
Convex Integration Solutions for Stochastic
Transport Equation 1

Ujjwal Koley

Centre for Applicable Mathematics
TIFR, Bangalore

Bangalore Probability Seminar

September 19, 2022

1joint work with Kazuo Yamazaki (Texas).



Deterministic Transport Equation

Transport equation: ∂t%+ div(%u) = 0, %|t=0 = %0.

Assume that u is incompressible, i.e., div u = 0.

Diperna-Lions’89:

Let p, p̃ ∈ [1,∞], and u ∈ L1
tW

1,p̃
x (Td), div u = 0.

For any %0 ∈ Lp(Td), there exists unique distributional solution
% ∈ L∞t Lpx (Td), provided 1

p + 1
p̃ ≤ 1.

What happens if

1

p
+

1

p̃
> 1, (or

1

p
+

1

p̃
> 1 +

1

d
).

Non-uniqueness results by Modena-Sattig-Szekelyhidi,
Brue-Colombo-De Lellis.



Deterministic Transport Equation

Result:

Let p, p̃ ∈ [1,∞), and 1
p

+ 1
p̃
> 1 + 1

d
.

Given any smooth, mean-zero %̄, and a smooth divergence free ū: consider
the set

E = {t ∈ [0,T ] : ∂t %̄+ div(%̄ū) = 0}.

Then there exists % ∈ C0
t L

p
x , and u ∈ C0

t L
p′
x ∩ C0

t W
1,p̃
x s.t

∂t%+ div(%u) = 0, div u = 0 in D′.
%(t) = %̄(t), and u(t) = ū(t) for all t ∈ E .

Non-uniqueness:

Pick a smooth, mean-zero function a, and

ū ≡ 0, %̄(t, x) =

{
0, t ∈ [0,T/3]

a(x), t ∈ [2T/3,T ].

Note that (%̄, ū) is a solution on [0,T/3] ∪ [2T/3,T ] ⊂ E .

Existence of a solution s.t. %(0) = 0, and %(T ) = a.



Stochastic Transport-Diffusion Equation

Stochastic transport equation:

dρ(t, x) + div(u(t, x)ρ(t, x)) dt = ∆ρ dt + G(ρ)dB(t), ∇ · u = 0,

ρ(0, x) = ρin(x), x ∈ Td

Three different types of noise:

1. additive noise; i.e., G(ρ)dB = dB where B is a certain GG∗-Wiener
process;

2. linear multiplicative noise in Itô’s interpretation; i.e., G(ρ)dB = ρdB
where B is a R-valued Wiener process;

3. transport noise in Stratonovich’s interpretation; i.e.,

G(ρ)dB = −
∑d

i=1
∂
∂xi
ρ ◦ dBi where B = (B1, . . . ,Bd ) is a Brownian

motion.

Challenges:

Stochastic perturbation may provide a regularizing effect on problems.
Whether the noise makes the critical exponent of uniqueness different.

Establish probabilistically strong solutions.



Typical Result: Additive noise

Suppose that d ≥ 3, B is a GG∗-Wiener process, and

Tr((−∆)
d
2

+2ςGG∗) <∞ for some ς > 0.

Given T > 0, K > 1, and κ ∈ (0, 1), there exists a P-a.s. strictly positive
stopping time TL such that

P({TL ≥ T}) > κ

There exist an (Ft)t≥0-adapted process u that is divergence-free such that

u ∈ L∞(Ω;C([0,TL]; Lp
′
(Td ))) ∩ L∞(Ω;C([0,TL];W 1,p̃(Td ))),

an (Ft)t≥0-adapted process

ρ ∈ L∞(Ω;C([0,TL]; Lp(Td ))),

and ρin ∈ Lp(Td ) that is deterministic such that ρ solves the underlying
equation.



Proposition

Iteration Scheme: For all δ > 0, for all (ρ0, u0,R0) smooth such that

∂tρ0 + div(ρ0u0) = − div R0

div u0 = 0,

there exists (ρ1, u1,R1) smooth solves

∂tρ1 + div(ρ1u1) = − div R1

div u1 = 0.

Additionally, for all t ∈ [0,T ]

‖ρ1(t)− ρ0(t)‖p ≤ M‖R0(t)‖1/p
1 ,

‖u1(t)− u0(t)‖p′ ≤ M‖R0(t)‖1/p
1 ,

‖u1(t)− u0(t)‖W 1,p̃ ≤ δ,
‖R1(t)‖1 ≤ δ.

Moreover, if R0(t, ·) ≡ 0 for some t ∈ [0,T ], then R1(t, ·) ≡ 0 and
(ρ1, u1)(t) ≡ (ρ0, u0)(t).

Idea: use highly oscillatory perturbation to reach ρ1 from ρ0.



Sketch of the proof
Add perturbation:

ρ1 = ρ0 + θ + θc , u1 = u0 + w + wc

Here θc is the mean value corrector, and wc is the divergence free corrector.

Note that

∂tρ1 + div(ρ1u1) = − div(θw − R0)︸ ︷︷ ︸
Rquad

+ div(ρ0w + θu0) + ∂tθ︸ ︷︷ ︸
Rlin

+ terms containing θc ,wc︸ ︷︷ ︸
Rcorr

:= − div R1.

Ansatz: Note that R0(t, x) =
∑d

j=1 R0,j (t, x)ej

θ(t, x) =
d∑

j=1

sign(R0,j )|R0,j |1/pΘj (λx)

w(t, x) =
d∑

j=1

|R0,j |1/p
′
W j (λx)



Sketch of the proof

Here Θj : Td → R, and W j : Td → Rd are smooth fixed profiles such that

div(Θj W j ) = 0, and div W j = 0ffl
Θj (x) dx =

ffl
W j (x) dx = 0,

ffl
Θj (x)W j (x) dx = ej .

For i 6= j , Supp Θi ∩ SuppW j = φ.

In literature usually people use Beltrami or Mikado flows.

Construction of Mikado flow:

Choose ϕ ∈ C∞c (Rd−1) with Supp(ϕ) ⊂ (0, 1)d−1,
´
ϕ = 0, and´

ϕ2 = 1. Periodise and still call it ϕ.
Define

Θd (x) := ϕ(x1, x2, · · · , xd−1)

W d (x) := ϕ(x1, x2, · · · , xd−1)ed



Errors
First compute:

div(θw − R0) = div
( d∑

j=1

R0,j (Θj (λx)W j (λx)− ej )
)

=
d∑

j=1

∇R0,j︸ ︷︷ ︸
Slow amplitude

· (Θj (λx)W j (λx)− ej )︸ ︷︷ ︸
Fast oscillating with zero mean value

:= div(Rquad)

A suitable inverse divergence operator gives ‖Rquad‖1 ≈ O(1/λ).
Sobolev Estimates:

∇w = λ
d∑

j=1

|R0,j |1/p
′
∇W j (λx) + “another lower order term”

Intermittency and difference with Onsager conjecture.
Observation: Let ψ ∈ C∞c (Rd ), Supp(ψ) ⊂ (0, 1)d . Define ψµ(x) = ψ(µx).
Then

‖µaψµ‖r = µa−d/r‖ψ‖r , ‖µa∇kψµ‖r = µa+k−d/r‖ψ‖r
Change the ansatz: We shall fix a and b such that

Θd
µ(x) := µaϕµ(x1, x2, · · · , xd−1)

W d
µ (x) := µbϕµ(x1, x2, · · · , xd−1)ed



Errors

It turns out that a = (d − 1)/p and b = (d − 1)/p′

It is easy to see that

‖Θj
µ(x)‖p = µ

a− d−1
p , ‖W j

µ(x)‖p′ = µ
b− d−1

p′

Then we can estimate

‖∇w‖p̃ ≤ C(R0)λ‖∇W j
µ‖p̃

. λµ
d−1
p′ −

d−1
p̃

+1 ≈ λµ−γ , for some γ > 0.

Here we first assume that 1
p

+ 1
p̃
> 1 + 1

d−1
.

Note that if d−1
p′ −

d−1
p̃

+ 1 < 0, then µ can kill λ. This is where we need the

assumption on p and p̃.

It is not difficult to verify that other error terms + Lp-type estimates can be
controlled by the above choice of building blocks.



General Case
How to deal with the case 1

p
+ 1

p̃
> 1 + 1

d
? We need to change Mikado

construction.

Naive choice  Not divergence free!

Θd
µ(x) := µd/pϕµ(x1, x2, · · · , xd−1, xd )

W d
µ (x) := µd/p

′
ϕµ(x1, x2, · · · , xd−1, xd )ed

Add another highly oscillatory term: Fix ψd : Td → R such that ∂dψ
d = 0,ffl

ψ = 0, and
ffl
ψ2 = 1.

θd (x) := µd/pϕµ(λx)ψd (γx)

wd (x) := µd/p
′
ϕµ(λx)ψd (γx)ed

We need λµ << γ.

Calculate

div wd = λµd/p
′
(∂dϕµ)(λx)ed ψd (γx)︸ ︷︷ ︸

fast oscillatory with zero mean

Then define the divergence corrector

w c = div−1(div w)



General Case

Estimate for the divergence corrector (Note that div−1(fgλ) ≈ 1
γ
fg)

‖w c‖r ≈ λµd/p
′ 1

γ
µ1−d/r ≈

λµ

γ
‖w‖r

Main problem: ΘW = µdϕ2
µ(λx)(ψd )2(γx)ed is not divergence free!

Note that (ψd )2(γx) has non-zero mean and we can’t play the usual
anti-divergence corrector trick!

Idea: Allow error to move in time and cancel it with time derivative  change
Mikado density  introduce phase speed ω:

Θj
µ(x) := µd/pϕµ(λ(x − tωej ))ψj (γx)

W j
µ(x) := µd/p

′
ϕµ(λ(x − tωej ))ψj (γx)ej

Observe that ∂tQ j + div(ΘjW j ) = 0, with Q j := µd

ω
ϕ2
µ(λ(x − tωej ))(ψj )2(γx).



Final Building Block

New Mikado density: Θj (x , t) + Q j (x , t), and velocity W j (x , t).

In this case

∂t(Θ + Q) + div((Θ + Q)W )

= ∂tΘ + ∂tQ + div(ΘW )︸ ︷︷ ︸
=0

+ div(ΘQ)

= div(div−1(∂tΘ + div(ΘQ)))

We can estimate:

‖ div−1(∂tΘ)‖1 ≈
λω

γ
µ1−d+d/p

Application in NSE: p = p′ = 2

∆w = div(∇w)

Run the above construction with p = 2 and p̃ = 1  1/2 + 1 > 1 + 1/d , i.e.,
d ≥ 3.



Stochastic Transport-Diffusion

Additive noise:

Consider the heat equation forced by the same noise

dz(t, x) = ∆z(t, x)dt + dB(t, x), z(0, x) ≡ 0

Consider the random PDE solved by θ(t, x) := ρ(t, x)− z(t, x)

∂tθ(t, x) + div(u(t, x)θ(t, x)) = ∆θ(t, x)− div(u(t, x)z(t, x)),

∇ · u = 0, θ(0, x) = ρin(x).

Linear multiplicative noise:

Consider random PDE solved by θ(t, x) := ρ(t, x)e−B(t)

∂tθ(t, x)+div(u(t, x)θ(t, x))+
1

2
θ(t, x) = ∆θ(t, x), ∇·u = 0, θ(0, x) = ρin(x).

Transport noise:

Consider random PDE solved by θ(t, x) := ρ(t, x + B(t))

∂tθ(t, x)+div(u(t, x+B(t))θ(t, x)) = ∆θ(t, x), ∇·u = 0, θ(0, x) = ρin(x).



Main Features
Idea is to produce infinitely many solutions that break the energy inequality.

Change the iteration scheme: M0(t) , L4e4Lt

‖(θ1 − θ0)(t)‖Lpx ≤ M(δM0(t))
1
p ,

‖(u1 − u0)(t)‖
W

1,p̃
x
≤ δM0(t),

‖R1(t)‖L1
x
≤ δM0(t).

Need to work with Rl (t, x) = (R0 ∗x φl ∗t ϕl )(t, x) =
∑d

j=1 R
j
l (t, x)ej .

Need to iterate also R0 ∈ C0
t C

1
x ∩ C

1
2
−2$

t C0
x .

Need to introduce a stopping time TL to control the noise terms in the

iteration.

For all t ∈ [0,TL],

‖z(t)‖L∞x ≤ L
1
4 , ‖z(t)‖

W
1,∞
x
≤ L

1
4 , ‖z‖

C
1
2
−2$

t L∞x

≤ L
1
2 .

Add a convex integration solution to a weak solution to produce solutions on

the entire time interval.

To extend this convex integration solution to the interval [0,T ], we can

glue an appropriate weak solution of stochastic transport to this convex

integration solution.



Thank you!


