ Challenges:

B Stochastic perturbation may provide a regularizing effect on problems.
B Whether the noise makes the critical exponent of uniqueness different
B Establish probabilistically strong solutions.



Typical Result: Additive noise

@ Suppose that d > 3, B is a GG*-Wiener process, and

Tr((—A)%'*'2< GG*) < oo for some ¢ > 0.

@ Given T >0, K> 1, and s € (0,1), there exists a P-a.s. strictly positive
stopping time T; such that

PUTL>T}) >~
@ There exist an (Ft)¢>o-adapted process u that is divergence-free such that
u € L(; C([0, Tel; L7 (T9))) N L%(; ([0, Tel; WhP(T9))),
an (Ft)¢>o-adapted process
p € L>(9; C([0, T]; LP(T))),

and p" € LP(T9) that is deterministic such that p solves the underlying
equation.



Proposition
@ lteration Scheme: For all 6 > 0, for all (po, uo, Ro) smooth such that

Otpo + div(poug) = —div Ry
divug =0,

there exists (p1, u1, R1) smooth solves

Otp1 + div(pru) = —divRy
divu; = 0.

@ Additionally, for all t € [0, T]

lp1(t) = po()llp < MIIRo(£)I1}?,
l[ur () — wo(£) | < MIIRo(£)]12/%,

llu1(t) = wo(t)lwrs <6,
[Ru(t)ll1 < 6.

@ Moreover, if Ry(t,-) = 0 for some t € [0, T], then Ry(t,-) =0 and
(o1, u1)(t) = (po, wo)(t)-
@ Idea: use highly oscillatory perturbation to reach p; from pg.



Sketch of the proof

@ Add perturbation:

pr=po+0+0c, ur=up+w-+we

Here 0. is the mean value corrector, and w, is the divergence free corrector.
@ Note that

O¢p1 + div(prur) = —div(w — Rp)
—_———
Rquad

+ div(pow + Qup) + 0:0

Rlin

+ terms containing 0, we := —div R;.

RCO”'
@ Ansatz: Note that Ry(t,x) = 27:1 Ro,j(t, x)e;j
d

6(t,x) = _ sign(Ro ;)| Ro;|"/P& (Ax)
j=1

d
w(t,x) = > [Ro VP W (ax)
j=1



Sketch of the proof

@ Here ® :T9 R, and W/ : T9 — RY are smooth fixed profiles such that
m div(®/ W/) =0, and divW/ =0 .
B O (x)dx=fW/(x)dx =0, f&(x)W/ (x)dx=eg.
m For i # j, Supp©' N SuppW/ = 4.

@ |In literature usually people use Beltrami or Mikado flows.

@ Construction of Mikado flow:
B Choose ¢ € C2(RI~1) with Supp(¢) C (0,1)71, [ =0, and
J % = 1. Periodise and still call it ¢.
B Define

©9(x) := p(x1, %2, , xd—1)

W9(x) == p(x1, %2, , Xd—1)ed



Errors

@ First compute:

d
div(w — Ro) = div (Z Ro;(©&/ (Ax) W/ (Ax) — ej))
j=1
=Y VR, (&)W (Ax) — ¢)
= N~
Slow amplitude Fast oscillating with zero mean value
= div(R24)

@ A suitable inverse divergence operator gives ||R9"24||; =~ O(1/).
@ Sobolev Estimates:

d
Vw =\ Z \R0J|1/p/VWj()\X) + “another lower order term”
j=1

@ Intermittency and difference with Onsager conjecture.
@ Observation: Let ¢ € C°(R?), Supp(v)) C (0,1)?. Define 1), (x) = ¥(ux).
Then

I2ulle = 2= 1y 2V e = w29
@ Change the ansatz: We shall fix a and b such that
eZ(X) = pipu(x, x2, -+ Xd—1)

Wi (x) := 1Pou(xa, xa, -+ xa—1)ed



Errors

It turns out that a=(d —1)/pand b= (d —1)/p’
It is easy to see that

d—1

i _d—1 . b d=1
10, =p"" 7, IWAx)llpy = #
Then we can estimate

[Vwlls < C(Ro)AIVWI5
d—1_d—1

1 .
S P Cans ~ A\u~ 7, for some~y > 0.

. 1,1 1
Here we first assume that 5 + 5 >1+ 7.

@ Note that if <52 — 921 4 1 < 0, then u can kill A. This is where we need the

. pl ,3...
assumption on p and S.

It is not difficult to verify that other error terms 4 LP-type estimates can be
controlled by the above choice of building blocks.



General Case

How to deal with the case %3 + %3 > 1+ %? We need to change Mikado
construction.

Naive choice ~» Not divergence free!
0%(x) == Py (x1, %2, Xd—1,%a)
W (x) == /P g (xa, %0, Xd—1,Xa)ed

Add another highly oscillatory term: Fix ¢? : TY — R such that dq3)¢ = 0,
f¢¥ =0 and fy? =1.

Hd(x) = ud/psou(/\x)ipd('yx)
w?(x) == u? o (Ax)d (7x)eq

We need A\ << 7.
Calculate

divw® = Au?/P (D) (Ax)eq %7 (vx)
——
fast oscillatory with zero mean

Then define the divergence corrector

we = div=(div w)



General Case

@ Estimate for the divergence corrector (Note that div~!(fgy) ~ jllﬁg)

5 Ap
w2 A/ =t =9 o
Y Y

@ Main problem: @W = 9?2 (Ax)(149)?(x)eq is not divergence free!

@ Note that (¢)?)?(yx) has non-zero mean and we can't play the usual
anti-divergence corrector trick!

@ Idea: Allow error to move in time and cancel it with time derivative ~» change
Mikado density ~~ introduce phase speed w:

©1,(x) = n?/Pou(A(x — twey))¥ (7x)
WA (x) = 19" g (A(x — twe))) (1x)e

@ Observe that 9:Q/ + div(&/ W/) = 0, with Q/ := %dgoi()\(x — twej)) (92 (vx).



Final Building Block

@ New Mikado density: @/ (x,t) + Q/(x, t), and velocity W/ (x, t).

@ In this case

(0 + Q) +div((® + Q)W)
= 0:© + 9:Q + div(OW) +div(©Q)
=0
= div(div1(8:0 + div(0Q)))

@ We can estimate:

. Aw
v (@)1 = e

@ Application in NSE: p=p’ =2
Aw = div(Vw)

@ Run the above construction with p=2and =1~ 1/241>1+1/d, i.e,
d>3.



Stochastic Transport-Diffusion
@ Additive noise:
B Consider the heat equation forced by the same noise
dz(t,x) = Az(t,x)dt + dB(t,x), z(0,x)=0
m Consider the random PDE solved by 6(t,x) := p(t, x) — z(t, x)

0:0(t, x) + div(u(t,x)0(t, x)) = AI(t,x) — div(u(t, x)z(t, x)),
V-u=0,0(0,x) = p"(x).

@ Linear multiplicative noise:
m Consider random PDE solved by 0(t, x) := p(t, x)e~B(®)

0:0(t, x)+div(u(t, x)0(t, X))—&-%O(t,x) = Al(t,x), V-u=0, 6(0,x) = p"(x).

@ Transport noise:
m Consider random PDE solved by 6(t, x) := p(t,x + B(t))

B:0(t, x)+div(u(t, x+B(t))0(t, x)) = Ad(t,x), V-u=0, 6(0,x) = p"(x).



Main Features

@ Idea is to produce infinitely many solutions that break the energy inequality.
B Change the iteration scheme: My(t) £ L*e*t

101 — 60)(B)ll o < M(6Mo(£))?,

(1 = wo)(B)ll 2.5 < GMo(2),
IRL(E)lly < 6Mo(t)-

m Need to work with Ry(t,x) = (Ro *x ¢; *¢ ;)(t, x) = Zle R{(t,x)ej.
1_
B Need to iterate also Ry € COCE N C? 2= co.

@ Need to introduce a stopping time T; to control the noise terms in the

iteration.
m For all t € [0, Ty],

[N

l2(8)lige < L3, [2(0)ll o0 < LF, Izl g o, < L2

@ Add a convex integration solution to a weak solution to produce solutions on
the entire time interval.

m To extend this convex integration solution to the interval [0, T], we can

glue an appropriate weak solution of stochastic transport to this convex

integration solution.



Thank you!



