Persistence exponent for GSPs

Sumit Mukherjee, Department of Statistics, Columbia

Joint work with N.D. Feldheim and O.N. Feldheim

Sumit Mukherjee, Department of Statistics, Columbia Persistence

Outline

3 Outline of the proof

- UB for general densities

• Suppose we have a continuous time Gaussian Stationary Process $\{X(t)\}_{t\geq 0}$ with $\mathbb{E}X(t) = 0, \mathbb{E}X(t)^2 = 1$, and continuous sample paths.

- Suppose we have a continuous time Gaussian Stationary Process $\{X(t)\}_{t\geq 0}$ with $\mathbb{E}X(t) = 0, \mathbb{E}X(t)^2 = 1$, and continuous sample paths.
- We want to study

$$p(T) := \mathbb{P}(\inf_{t \in [0,T]} X(t) > 0),$$

which is the probability that X(.) persists above 0 for the entire time interval [0, T].

- Suppose we have a continuous time Gaussian Stationary Process $\{X(t)\}_{t\geq 0}$ with $\mathbb{E}X(t) = 0, \mathbb{E}X(t)^2 = 1$, and continuous sample paths.
- We want to study

$$p(T) := \mathbb{P}(\inf_{t \in [0,T]} X(t) > 0),$$

which is the probability that X(.) persists above 0 for the entire time interval [0, T].

• It is not hard to see that $p(T) \to 0$ as soon as the covariance function $\rho(t) := \mathbb{E}X(0)X(t)$ converges to 0.

- Suppose we have a continuous time Gaussian Stationary Process $\{X(t)\}_{t\geq 0}$ with $\mathbb{E}X(t) = 0, \mathbb{E}X(t)^2 = 1$, and continuous sample paths.
- We want to study

$$p(T) := \mathbb{P}(\inf_{t \in [0,T]} X(t) > 0),$$

which is the probability that X(.) persists above 0 for the entire time interval [0, T].

- It is not hard to see that $p(T) \to 0$ as soon as the covariance function $\rho(t) := \mathbb{E}X(0)X(t)$ converges to 0.
- We want to study the decay rate of p(T).

• A very powerful tool for understanding GSPs is the following classical lemma due to Slepian 1962.

- A very powerful tool for understanding GSPs is the following classical lemma due to Slepian 1962.
- Suppose $\{X(t)\}_{t\geq 0}$ and $\{Y(t)\}_{t\geq 0}$ are two centered GSPs with $\mathbb{E}X(t)^2 = \mathbb{E}Y(t)^2 = 1.$

- A very powerful tool for understanding GSPs is the following classical lemma due to Slepian 1962.
- Suppose $\{X(t)\}_{t\geq 0}$ and $\{Y(t)\}_{t\geq 0}$ are two centered GSPs with $\mathbb{E}X(t)^2 = \mathbb{E}Y(t)^2 = 1.$
- Assume that $\mathbb{E}X(s)X(t) \leq \mathbb{E}Y(s)Y(t)$.

- A very powerful tool for understanding GSPs is the following classical lemma due to Slepian 1962.
- Suppose $\{X(t)\}_{t\geq 0}$ and $\{Y(t)\}_{t\geq 0}$ are two centered GSPs with $\mathbb{E}X(t)^2 = \mathbb{E}Y(t)^2 = 1.$
- Assume that $\mathbb{E}X(s)X(t) \leq \mathbb{E}Y(s)Y(t)$.

• Then

$$\mathbb{P}(\inf_{t \in [0,T]} X(t) > 0) \le \mathbb{P}(\inf_{t \in [0,T]} Y(t) > 0).$$

- A very powerful tool for understanding GSPs is the following classical lemma due to Slepian 1962.
- Suppose $\{X(t)\}_{t\geq 0}$ and $\{Y(t)\}_{t\geq 0}$ are two centered GSPs with $\mathbb{E}X(t)^2 = \mathbb{E}Y(t)^2 = 1.$
- Assume that $\mathbb{E}X(s)X(t) \leq \mathbb{E}Y(s)Y(t)$.
- Then

$$\mathbb{P}(\inf_{t \in [0,T]} X(t) > 0) \le \mathbb{P}(\inf_{t \in [0,T]} Y(t) > 0).$$

• Comment: Slepian's Lemma applies for non stationary Gaussian processes.

• More is known about this problem when the covariance function ρ is non-negative.

- More is known about this problem when the covariance function ρ is non-negative.
- In this case Slepian's Lemma gives

$$\mathbb{P}(\inf_{t \in [0,T+S]} X(t) > 0) \\ \ge \mathbb{P}(\inf_{t \in [0,T]} X(t) > 0) \mathbb{P}(\inf_{t \in [T,T+S]} X(t) > 0) \ [\rho(.) \ge 0]$$

- More is known about this problem when the covariance function ρ is non-negative.
- In this case Slepian's Lemma gives

$$\begin{split} & \mathbb{P}(\inf_{t \in [0,T+S]} X(t) > 0) \\ \geq & \mathbb{P}(\inf_{t \in [0,T]} X(t) > 0) \mathbb{P}(\inf_{t \in [T,T+S]} X(t) > 0) \\ = & \mathbb{P}(\inf_{t \in [0,T]} X(t) > 0) \mathbb{P}(\inf_{t \in [0,S]} X(t) > 0) \text{ [Stationary]} \end{split}$$

- More is known about this problem when the covariance function ρ is non-negative.
- In this case Slepian's Lemma gives

$$\begin{split} & \mathbb{P}(\inf_{t \in [0,T+S]} X(t) > 0) \\ \geq & \mathbb{P}(\inf_{t \in [0,T]} X(t) > 0) \mathbb{P}(\inf_{t \in [T,T+S]} X(t) > 0) \\ & = & \mathbb{P}(\inf_{t \in [0,T]} X(t) > 0) \mathbb{P}(\inf_{t \in [0,S]} X(t) > 0) \end{split}$$

• By sub-additivity,
$$\theta_{\rho} := -\lim_{T \to \infty} \frac{1}{T} \log p(T)$$
 exists in $[0, \infty]$.

• Can
$$\theta_{\rho} = \infty$$
?

Sumit Mukherjee, Department of Statistics, Columbia

• Can
$$\theta_{\rho} = \infty$$
? Ans: No!

• Can $\theta_{\rho} = \infty$? Ans: No!

• Slepian's Lemma gives

$$\mathbb{P}(\inf_{t \in [0,T]} X(t) > 0) \ge \mathbb{P}(\inf_{t \in [0,1/k]} X(t) > 0)^{Tk}.$$

• Can $\theta_{\rho} = \infty$? Ans: No!

• Slepian's Lemma gives

$$\mathbb{P}(\inf_{t \in [0,T]} X(t) > 0) \ge \mathbb{P}(\inf_{t \in [0,1/k]} X(t) > 0)^{Tk}.$$

• Taking log and dividing by T gives

$$\frac{1}{T} \log \mathbb{P}(\inf_{t \in [0,T]} X(t) > 0) \ge k \log \mathbb{P}(\inf_{t \in [0,1/k]} X(t) > 0).$$

Sumit Mukherjee, Department of Statistics, Columbia Persist

• If $\mathbb{P}(\inf_{t \in [0,1/k]} X(t) > 0)$ is not 0 for some k, then $\theta_{\rho} < \infty$.

- If $\mathbb{P}(\inf_{t \in [0,1/k]} X(t) > 0)$ is not 0 for some k, then $\theta_{\rho} < \infty$.
- Otherwise we have $\mathbb{P}(\inf_{t \in [0,1/k]} X(t) > 0) = 0$ for all k.

- If $\mathbb{P}(\inf_{t \in [0,1/k]} X(t) > 0)$ is not 0 for some k, then $\theta_{\rho} < \infty$.
- Otherwise we have $\mathbb{P}(\inf_{t \in [0,1/k]} X(t) > 0) = 0$ for all k.
- Letting $k \to \infty$ we have

$$\inf_{t \in [0,1/k]} X(t) \stackrel{a.s.}{\to} X(0),$$

by continuity of sample paths.

- If $\mathbb{P}(\inf_{t \in [0,1/k]} X(t) > 0)$ is not 0 for some k, then $\theta_{\rho} < \infty$.
- Otherwise we have $\mathbb{P}(\inf_{t \in [0,1/k]} X(t) > 0) = 0$ for all k.
- Letting $k \to \infty$ we have

$$\inf_{t \in [0,1/k]} X(t) \stackrel{a.s.}{\to} X(0),$$

by continuity of sample paths.

• But this is a contradiction, as $\mathbb{P}(X(0) > 0) \neq 0$.

Sumit Mukherjee, Department of Statistics, Columbia

Positivity

• Question: Can $\theta_{\rho} = 0$?

• Question: Can $\theta_{\rho} = 0$? Ans: Yes!

- Question: Can $\theta_{\rho} = 0$? Ans: Yes!
- It was shown in Newell-Rosenblatt 1962 that $\theta_{\rho} = 0$, if $\rho(t) \sim t^{-\alpha}$ as $t \to \infty$.

- Question: Can $\theta_{\rho} = 0$? Ans: Yes!
- It was shown in Newell-Rosenblatt 1962 that $\theta_{\rho} = 0$, if $\rho(t) \sim t^{-\alpha}$ as $t \to \infty$.
- Much more recently, it was shown in Dembo-M. 2015 that $\theta_{\rho} = 0$, if $\rho(t)$ is regularly varying, and $\int_{0}^{\infty} \rho(t) dt = \infty$.

- Question: Can $\theta_{\rho} = 0$? Ans: Yes!
- It was shown in Newell-Rosenblatt 1962 that $\theta_{\rho} = 0$, if $\rho(t) \sim t^{-\alpha}$ as $t \to \infty$.
- Much more recently, it was shown in Dembo-M. 2015 that $\theta_{\rho} = 0$, if $\rho(t)$ is regularly varying, and $\int_{0}^{\infty} \rho(t) dt = \infty$.
- Finally, in Aurzada-M. 2020 it was shown that

$$\theta_\rho=0 \quad \Leftrightarrow \quad \int_0^\infty \rho(t) dt = \infty.$$

Sumit Mukherjee, Department of Statistics, Columbia

• Suppose ρ_k is a sequence of covariance functions converging point-wise to ρ_{∞} .

- Suppose ρ_k is a sequence of covariance functions converging point-wise to ρ_{∞} .
- Does this imply $\theta_{\rho_k} \to \theta_{\rho_\infty}$?

- Suppose ρ_k is a sequence of covariance functions converging point-wise to ρ_{∞} .
- Does this imply $\theta_{\rho_k} \to \theta_{\rho_\infty}$? Ans: Not always!

- Suppose ρ_k is a sequence of covariance functions converging point-wise to ρ_{∞} .
- Does this imply $\theta_{\rho_k} \to \theta_{\rho_\infty}$? Ans: Not always!
- Suppose $\rho^{(int)}$ and $\rho^{(non)}$ are two non-negative covariance functions, such that $\rho^{(int)}$ is integrable and $\rho^{(non)}$ is not.

- Suppose ρ_k is a sequence of covariance functions converging point-wise to ρ_{∞} .
- Does this imply $\theta_{\rho_k} \to \theta_{\rho_\infty}$? Ans: Not always!
- Suppose $\rho^{(int)}$ and $\rho^{(non)}$ are two non-negative covariance functions, such that $\rho^{(int)}$ is integrable and $\rho^{(non)}$ is not.

• Let
$$\rho_k = (1 - \frac{1}{k})\rho^{(int)} + \frac{1}{k}\rho^{(non)}$$
.

- Suppose ρ_k is a sequence of covariance functions converging point-wise to ρ_{∞} .
- Does this imply $\theta_{\rho_k} \to \theta_{\rho_\infty}$? Ans: Not always!
- Suppose $\rho^{(int)}$ and $\rho^{(non)}$ are two non-negative covariance functions, such that $\rho^{(int)}$ is integrable and $\rho^{(non)}$ is not.

• Let
$$\rho_k = (1 - \frac{1}{k})\rho^{(int)} + \frac{1}{k}\rho^{(non)}$$
.

• Then ρ_k is not integrable for any k, and so $\theta_{\rho_k} = 0$.

- Suppose ρ_k is a sequence of covariance functions converging point-wise to ρ_{∞} .
- Does this imply $\theta_{\rho_k} \to \theta_{\rho_\infty}$? Ans: Not always!
- Suppose $\rho^{(int)}$ and $\rho^{(non)}$ are two non-negative covariance functions, such that $\rho^{(int)}$ is integrable and $\rho^{(non)}$ is not.

• Let
$$\rho_k = (1 - \frac{1}{k})\rho^{(int)} + \frac{1}{k}\rho^{(non)}$$
.

- Then ρ_k is not integrable for any k, and so $\theta_{\rho_k} = 0$.
- On the other hand $\lim_{k\to\infty} \rho_k = \rho^{(int)}$ which is integrable, and so $\theta_{\rho^{(int)}} > 0$.

• Need some sort of uniform integrability type condition to ensure $\int_0^\infty \rho_k(t)dt$ and $\int_0^\infty \rho(t)dt$ are close.
Theorem (Dembo-M. 2012)

 $\theta_{\rho_k} \rightarrow \theta_{\rho_{\infty}}$, provided the following conditions hold:

Theorem (Dembo-M. 2012)

 $\theta_{\rho_k} \rightarrow \theta_{\rho_{\infty}}$, provided the following conditions hold:

(a) $\rho_k(.)$ converges to $\rho_{\infty}(.)$ pointwise; (Finite dim convergence)

Theorem (Dembo-M. 2012)

 $\theta_{\rho_k} \rightarrow \theta_{\rho_{\infty}}$, provided the following conditions hold:

- (a) $\rho_k(.)$ converges to $\rho_{\infty}(.)$ pointwise;
- (b) $\limsup_{t \to \infty} \sup_{k \ge 1} \frac{\rho_k(t)}{|t|^{\alpha}} < \infty \text{ for some } \alpha > 1; \text{ (uniform decay of correlations)}$

Theorem (Dembo-M. 2012)

 $\theta_{\rho_k} \rightarrow \theta_{\rho_{\infty}}$, provided the following conditions hold:

(a) $\rho_k(.)$ converges to $\rho_{\infty}(.)$ pointwise;

(b)
$$\limsup_{t \to \infty} \sup_{k \ge 1} \frac{\rho_k(t)}{|t|^{\alpha}} < \infty \text{ for some } \alpha > 1;$$

(c) $\limsup_{t \to 0} \sup_{k \ge 1} |\log t|^{\beta} (1 - \rho_k(t)) < \infty \text{ for some } \beta > 1. \text{ (tightness)}$

• It is not known that there is an exponent θ_{ρ} .

- It is not known that there is an exponent θ_{ρ} .
- Even if θ_{ρ} exists, it can be $+\infty$.

- It is not known that there is an exponent θ_{ρ} .
- Even if θ_{ρ} exists, it can be $+\infty$.
- As an example, let $X(t) = Z_1 \cos(t) + Z_2 \sin(t)$, where $Z_1, Z_2 \stackrel{i.i.d.}{\sim} N(0, 1)$.

- It is not known that there is an exponent θ_{ρ} .
- Even if θ_{ρ} exists, it can be $+\infty$.
- As an example, let $X(t) = Z_1 \cos(t) + Z_2 \sin(t)$, where $Z_1, Z_2 \stackrel{i.i.d.}{\sim} N(0, 1)$.
- Then $\mathbb{E}X(t)X(s) = \cos(t-s)$, and so the process is stationary.

- It is not known that there is an exponent θ_{ρ} .
- Even if θ_{ρ} exists, it can be $+\infty$.
- As an example, let $X(t) = Z_1 \cos(t) + Z_2 \sin(t)$, where $Z_1, Z_2 \stackrel{i.i.d.}{\sim} N(0, 1)$.
- Then $\mathbb{E}X(t)X(s) = \cos(t-s)$, and so the process is stationary.
- For any $T \ge 2\pi$, we have

$$\inf_{t \in [0,T]} \{ Z_1 \cos(t) + Z_2 \sin(t) \} = -\sqrt{Z_1^2 + Z_2^2}.$$

Sumit Mukherjee, Department of Statistics, Columbia

- It is not known that there is an exponent θ_{ρ} .
- Even if θ_{ρ} exists, it can be $+\infty$.
- As an example, let $X(t) = Z_1 \cos(t) + Z_2 \sin(t)$, where $Z_1, Z_2 \stackrel{i.i.d.}{\sim} N(0, 1)$.
- Then $\mathbb{E}X(t)X(s) = \cos(t-s)$, and so the process is stationary.
- For any $T \ge 2\pi$, we have

$$\inf_{t \in [0,T]} \{ Z_1 \cos(t) + Z_2 \sin(t) \} = -\sqrt{Z_1^2 + Z_2^2}.$$

• Thus
$$\log \mathbb{P}(\sqrt{Z_1^2 + Z_2^2} < 0) = -\infty$$
.

Sumit Mukherjee, Department of Statistics, Columbia

- It is not known that there is an exponent θ_{ρ} .
- Even if θ_{ρ} exists, it can be $+\infty$.
- As an example, let $X(t) = Z_1 \cos(t) + Z_2 \sin(t)$, where $Z_1, Z_2 \stackrel{i.i.d.}{\sim} N(0, 1)$.
- Then $\mathbb{E}X(t)X(s) = \cos(t-s)$, and so the process is stationary.
- For any $T \ge 2\pi$, we have

$$\inf_{t \in [0,T]} \{ Z_1 \cos(t) + Z_2 \sin(t) \} = -\sqrt{Z_1^2 + Z_2^2}.$$

• Thus
$$\log \mathbb{P}(\sqrt{Z_1^2 + Z_2^2} < 0) = -\infty$$
. Consequently, $\theta_{\rho} = \infty$.

Sumit Mukherjee, Department of Statistics, Columbia

• A more interesting example is the sinc process, which has correlation

$$\rho(t) = \operatorname{sinc}(t) = \frac{\sin(t)}{t}$$

• A more interesting example is the sinc process, which has correlation

$$\rho(t) = \operatorname{sinc}(t) = \frac{\sin(t)}{t}$$

• In this case the correlation function $\rho(.)$ is not absolutely integrable.

• A more interesting example is the sinc process, which has correlation

$$\rho(t) = \operatorname{sinc}(t) = \frac{\sin(t)}{t}$$

- In this case the correlation function $\rho(.)$ is not absolutely integrable.
- It was shown by Antezana et al. 2012 that in this case there exists positive finite constants $C_1 < C_2$, such that for all T large enough we have

$$e^{-C_2 T} \le p(T) \le e^{-C_1 T}.$$

Sumit Mukherjee, Department of Statistics, Columbia Pers

• A more interesting example is the sinc process, which has correlation

$$\rho(t) = \operatorname{sinc}(t) = \frac{\sin(t)}{t}$$

- In this case the correlation function $\rho(.)$ is not absolutely integrable.
- It was shown by Antezana et al. 2012 that in this case there exists positive finite constants $C_1 < C_2$, such that for all T large enough we have

$$e^{-C_2 T} \le p(T) \le e^{-C_1 T}.$$

• The existence of exponent for the sinc process remained open.

Since ρ(.) is a continuous covariance function, by Bochner's theorem there is a measure μ whose Fourier transform is ρ.

- Since ρ(.) is a continuous covariance function, by Bochner's theorem there is a measure μ whose Fourier transform is ρ.
- More precisely, for every $t \ge 0$ we have

$$\int_{\mathbb{R}} e^{-itx} \mu(dx) = \rho(t)$$

- Since ρ(.) is a continuous covariance function, by Bochner's theorem there is a measure μ whose Fourier transform is ρ.
- More precisely, for every $t \ge 0$ we have

$$\int_{\mathbb{R}} e^{-itx} \mu(dx) = \rho(t)$$

• Here μ is a finite measure on \mathbb{R} which is symmetric about the origin.

- Since ρ(.) is a continuous covariance function, by Bochner's theorem there is a measure μ whose Fourier transform is ρ.
- More precisely, for every $t \ge 0$ we have

$$\int_{\mathbb{R}} e^{-itx} \mu(dx) = \rho(t)$$

- Here μ is a finite measure on \mathbb{R} which is symmetric about the origin.
- Moreover, given any finite symmetric measure μ , its Fourier ρ is a continuous correlation function.

- Since ρ(.) is a continuous covariance function, by Bochner's theorem there is a measure μ whose Fourier transform is ρ.
- More precisely, for every $t \ge 0$ we have

$$\int_{\mathbb{R}} e^{-itx} \mu(dx) = \rho(t)$$

- Here μ is a finite measure on \mathbb{R} which is symmetric about the origin.
- Moreover, given any finite symmetric measure μ , its Fourier ρ is a continuous correlation function.
- As an example, for the sinc process, μ is $\frac{1}{2}$ times Lebesgue measure on [-1, 1].

• Building on this connection, in Feldheim-Feldheim 2013 the authors give a general sufficient condition for exponential decay of p(T).

• Building on this connection, in Feldheim-Feldheim 2013 the authors give a general sufficient condition for exponential decay of p(T).

Theorem (Feldheim-Feldheim 2013)

Suppose the spectral measure μ satisfies the following conditions:

• Building on this connection, in Feldheim-Feldheim 2013 the authors give a general sufficient condition for exponential decay of p(T).

Theorem (Feldheim-Feldheim 2013)

Suppose the spectral measure μ satisfies the following conditions:

(a) There exists $\beta > 0$ such that $\int_{\mathbb{R}} |x|^{\beta} \mu(dx) < \infty$.

• Building on this connection, in Feldheim-Feldheim 2013 the authors give a general sufficient condition for exponential decay of p(T).

Theorem (Feldheim-Feldheim 2013)

Suppose the spectral measure μ satisfies the following conditions:

- (a) There exists $\beta > 0$ such that $\int_{\mathbb{R}} |x|^{\beta} \mu(dx) < \infty$.
- (b) There exists finite positive reals m, M, and a small neighborhood $(-\alpha, \alpha)$ of the origin, such that for any interval $I \subset (-\alpha, \alpha)$ we have

 $m|I| \le \mu(I) \le M|I|.$

• Building on this connection, in Feldheim-Feldheim 2013 the authors give a general sufficient condition for exponential decay of p(T).

Theorem (Feldheim-Feldheim 2013)

Suppose the spectral measure μ satisfies the following conditions:

(a) There exists
$$\beta > 0$$
 such that $\int_{\mathbb{R}} |x|^{\beta} \mu(dx) < \infty$.

(b) There exists finite positive reals m, M, and a small neighborhood (-α, α) of the origin, such that for any interval I ⊂ (-α, α) we have

$$m|I| \le \mu(I) \le M|I|.$$

Then there exists finite positive constants $C_1 < C_2$ such that

$$e^{-C_2 T} \le p(T) \le e^{-C_1 T}.$$

• It was not known whether there is a persistence exponent result for general correlations.

- It was not known whether there is a persistence exponent result for general correlations.
- In fact, the existence of exponent was not known in any non-trivial example (including the sinc process).

- It was not known whether there is a persistence exponent result for general correlations.
- In fact, the existence of exponent was not known in any non-trivial example (including the sinc process).
- Can we study continuity properties of such exponents, in terms of $\rho(.)$ or μ ?

- It was not known whether there is a persistence exponent result for general correlations.
- In fact, the existence of exponent was not known in any non-trivial example (including the sinc process).
- Can we study continuity properties of such exponents, in terms of $\rho(.)$ or μ ?
- Can we compare persistence exponents by comparing spectral measures?

Outline

3 Outline of the proof

• Similar to Feldheim-Feldheim 2013, we will parametrize a GSP via its spectral measure.

- Similar to Feldheim-Feldheim 2013, we will parametrize a GSP via its spectral measure.
- Let μ be a spectral measure, i.e. a symmetric finite measure on \mathbb{R} .

- Similar to Feldheim-Feldheim 2013, we will parametrize a GSP via its spectral measure.
- Let μ be a spectral measure, i.e. a symmetric finite measure on \mathbb{R} .
- Define its Fourier transform ρ_{μ} by setting

$$\rho_{\mu}(t) := \int_{\mathbb{R}} e^{-itx} \mu(dx).$$

- Similar to Feldheim-Feldheim 2013, we will parametrize a GSP via its spectral measure.
- Let μ be a spectral measure, i.e. a symmetric finite measure on \mathbb{R} .
- Define its Fourier transform ρ_{μ} by setting

$$\rho_{\mu}(t) := \int_{\mathbb{R}} e^{-itx} \mu(dx).$$

• Let $\{X_{\mu}(t)\}_{t\geq 0}$ denote a centered GSP with correlation ρ_{μ} .

- Similar to Feldheim-Feldheim 2013, we will parametrize a GSP via its spectral measure.
- Let μ be a spectral measure, i.e. a symmetric finite measure on \mathbb{R} .
- Define its Fourier transform ρ_{μ} by setting

$$\rho_{\mu}(t) := \int_{\mathbb{R}} e^{-itx} \mu(dx).$$

• Let $\{X_{\mu}(t)\}_{t\geq 0}$ denote a centered GSP with correlation ρ_{μ} .

• Let
$$p_T(\mu) := \mathbb{P}(\inf_{t \in [0,T]} X_{\mu}(t) > 0).$$

Theorem (Feldheim-Feldheim-M. 2021+)

The exponent

$$\theta(\mu) := -\lim_{T \to \infty} \frac{1}{T} \log p_T(\mu)$$

exists in $[0,\infty)$, provided the following conditions hold:
Theorem (Feldheim-Feldheim-M. 2021+)

 $The \ exponent$

$$\theta(\mu) := -\lim_{T \to \infty} \frac{1}{T} \log p_T(\mu)$$

exists in $[0,\infty)$, provided the following conditions hold:

(A1) There exists $\beta > 1$ such that μ has finite \log^{β} moment, i.e.

$$\int_{[1,\infty)} (\log x)^{\beta} \mu(dx) < \infty.$$

Sumit Mukherjee, Department of Statistics, Columbia

Theorem (Feldheim-Feldheim-M. 2021+)

The exponent

$$\theta(\mu) := -\lim_{T \to \infty} \frac{1}{T} \log p_T(\mu)$$

exists in $[0,\infty)$, provided the following conditions hold:

(A1) There exists $\beta > 1$ such that μ has finite \log^{β} moment, i.e.

$$\int_{[1,\infty)} (\log x)^{\beta} \mu(dx) < \infty.$$

(A2) The limit

$$\mu'(0) := \lim_{\varepsilon \downarrow 0} \frac{\mu[-\varepsilon,\varepsilon]}{2\varepsilon}$$

exists in $(0,\infty]$.

Sumit Mukherjee, Department of Statistics, Columbia

• If $\mu'(0) = \infty$, then $\theta(\mu) = 0$.

• If
$$\mu'(0) = \infty$$
, then $\theta(\mu) = 0$.

• Conversely, if $\mu'(0) < \infty$ and μ has a non singular component, then $\theta(\mu) > 0$.

• If
$$\mu'(0) = \infty$$
, then $\theta(\mu) = 0$.

- Conversely, if $\mu'(0) < \infty$ and μ has a non singular component, then $\theta(\mu) > 0$.
- If $\mu'(0) > 0$ then $\theta(\mu) < \infty$.

• If
$$\mu'(0) = \infty$$
, then $\theta(\mu) = 0$.

- Conversely, if $\mu'(0) < \infty$ and μ has a non singular component, then $\theta(\mu) > 0$.
- If $\mu'(0) > 0$ then $\theta(\mu) < \infty$.
- Conversely, if $\mu([0, t]) \sim t^{\alpha}$ for $\alpha < 1$ near 0, then $\theta(\mu) = \infty$ (Feldheim-Feldheim-Nitzan 2017).

• In particular for the sinc process μ equals $\frac{1}{2}$ Lebesgue measure on [-1, 1], which is compactly supported, hence has \log^{β} moment finite (A1 holds).

- In particular for the sinc process μ equals $\frac{1}{2}$ Lebesgue measure on [-1, 1], which is compactly supported, hence has \log^{β} moment finite (A1 holds).
- Also μ has a density which is continuous and strictly positive on (-1, 1), so the second condition (A2) holds as well.

- In particular for the sinc process μ equals $\frac{1}{2}$ Lebesgue measure on [-1, 1], which is compactly supported, hence has \log^{β} moment finite (A1 holds).
- Also μ has a density which is continuous and strictly positive on (-1, 1), so the second condition (A2) holds as well.
- It follows from the above theorem that θ(μ) exists in (0,∞), i.e. the sinc process does have an exponent.

- In particular for the sinc process μ equals $\frac{1}{2}$ Lebesgue measure on [-1,1], which is compactly supported, hence has \log^{β} moment finite (A1 holds).
- Also μ has a density which is continuous and strictly positive on (-1,1), so the second condition (A2) holds as well.
- It follows from the above theorem that $\theta(\mu)$ exists in $(0, \infty)$, i.e. the sinc process does have an exponent.
- Suppose μ is a spectral measure which satisfies our conditions. Then the truncated measure $\mu_{[-L,L]}$ satisfies our conditions.

- In particular for the sinc process μ equals $\frac{1}{2}$ Lebesgue measure on [-1, 1], which is compactly supported, hence has \log^{β} moment finite (A1 holds).
- Also μ has a density which is continuous and strictly positive on (-1, 1), so the second condition (A2) holds as well.
- It follows from the above theorem that θ(μ) exists in (0,∞), i.e. the sinc process does have an exponent.
- Suppose μ is a spectral measure which satisfies our conditions. Then the truncated measure $\mu_{[-L,L]}$ satisfies our conditions.
- More generally, let h(.) be a bounded non-negative function which is continuous near 0, with $h(0) \neq 0$.

• Then the measure ν defined by $\frac{d\nu}{d\mu} = h$ satisfies our conditions.

- Then the measure ν defined by $\frac{d\nu}{d\mu} = h$ satisfies our conditions.
- If μ and ν satisfy our conditions, so does $\mu + \nu$, $\alpha \mu$ and $\mu(.\alpha)$ for any $\alpha > 0$.

- Then the measure ν defined by $\frac{d\nu}{d\mu} = h$ satisfies our conditions.
- If μ and ν satisfy our conditions, so does $\mu + \nu$, $\alpha \mu$ and $\mu(.\alpha)$ for any $\alpha > 0$.
- If μ and ν satisfies our conditions, and one of the measures have a bounded continuous density, then so does the convolution $\mu * \nu$.

- Then the measure ν defined by $\frac{d\nu}{d\mu} = h$ satisfies our conditions.
- If μ and ν satisfy our conditions, so does $\mu + \nu$, $\alpha \mu$ and $\mu(.\alpha)$ for any $\alpha > 0$.
- If μ and ν satisfies our conditions, and one of the measures have a bounded continuous density, then so does the convolution $\mu * \nu$.
- If the correlation function $\rho(.)$ is absolutely integrable, and $1 \rho(t)$ satisfies very mild decay conditions for $t \approx 0$, then our conditions hold.

• The \log^{β} moment condition (A1) on μ is very mild, and implies continuity of $X_{\mu}(.)$.

• The \log^{β} moment condition (A1) on μ is very mild, and implies continuity of $X_{\mu}(.)$. This ensures that $\inf_{t \in [0,T]} X_{\mu}(t)$ is well defined.

- The \log^{β} moment condition (A1) on μ is very mild, and implies continuity of $X_{\mu}(.)$. This ensures that $\inf_{t \in [0,T]} X_{\mu}(t)$ is well defined.
- This basically says that the spectral measure is nice near ∞ .

- The \log^{β} moment condition (A1) on μ is very mild, and implies continuity of $X_{\mu}(.)$. This ensures that $\inf_{t \in [0,T]} X_{\mu}(t)$ is well defined.
- This basically says that the spectral measure is nice near ∞ .
- We also need (A2), which demands that μ is nice near 0 ($\mu'(0)$ exists and is positive).

- The \log^{β} moment condition (A1) on μ is very mild, and implies continuity of $X_{\mu}(.)$. This ensures that $\inf_{t \in [0,T]} X_{\mu}(t)$ is well defined.
- This basically says that the spectral measure is nice near ∞ .
- We also need (A2), which demands that μ is nice near 0 ($\mu'(0)$ exists and is positive).
- To show the necessity of this, we show the existence of positive reals A < B such that with

$$\mu(dx) = (A + B\cos(1/x))1\{|x| < 1\}dx,$$

the exponent $\theta(\mu)$ does not exist.

Sumit Mukherjee, Department of Statistics, Columbia

 $\bullet\,$ In this example μ is a compactly supported absolutely continuous spectral measure.

- In this example μ is a compactly supported absolutely continuous spectral measure.
- Further, the density is continuous in the neighborhood (-1, 1), except at 0.

- In this example μ is a compactly supported absolutely continuous spectral measure.
- Further, the density is continuous in the neighborhood (-1, 1), except at 0.
- This example demonstrates the special role of the origin, as a discontinuity away from the origin does not impact existence of exponent.

- In this example μ is a compactly supported absolutely continuous spectral measure.
- Further, the density is continuous in the neighborhood (-1, 1), except at 0.
- This example demonstrates the special role of the origin, as a discontinuity away from the origin does not impact existence of exponent.
- We conjecture that the exponent $\theta(\mu)$ does not exist in this example for any A, B (as opposed to some A, B).

Sumit Mukherjee, Department of Statistics, Columbia

 Suppose μ is a measure which satisfies our regularity conditions (nice near 0 and ∞), and ν is a measure which is nice near ∞.

- Suppose μ is a measure which satisfies our regularity conditions (nice near 0 and ∞), and ν is a measure which is nice near ∞.
- Assume further that $\nu'(0) = 0$.

- Suppose μ is a measure which satisfies our regularity conditions (nice near 0 and ∞), and ν is a measure which is nice near ∞ .
- Assume further that $\nu'(0) = 0$.
- Then $\mu + \nu$ is nice near 0, and nice near ∞ .

- Suppose μ is a measure which satisfies our regularity conditions (nice near 0 and ∞), and ν is a measure which is nice near ∞ .
- Assume further that $\nu'(0) = 0$.
- Then $\mu + \nu$ is nice near 0, and nice near ∞ .
- Consequently, $\theta(\mu)$ and $\theta(\mu + \nu)$ are both well defined.

- Suppose μ is a measure which satisfies our regularity conditions (nice near 0 and ∞), and ν is a measure which is nice near ∞ .
- Assume further that $\nu'(0) = 0$.
- Then $\mu + \nu$ is nice near 0, and nice near ∞ .
- Consequently, $\theta(\mu)$ and $\theta(\mu + \nu)$ are both well defined.

Theorem (Feldheim-Feldheim-M. 2021+)

 $\theta(\mu + \nu) \ge \theta(\mu)$, with equality iff ν is purely singular.

• In particular, if ν is a singular measure whose support does not contain 0, then $\theta(\mu + \nu) = \theta(\mu)$.

• In particular, if ν is a singular measure whose support does not contain 0, then $\theta(\mu + \nu) = \theta(\mu)$. This allows us to throw away any singular part away from the origin.

- In particular, if ν is a singular measure whose support does not contain 0, then $\theta(\mu + \nu) = \theta(\mu)$. This allows us to throw away any singular part away from the origin.
- As for example, if ν is a point mass at 0, then the process is

 $X_{\mu}(.) \oplus \sigma Z.$

- In particular, if ν is a singular measure whose support does not contain 0, then $\theta(\mu + \nu) = \theta(\mu)$. This allows us to throw away any singular part away from the origin.
- As for example, if ν is a point mass at 0, then the process is

 $X_{\mu}(.) \oplus \sigma Z.$

 Here Z ~ N(0,1), and the sign ⊕ denotes point-wise sum of independent processes.

- In particular, if ν is a singular measure whose support does not contain 0, then $\theta(\mu + \nu) = \theta(\mu)$. This allows us to throw away any singular part away from the origin.
- As for example, if ν is a point mass at 0, then the process is

 $X_{\mu}(.) \oplus \sigma Z.$

- Here Z ~ N(0,1), and the sign ⊕ denotes point-wise sum of independent processes.
- In this case, we have

$$\mathbb{P}(\inf_{t \in [0,T]} \{X_{\mu}(t) \oplus \sigma Z\} > 0) \ge \mathbb{P}(\sup_{t \in [0,T]} |X_{\mu}(t)| < K)\mathbb{P}(\sigma Z > K).$$

• The second term in the RHS is free of T, and does not impact the exponent.
- The second term in the RHS is free of T, and does not impact the exponent.
- For the first term, we have the lower bound

$$\mathbb{P}(\sup_{t \in [0,T]} |X_{\mu}(t)| < K) \ge \mathbb{P}(\sup_{t \in [0,1]} |X_{\mu}(t)| < K)^{T}.$$

- The second term in the RHS is free of T, and does not impact the exponent.
- For the first term, we have the lower bound

$$\mathbb{P}(\sup_{t \in [0,T]} |X_{\mu}(t)| < K) \ge \mathbb{P}(\sup_{t \in [0,1]} |X_{\mu}(t)| < K)^{T}.$$

• This is by the Khatri-Sidak inequality, which says

$$\mathbb{P}(\sup_{t \in [0,T+S]} |X_{\mu}(t)| < K) \ge \mathbb{P}(\sup_{t \in [0,T]} |X_{\mu}(t)| < T)\mathbb{P}(\sup_{t \in [0,S]} |X_{\mu}(t)| < K).$$

- The second term in the RHS is free of T, and does not impact the exponent.
- For the first term, we have the lower bound

$$\mathbb{P}(\sup_{t \in [0,T]} |X_{\mu}(t)| < K) \ge \mathbb{P}(\sup_{t \in [0,1]} |X_{\mu}(t)| < K)^{T}.$$

• This is by the Khatri-Sidak inequality, which says

$$\mathbb{P}(\sup_{t \in [0,T+S]} |X_{\mu}(t)| < K) \ge \mathbb{P}(\sup_{t \in [0,T]} |X_{\mu}(t)| < T)\mathbb{P}(\sup_{t \in [0,S]} |X_{\mu}(t)| < K).$$

• In the above two displays we also use stationarity.

- The second term in the RHS is free of T, and does not impact the exponent.
- For the first term, we have the lower bound

$$\mathbb{P}(\sup_{t \in [0,T]} |X_{\mu}(t)| < K) \ge \mathbb{P}(\sup_{t \in [0,1]} |X_{\mu}(t)| < K)^{T}.$$

• This is by the Khatri-Sidak inequality, which says

$$\mathbb{P}(\sup_{t \in [0,T+S]} |X_{\mu}(t)| < K) \ge \mathbb{P}(\sup_{t \in [0,T]} |X_{\mu}(t)| < T)\mathbb{P}(\sup_{t \in [0,S]} |X_{\mu}(t)| < K).$$

• In the above two displays we also use stationarity.

• Finally,
$$\mathbb{P}(\sup_{t \in [0,1]} |X_{\mu}(t)| < K) \to 1 \text{ as } K \to \infty.$$

$$\mathbb{P}(\inf_{t \in [0,T]} \{X_{\mu}(t) \oplus \sigma Z\} > 0) \ge \mathbb{P}(\sup_{t \in [0,T]} |X_{\mu}(t)| < K) \mathbb{P}(\sigma Z > K)$$

$$\mathbb{P}(\inf_{t\in[0,T]} \{X_{\mu}(t)\oplus\sigma Z\} > 0) \ge \mathbb{P}(\sup_{t\in[0,T]} |X_{\mu}(t)| < K)\mathbb{P}(\sigma Z > K) \approx e^{-o(T)}$$

$$\mathbb{P}(\inf_{t\in[0,T]} \{X_{\mu}(t)\oplus\sigma Z\} > 0) \ge \mathbb{P}(\sup_{t\in[0,T]} |X_{\mu}(t)| < K)\mathbb{P}(\sigma Z > K) \approx e^{-o(T)}$$

• Consequently, $\theta(\mu + \nu) = 0$ for any μ , and so ν does change the exponent.

 $\mathbb{P}(\inf_{t\in[0,T]}\{X_{\mu}(t)\oplus\sigma Z\}>0)\geq\mathbb{P}(\sup_{t\in[0,T]}|X_{\mu}(t)|< K)\mathbb{P}(\sigma Z>K)\approx e^{-o(T)}.$

- Consequently, $\theta(\mu + \nu) = 0$ for any μ , and so ν does change the exponent.
- On the other hand let $\nu = \frac{1}{2}(\delta_1 + \delta_{-1})$ be supported away from 0.

 $\mathbb{P}(\inf_{t\in[0,T]}\{X_{\mu}(t)\oplus\sigma Z\}>0)\geq\mathbb{P}(\sup_{t\in[0,T]}|X_{\mu}(t)|< K)\mathbb{P}(\sigma Z>K)\approx e^{-o(T)}.$

- Consequently, $\theta(\mu + \nu) = 0$ for any μ , and so ν does change the exponent.
- On the other hand let $\nu = \frac{1}{2}(\delta_1 + \delta_{-1})$ be supported away from 0.

• In this case the process is

$$X_{\mu}(.) \oplus Z_1 \cos(.) \oplus Z_2 \sin(.),$$

where $Z_1, Z_2 \overset{i.i.d.}{\sim} N(0, 1)$.

• We claim that

 $\mathbb{P}(\inf_{t\in[0,T]}\{X_{\mu}(t)\oplus Z_{1}\cos(t)\oplus Z_{2}\sin(t)\}>0)\overset{T}{\approx}\mathbb{P}(\inf_{t\in[0,T]}X_{\mu}(t)>0).$

• We claim that

$$\mathbb{P}(\inf_{t\in[0,T]} \{X_{\mu}(t)\oplus Z_{1}\cos(t)\oplus Z_{2}\sin(t)\} > 0) \stackrel{T}{\approx} \mathbb{P}(\inf_{t\in[0,T]} X_{\mu}(t) > 0).$$

• $LHS \stackrel{T}{\geq} RHS$ is conceptually easier, via the bound

$$LHS \stackrel{T}{\geq} \mathbb{P}(\inf_{t \in [0,T]} X(t) > \delta) \mathbb{P}(|Z_1| \oplus |Z_2| < \delta).$$

• We claim that

$$\mathbb{P}(\inf_{t\in[0,T]} \{X_{\mu}(t)\oplus Z_{1}\cos(t)\oplus Z_{2}\sin(t)\} > 0) \stackrel{T}{\approx} \mathbb{P}(\inf_{t\in[0,T]} X_{\mu}(t) > 0).$$

• $LHS \stackrel{T}{\geq} RHS$ is conceptually easier, via the bound

$$LHS \stackrel{T}{\geq} \mathbb{P}(\inf_{t \in [0,T]} X(t) > \delta) \mathbb{P}(|Z_1| \oplus |Z_2| < \delta).$$

• Since $\mathbb{P}(|Z_1| \oplus |Z_2| < \delta) > 0$ is free of T, this does not impact the exponent.

• We claim that

$$\mathbb{P}(\inf_{t\in[0,T]} \{X_{\mu}(t)\oplus Z_{1}\cos(t)\oplus Z_{2}\sin(t)\} > 0) \stackrel{T}{\approx} \mathbb{P}(\inf_{t\in[0,T]} X_{\mu}(t) > 0).$$

• $LHS \stackrel{T}{\geq} RHS$ is conceptually easier, via the bound

$$LHS \stackrel{T}{\geq} \mathbb{P}(\inf_{t \in [0,T]} X(t) > \delta) \mathbb{P}(|Z_1| \oplus |Z_2| < \delta).$$

- Since $\mathbb{P}(|Z_1| \oplus |Z_2| < \delta) > 0$ is free of T, this does not impact the exponent.
- We now claim that we can change the level δ to 0 at a low cost, i.e.

$$\mathbb{P}(\inf_{t\in[0,T]}X_{\mu}(t)>\delta) \stackrel{T}{\approx} \mathbb{P}(\inf_{t\in[0,T]}X_{\mu}(t)>0).$$

• We claim that

$$\mathbb{P}(\inf_{t\in[0,T]} \{X_{\mu}(t)\oplus Z_{1}\cos(t)\oplus Z_{2}\sin(t)\} > 0) \stackrel{T}{\approx} \mathbb{P}(\inf_{t\in[0,T]} X_{\mu}(t) > 0).$$

• $LHS \stackrel{T}{\geq} RHS$ is conceptually easier, via the bound

$$LHS \stackrel{T}{\geq} \mathbb{P}(\inf_{t \in [0,T]} X(t) > \delta) \mathbb{P}(|Z_1| \oplus |Z_2| < \delta).$$

- Since $\mathbb{P}(|Z_1| \oplus |Z_2| < \delta) > 0$ is free of T, this does not impact the exponent.
- We now claim that we can change the level δ to 0 at a low cost, i.e.

$$\mathbb{P}(\inf_{t\in[0,T]}X_{\mu}(t)>\delta) \stackrel{T}{\approx} \mathbb{P}(\inf_{t\in[0,T]}X_{\mu}(t)>0).$$

• This completes the proof of one direction.

• The proof of the other direction is non-trivial, and requires the log-concavity of the Gaussian measure.

- The proof of the other direction is non-trivial, and requires the log-concavity of the Gaussian measure.
- Perhaps surprisingly, the other direction works for all measures, and does not require the measure ν to be singular.

- The proof of the other direction is non-trivial, and requires the log-concavity of the Gaussian measure.
- Perhaps surprisingly, the other direction works for all measures, and does not require the measure ν to be singular.
- More precisely, we claim that the bound

$$p_T(\mu+\nu) \stackrel{T}{\leq} p_T(\mu),$$

holds for any ν satisfying $\nu'(0) = 0$.

Sumit Mukherjee, Department of Statistics, Columbia Persistence exponent for GSPs

- The proof of the other direction is non-trivial, and requires the log-concavity of the Gaussian measure.
- Perhaps surprisingly, the other direction works for all measures, and does not require the measure ν to be singular.
- More precisely, we claim that the bound

$$p_T(\mu+\nu) \stackrel{T}{\leq} p_T(\mu),$$

holds for any ν satisfying $\nu'(0) = 0$.

• This will be sketched in the second part of the talk.

• Recall that we used continuity of the persistence probability/exponent in its levels.

- Recall that we used continuity of the persistence probability/exponent in its levels.
- There does exist continuity of exponent results for GSPs in the literature.

- Recall that we used continuity of the persistence probability/exponent in its levels.
- There does exist continuity of exponent results for GSPs in the literature.
- However, the state of the art result applies only to non-negative covariances which are strictly decreasing (Li-Shao 2005).

- Recall that we used continuity of the persistence probability/exponent in its levels.
- There does exist continuity of exponent results for GSPs in the literature.
- However, the state of the art result applies only to non-negative covariances which are strictly decreasing (Li-Shao 2005).
- One of our central estimates is a change of level lemma for general GSPs, which applies under the much weaker assumptions (A1) and (A2).

- Recall that we used continuity of the persistence probability/exponent in its levels.
- There does exist continuity of exponent results for GSPs in the literature.
- However, the state of the art result applies only to non-negative covariances which are strictly decreasing (Li-Shao 2005).
- One of our central estimates is a change of level lemma for general GSPs, which applies under the much weaker assumptions (A1) and (A2).
- In particular, this change of level lemma applies to "any" non-negative correlation function.

 There are counter-examples to the change of level lemma if one drops (A1): μ'(0) > 0.

- There are counter-examples to the change of level lemma if one drops (A1): $\mu'(0) > 0$.
- In particular, consider the recurring counter example $\mu = \frac{1}{2}(\delta_1 + \delta_{-1})$, where $\mu'(0) = 0$.

- There are counter-examples to the change of level lemma if one drops (A1): μ'(0) > 0.
- In particular, consider the recurring counter example $\mu = \frac{1}{2}(\delta_1 + \delta_{-1})$, where $\mu'(0) = 0$.
- In this case, for $T \ge 2\pi$,

$$\mathbb{P}(\inf_{t \in [0,T]} \{ Z_1 \cos(t) \oplus Z_2 \sin(t) \} > \delta) = 0 \text{ if } \delta \ge 0,$$
$$= c > 0 \text{ if } \delta < 0.$$

- There are counter-examples to the change of level lemma if one drops (A1): μ'(0) > 0.
- In particular, consider the recurring counter example $\mu = \frac{1}{2}(\delta_1 + \delta_{-1})$, where $\mu'(0) = 0$.
- In this case, for $T \ge 2\pi$,

$$\mathbb{P}(\inf_{t \in [0,T]} \{ Z_1 \cos(t) \oplus Z_2 \sin(t) \} > \delta) = 0 \text{ if } \delta \ge 0,$$
$$= c > 0 \text{ if } \delta < 0.$$

• Consequently,

$$-\lim_{T \to \infty} \frac{1}{T} \log \mathbb{P}(\inf_{t \in [0,T]} \{ Z_1 \cos(t) \oplus Z_2 \sin(t) \} > \delta) = \infty \text{ if } \delta \ge 0,$$
$$= 0 \text{ if } \delta < 0.$$

• Study of persistence relates very closely to study of small ball probabilities, of the form

$$\mathbb{P}(\sup_{t\in[0,T]}|X_{\mu}(t)|<\ell).$$

• Study of persistence relates very closely to study of small ball probabilities, of the form

$$\mathbb{P}(\sup_{t\in[0,T]}|X_{\mu}(t)|<\ell).$$

 Similar to persistence exponents, it is convenient to define the small exponent at level ℓ > 0:

$$\psi(\mu,\ell) := -\lim_{T \to \infty} \frac{1}{T} \mathbb{P}(\sup_{t \in [0,T]} |X_{\mu}(t)| < \ell).$$

• Study of persistence relates very closely to study of small ball probabilities, of the form

$$\mathbb{P}(\sup_{t\in[0,T]}|X_{\mu}(t)|<\ell).$$

 Similar to persistence exponents, it is convenient to define the small exponent at level ℓ > 0:

$$\psi(\mu,\ell) := -\lim_{T \to \infty} \frac{1}{T} \mathbb{P}(\sup_{t \in [0,T]} |X_{\mu}(t)| < \ell).$$

• Unlike persistence exponents $\theta(\mu)$, small ball exponents $\psi(\mu, \ell)$ always exist.

• Study of persistence relates very closely to study of small ball probabilities, of the form

$$\mathbb{P}(\sup_{t\in[0,T]}|X_{\mu}(t)|<\ell).$$

 Similar to persistence exponents, it is convenient to define the small exponent at level ℓ > 0:

$$\psi(\mu,\ell) := -\lim_{T \to \infty} \frac{1}{T} \mathbb{P}(\sup_{t \in [0,T]} |X_{\mu}(t)| < \ell).$$

- Unlike persistence exponents $\theta(\mu)$, small ball exponents $\psi(\mu, \ell)$ always exist.
- This is because the Khatri-Sidak inequality gives

$$\mathbb{P}(\sup_{t \in [0,T+S]} |X_{\mu}(t)| < \ell) \ge \mathbb{P}(\sup_{t \in [0,T]} |X_{\mu}(t)| < \ell) \mathbb{P}(\sup_{t \in [0,S]} |X_{\mu}(t)| < \ell).$$

• Study of persistence relates very closely to study of small ball probabilities, of the form

$$\mathbb{P}(\sup_{t\in[0,T]}|X_{\mu}(t)|<\ell).$$

 Similar to persistence exponents, it is convenient to define the small exponent at level ℓ > 0:

$$\psi(\mu,\ell) := -\lim_{T \to \infty} \frac{1}{T} \mathbb{P}(\sup_{t \in [0,T]} |X_{\mu}(t)| < \ell).$$

- Unlike persistence exponents $\theta(\mu)$, small ball exponents $\psi(\mu, \ell)$ always exist.
- This is because the Khatri-Sidak inequality gives

$$\mathbb{P}(\sup_{t \in [0,T+S]} |X_{\mu}(t)| < \ell) \ge \mathbb{P}(\sup_{t \in [0,T]} |X_{\mu}(t)| < \ell) \mathbb{P}(\sup_{t \in [0,S]} |X_{\mu}(t)| < \ell).$$

Theorem (Feldheim-Feldheim-M. 2021+)

$$\psi(\mu, \ell) = 0$$
 iff μ is singular.

Sumit Mukherjee, Department of Statistics, Columbia

• As an illustration, again let $\mu = \frac{1}{2}(\delta_1 + \delta_1)$.

- As an illustration, again let $\mu = \frac{1}{2}(\delta_1 + \delta_1)$.
- In this case $X_{\mu}(t) = Z_1 \cos(t) \oplus Z_2 \sin(t)$.

- As an illustration, again let $\mu = \frac{1}{2}(\delta_1 + \delta_1)$.
- In this case $X_{\mu}(t) = Z_1 \cos(t) \oplus Z_2 \sin(t)$.

• Then

$$\sup_{t \in [0,T]} \{ Z_1 \cos(t) \oplus Z_2 \sin(t) \} = \sqrt{Z_1^2 \oplus Z_2^2}$$

for $T \geq 2\pi$.

- As an illustration, again let $\mu = \frac{1}{2}(\delta_1 + \delta_1)$.
- In this case $X_{\mu}(t) = Z_1 \cos(t) \oplus Z_2 \sin(t)$.

• Then

$$\sup_{t \in [0,T]} \{ Z_1 \cos(t) \oplus Z_2 \sin(t) \} = \sqrt{Z_1^2 \oplus Z_2^2}$$

for $T \geq 2\pi$.

• Since $\mathbb{P}(\sqrt{Z_1^2 \oplus Z_2^2} < \ell) > 0$, we have $\psi(\mu, \ell) = 0$.

Sumit Mukherjee, Department of Statistics, Columbia Persistence es
Why are singular measures special?

- As an illustration, again let $\mu = \frac{1}{2}(\delta_1 + \delta_1)$.
- In this case $X_{\mu}(t) = Z_1 \cos(t) \oplus Z_2 \sin(t)$.

• Then $\sup_{t\in[0,T]} \{Z_1\cos(t)\oplus Z_2\sin(t)\} = \sqrt{Z_1^2\oplus Z_2^2}$ for $T\geq 2\pi.$

- Since $\mathbb{P}(\sqrt{Z_1^2 \oplus Z_2^2} < \ell) > 0$, we have $\psi(\mu, \ell) = 0$.
- The general proof proceeds via approximating a singular X_{μ} as a combination of o(T) many Gaussians.

Theorem (Feldheim-Feldheim-M '2020)

 $\theta(\mu_k) \rightarrow \theta(\mu_{\infty})$, if the following hold:

Theorem (Feldheim-Feldheim-M '2020)

 $\theta(\mu_k) \rightarrow \theta(\mu_{\infty})$, if the following hold:

(a) $\{\mu_k\}_{k\geq 1}$ are uniformly nice near ∞ , i.e. for some $\beta > 1$ we have $\sup_{k\geq 1} \int_{[1,\infty)} (\log x)^{\beta} \mu_k(dx) < \infty$.

Theorem (Feldheim-Feldheim-M '2020)

 $\theta(\mu_k) \rightarrow \theta(\mu_{\infty})$, if the following hold:

- (a) $\{\mu_k\}_{k\geq 1}$ are uniformly nice near ∞ , i.e. for some $\beta > 1$ we have $\sup_{k\geq 1} \int_{[1,\infty)} (\log x)^{\beta} \mu_k(dx) < \infty$.
- (b) $\{\mu_k\}_{k\geq 1}$ are uniformly nice near 0, i.e. there exists $\alpha, A > 0$ such that for all $x \in [0, A]$ we have

$$\alpha \le \frac{\mu_k([-x,x])}{2x} \le \frac{1}{\alpha}$$

Sumit Mukherjee, Department of Statistics, Columbia

Theorem (Feldheim-Feldheim-M '2020)

 $\theta(\mu_k) \rightarrow \theta(\mu_{\infty})$, if the following hold:

- (a) $\{\mu_k\}_{k\geq 1}$ are uniformly nice near ∞ , i.e. for some $\beta > 1$ we have $\sup_{k\geq 1} \int_{[1,\infty)} (\log x)^{\beta} \mu_k(dx) < \infty$.
- (b) $\{\mu_k\}_{k\geq 1}$ are uniformly nice near 0, i.e. there exists $\alpha, A > 0$ such that for all $x \in [0, A]$ we have

$$\alpha \le \frac{\mu_k([-x,x])}{2x} \le \frac{1}{\alpha}$$

(c)
$$d_{TV}(\mu_k, \mu_\infty) \to 0.$$

Theorem (Feldheim-Feldheim-M '2020)

 $\theta(\mu_k) \rightarrow \theta(\mu_{\infty})$, if the following hold:

- (a) $\{\mu_k\}_{k\geq 1}$ are uniformly nice near ∞ , i.e. for some $\beta > 1$ we have $\sup_{k\geq 1} \int_{[1,\infty)} (\log x)^{\beta} \mu_k(dx) < \infty$.
- (b) $\{\mu_k\}_{k\geq 1}$ are uniformly nice near 0, i.e. there exists $\alpha, A > 0$ such that for all $x \in [0, A]$ we have

$$\alpha \le \frac{\mu_k([-x,x])}{2x} \le \frac{1}{\alpha}$$

(c)
$$d_{TV}(\mu_k, \mu_\infty) \to 0.$$

(d) $\mu'_k(0) \to \mu'_\infty(0).$

Comments on the theorem

• The demand that the sequence is uniformly nice near 0 and ∞ are natural analogues of previous results.

- The demand that the sequence is uniformly nice near 0 and ∞ are natural analogues of previous results.
- The total variation convergence of μ_k to μ_{∞} can be stated after removing the singular parts away from the origin.

- The demand that the sequence is uniformly nice near 0 and ∞ are natural analogues of previous results.
- The total variation convergence of μ_k to μ_{∞} can be stated after removing the singular parts away from the origin.
- In particular, no convergence is necessary for singular component of the measure sequence (away from the origin), as they do not impact persistence.

- The demand that the sequence is uniformly nice near 0 and ∞ are natural analogues of previous results.
- The total variation convergence of μ_k to μ_{∞} can be stated after removing the singular parts away from the origin.
- In particular, no convergence is necessary for singular component of the measure sequence (away from the origin), as they do not impact persistence.
- This result generalizes the continuity of exponent result for non-negative correlations obtained in Dembo-M. 2012.

Sumit Mukherjee, Department of Statistics, Columbia Persistence

Outline

3 Outline of the proof

• We first prove the existence of exponent for spectral measures $\mu = f d\lambda$ with $f \in C^2$, and supported on [-L, L].

- We first prove the existence of exponent for spectral measures $\mu = f d\lambda$ with $f \in C^2$, and supported on [-L, L].
- Differentiating by parts, we have

$$\rho(t) = \int_{-L}^{L} e^{-itx} f(x) dx$$

- We first prove the existence of exponent for spectral measures $\mu = f d\lambda$ with $f \in C^2$, and supported on [-L, L].
- Differentiating by parts, we have

$$\rho(t) = \int_{-L}^{L} e^{-itx} f(x) dx$$
$$= -\frac{1}{it} \int_{-L}^{L} f'(x) e^{-itx} dx$$

- We first prove the existence of exponent for spectral measures $\mu = f d\lambda$ with $f \in C^2$, and supported on [-L, L].
- Differentiating by parts, we have

$$\rho(t) = \int_{-L}^{L} e^{-itx} f(x) dx$$

= $-\frac{1}{it} \int_{-L}^{L} f'(x) e^{-itx} dx$
= $\frac{1}{t^2} \int_{-L}^{L} f''(x) e^{-itx} dx.$

- We first prove the existence of exponent for spectral measures $\mu = f d\lambda$ with $f \in C^2$, and supported on [-L, L].
- Differentiating by parts, we have

$$\begin{split} \rho(t) &= \int_{-L}^{L} e^{-itx} f(x) dx \\ &= -\frac{1}{it} \int_{-L}^{L} f'(x) e^{-itx} dx \\ &= \frac{1}{t^2} \int_{-L}^{L} f''(x) e^{-itx} dx. \end{split}$$

• Since $||f''||_{\infty} < \infty$, this gives the bound $|\rho(t)| \leq \frac{C}{t^2}$ for all $t \geq 1$.

Sumit Mukherjee, Department of Statistics, Columbia

 Fixing M, δ > 0, split the interval [0, T] into intervals of length M, separated by intervals of length δM.

- Fixing M, δ > 0, split the interval [0, T] into intervals of length M, separated by intervals of length δM.
- Then we get $N := \frac{T}{M(1+\delta)}$ many separated intervals of length M in this process, say $\{I_i\}_{1 \le i \le N}$.

- Fixing M, δ > 0, split the interval [0, T] into intervals of length M, separated by intervals of length δM.
- Then we get $N := \frac{T}{M(1+\delta)}$ many separated intervals of length M in this process, say $\{I_i\}_{1 \le i \le N}$.
- Consequently,

$$\mathbb{P}(\inf_{t \in [0,T]} X_{\mu}(t) > 0) \le \mathbb{P}(\inf_{t \in I_i} X_{\mu}(t) > 0, 1 \le i \le N)$$

- Fixing M, δ > 0, split the interval [0, T] into intervals of length M, separated by intervals of length δM.
- Then we get $N := \frac{T}{M(1+\delta)}$ many separated intervals of length M in this process, say $\{I_i\}_{1 \le i \le N}$.
- Consequently,

$$\begin{split} \mathbb{P}(\inf_{t\in[0,T]} X_{\mu}(t) > 0) &\leq \mathbb{P}(\inf_{t\in I_{i}} X_{\mu}(t) > 0, 1 \leq i \leq N) \\ & \approx \prod_{i=1}^{M} \mathbb{P}(\inf_{t\in I_{i}} X_{\mu}(t) > 0) \text{ [Using fast decay+big gaps]} \end{split}$$

- Fixing M, δ > 0, split the interval [0, T] into intervals of length M, separated by intervals of length δM.
- Then we get $N := \frac{T}{M(1+\delta)}$ many separated intervals of length M in this process, say $\{I_i\}_{1 \le i \le N}$.
- Consequently,

$$\mathbb{P}(\inf_{t\in[0,T]} X_{\mu}(t) > 0) \leq \mathbb{P}(\inf_{t\in I_{i}} X_{\mu}(t) > 0, 1 \leq i \leq N)$$
$$\stackrel{M}{\approx} \prod_{i=1}^{N} \mathbb{P}(\inf_{t\in I_{i}} X_{\mu}(t) > 0)$$
$$= \mathbb{P}(\inf_{t\in[0,M]} X_{\mu}(t) > 0)^{N}.$$

Sumit Mukherjee, Department of Statistics, Columbia

• Taking log and dividing by T gives

$$\frac{1}{T}\log p_T(\mu) \le \frac{1}{M(1+\delta)}\log p_M(\mu) + o_M(1).$$

 $\bullet\,$ Taking log and dividing by T gives

$$\frac{1}{T}\log p_T(\mu) \le \frac{1}{M(1+\delta)}\log p_M(\mu) + o_M(1).$$

• Taking a \limsup over T gives

$$\limsup_{T \to \infty} \frac{1}{T} \log p_T(\mu) \le \frac{1}{M(1+\delta)} \log p_M(\mu) + o_M(1).$$

• Taking log and dividing by T gives

$$\frac{1}{T}\log p_T(\mu) \le \frac{1}{M(1+\delta)}\log p_M(\mu) + o_M(1).$$

• Taking a \limsup over T gives

$$\limsup_{T \to \infty} \frac{1}{T} \log p_T(\mu) \le \frac{1}{M(1+\delta)} \log p_M(\mu) + o_M(1).$$

• Taking a lim inf over M now gives

$$\limsup_{T \to \infty} \frac{1}{T} \log p_T(\mu) \le \liminf_{M \to \infty} \frac{1}{M(1+\delta)} \log p_M(\mu).$$

Sumit Mukherjee, Department of Statistics, Columbia

 $\bullet\,$ Taking log and dividing by T gives

$$\frac{1}{T}\log p_T(\mu) \le \frac{1}{M(1+\delta)}\log p_M(\mu) + o_M(1).$$

 $\bullet\,$ Taking a \limsup over T gives

$$\limsup_{T \to \infty} \frac{1}{T} \log p_T(\mu) \le \frac{1}{M(1+\delta)} \log p_M(\mu) + o_M(1).$$

• Taking a lim inf over M now gives

$$\limsup_{T \to \infty} \frac{1}{T} \log p_T(\mu) \le \liminf_{M \to \infty} \frac{1}{M(1+\delta)} \log p_M(\mu).$$

• The existence of the limit follows since $\delta > 0$ is arbitrary.

• Assume μ is absolutely continuous measure with Radon-Nikoydm derivative f which is not smooth.

• Assume μ is absolutely continuous measure with Radon-Nikoydm derivative f which is not smooth. Note that this covers the sinc process.

- Assume μ is absolutely continuous measure with Radon-Nikoydm derivative f which is not smooth. Note that this covers the sinc process.
- Let g be a C^2 function supported on [-L, L], such that

$$\int_{\mathbb{R}} |g(x) - f(x)| dx \approx 0, \quad g(0) \approx f(0)$$

- Assume μ is absolutely continuous measure with Radon-Nikoydm derivative f which is not smooth. Note that this covers the sinc process.
- Let g be a C^2 function supported on [-L, L], such that

$$\int_{\mathbb{R}} |g(x) - f(x)| dx \approx 0, \quad g(0) \approx f(0)$$

• Setting
$$\nu = gd\lambda$$
, we now claim that $p_T(\mu) \stackrel{T}{\approx} p_T(\nu)$.

- Assume μ is absolutely continuous measure with Radon-Nikoydm derivative f which is not smooth. Note that this covers the sinc process.
- Let g be a C^2 function supported on [-L, L], such that

$$\int_{\mathbb{R}} |g(x) - f(x)| dx \approx 0, \quad g(0) \approx f(0)$$

• Setting
$$\nu = gd\lambda$$
, we now claim that $p_T(\mu) \stackrel{T}{\approx} p_T(\nu)$.

• Since $\theta(\nu)$ exists, this will imply $\theta(\mu)$ exists.

- Assume μ is absolutely continuous measure with Radon-Nikoydm derivative f which is not smooth. Note that this covers the sinc process.
- Let g be a C^2 function supported on [-L, L], such that

$$\int_{\mathbb{R}} |g(x) - f(x)| dx \approx 0, \quad g(0) \approx f(0)$$

• Setting
$$\nu = gd\lambda$$
, we now claim that $p_T(\mu) \stackrel{T}{\approx} p_T(\nu)$.

- Since $\theta(\nu)$ exists, this will imply $\theta(\mu)$ exists.
- For simplicity we will assume $\nu \geq \mu$.

Sumit Mukherjee, Department of Statistics, Columbia

- Assume μ is absolutely continuous measure with Radon-Nikoydm derivative f which is not smooth. Note that this covers the sinc process.
- Let g be a C^2 function supported on [-L, L], such that

$$\int_{\mathbb{R}} |g(x) - f(x)| dx \approx 0, \quad g(0) \approx f(0)$$

• Setting
$$\nu = gd\lambda$$
, we now claim that $p_T(\mu) \stackrel{T}{\approx} p_T(\nu)$.

- Since $\theta(\nu)$ exists, this will imply $\theta(\mu)$ exists.
- For simplicity we will assume $\nu \geq \mu$.
- We split the proof into upper and lower bounds, the proofs of which are very different.

• We will first verify

$$p_T(\mu) \stackrel{T}{\leq} p_T(\nu).$$

• We will first verify

$$p_T(\mu) \stackrel{T}{\leq} p_T(\nu).$$

• Set
$$\sigma = \nu - \mu$$
, one has $\nu = \mu + \sigma$.

• We will first verify

$$p_T(\mu) \stackrel{T}{\leq} p_T(\nu).$$

• Set
$$\sigma = \nu - \mu$$
, one has $\nu = \mu + \sigma$.

• Also the assumption $\nu \ge \mu$ implies σ is a measure.

• We will first verify

$$p_T(\mu) \stackrel{T}{\leq} p_T(\nu).$$

• Set
$$\sigma = \nu - \mu$$
, one has $\nu = \mu + \sigma$.

• Also the assumption $\nu \ge \mu$ implies σ is a measure.

• This gives
$$X_{\nu} \stackrel{D}{=} X_{\mu} \oplus X_{\sigma}$$
.
• We will first verify

$$p_T(\mu) \stackrel{T}{\leq} p_T(\nu).$$

• Set
$$\sigma = \nu - \mu$$
, one has $\nu = \mu + \sigma$.

• Also the assumption $\nu \ge \mu$ implies σ is a measure.

• This gives
$$X_{\nu} \stackrel{D}{=} X_{\mu} \oplus X_{\sigma}$$
.

• Consequently,

$$\mathbb{P}(\inf_{t \in [0,T]} X_{\nu}(t) > 0) \ge \mathbb{P}(\inf_{t \in [0,T]} X_{\mu}(t) > \delta) \mathbb{P}(\sup_{t \in [0,T]} |X_{\sigma}(t)| < \delta)$$

Sumit Mukherjee, Department of Statistics, Columbia

• Also, Khatri-Sidak's inequality gives

$$\mathbb{P}(\sup_{t\in[0,T]}|X_{\sigma}(t)|<\delta)\geq\mathbb{P}(\sup_{t\in[0,1]}|X_{\sigma}(t)|<\delta)^{T}.$$

• Also, Khatri-Sidak's inequality gives

$$\mathbb{P}(\sup_{t\in[0,T]}|X_{\sigma}(t)|<\delta)\geq\mathbb{P}(\sup_{t\in[0,1]}|X_{\sigma}(t)|<\delta)^{T}.$$

• Also, Khatri-Sidak's inequality gives

$$\mathbb{P}(\sup_{t\in[0,T]}|X_{\sigma}(t)|<\delta)\geq\mathbb{P}(\sup_{t\in[0,1]}|X_{\sigma}(t)|<\delta)^{T}.$$

$$\mathbb{P}(\sup_{t\in[0,1]}|X_{\sigma}(t)|<\delta)\approx 1,$$

• Also, Khatri-Sidak's inequality gives

$$\mathbb{P}(\sup_{t\in[0,T]}|X_{\sigma}(t)|<\delta)\geq\mathbb{P}(\sup_{t\in[0,1]}|X_{\sigma}(t)|<\delta)^{T}.$$

$$\begin{split} & \mathbb{P}(\sup_{t\in[0,1]}|X_{\sigma}(t)|<\delta)\approx 1,\\ & \mathbb{P}(\inf_{t\in[0,T]}X_{\mu}(t)>\delta)\approx \mathbb{P}(\inf_{t\in[0,T]}X_{\mu}(t)>0). \end{split}$$

• Also, Khatri-Sidak's inequality gives

$$\mathbb{P}(\sup_{t\in[0,T]}|X_{\sigma}(t)|<\delta)\geq\mathbb{P}(\sup_{t\in[0,1]}|X_{\sigma}(t)|<\delta)^{T}.$$

• To complete the proof, it suffices to show the following:

$$\begin{split} & \mathbb{P}(\sup_{t\in[0,1]}|X_{\sigma}(t)|<\delta)\approx 1, \\ & \mathbb{P}(\inf_{t\in[0,T]}X_{\mu}(t)>\delta)\approx \mathbb{P}(\inf_{t\in[0,T]}X_{\mu}(t)>0). \end{split}$$

• The first one follows from standard estimates, since $\sigma = \nu - \mu$ is small in total variation.

• Also, Khatri-Sidak's inequality gives

$$\mathbb{P}(\sup_{t\in[0,T]}|X_{\sigma}(t)|<\delta)\geq\mathbb{P}(\sup_{t\in[0,1]}|X_{\sigma}(t)|<\delta)^{T}.$$

$$\mathbb{P}(\sup_{t\in[0,1]}|X_{\sigma}(t)|<\delta)\approx 1,$$

$$\mathbb{P}(\inf_{t\in[0,T]}X_{\mu}(t)>\delta)\approx \mathbb{P}(\inf_{t\in[0,T]}X_{\mu}(t)>0).$$

- The first one follows from standard estimates, since $\sigma = \nu \mu$ is small in total variation.
- The second one follows by another application of the change of level lemma.

• We need to show

$$p_T(\mu) \stackrel{T}{\geq} p_T(\nu).$$

Sumit Mukherjee, Department of Statistics, Columbia

• We need to show

$$p_T(\mu) \stackrel{T}{\geq} p_T(\nu).$$

• In the proof of the upper bound we only used $\sigma = \nu - \mu$ is small in TV.

• We need to show

$$p_T(\mu) \stackrel{T}{\geq} p_T(\nu).$$

- In the proof of the upper bound we only used $\sigma = \nu \mu$ is small in TV.
- In particular we never used $\nu'(0) \approx \mu'(0)$.

• We need to show

$$p_T(\mu) \stackrel{T}{\geq} p_T(\nu).$$

- In the proof of the upper bound we only used $\sigma = \nu \mu$ is small in TV.
- In particular we never used $\nu'(0) \approx \mu'(0)$.
- This will be used in the lower bound.

• We need to show

$$p_T(\mu) \stackrel{T}{\geq} p_T(\nu).$$

- In the proof of the upper bound we only used $\sigma = \nu \mu$ is small in TV.
- In particular we never used $\nu'(0) \approx \mu'(0)$.
- This will be used in the lower bound.
- Using the assumption gives $\sigma'(0) = \nu'(0) \mu'(0) \approx 0$.

• For simplicity, assume the stronger condition that σ vanishes on a small interval [-a, a] around the origin.

• For simplicity, assume the stronger condition that σ vanishes on a small interval [-a, a] around the origin.

• Thus
$$\mu = \nu$$
 on $[-a, a]$.

• For simplicity, assume the stronger condition that σ vanishes on a small interval [-a, a] around the origin.

• Thus
$$\mu = \nu$$
 on $[-a, a]$.

• Let

$$h(x) = 1 - \frac{|x|}{a} \text{ if } x \in [-a, a],$$

= 0 otherwise.

• For simplicity, assume the stronger condition that σ vanishes on a small interval [-a, a] around the origin.

• Thus
$$\mu = \nu$$
 on $[-a, a]$.

• Let

$$h(x) = 1 - \frac{|x|}{a} \text{ if } x \in [-a, a],$$

= 0 otherwise.

• Then $h^2 \sigma$ is the identically 0 measure.

• For simplicity, assume the stronger condition that σ vanishes on a small interval [-a, a] around the origin.

• Thus
$$\mu = \nu$$
 on $[-a, a]$.

• Let

$$h(x) = 1 - \frac{|x|}{a} \text{ if } x \in [-a, a],$$

= 0 otherwise.

- Then $h^2\sigma$ is the identically 0 measure.
- It thus suffices to show that

$$p_T(\mu) = p_T(\mu + h^2 \sigma) \stackrel{T}{\geq} p_T(\mu + \sigma) = p_T(\nu).$$

Sumit Mukherjee, Department of Statistics, Columbia

• We claim that

$$p_T(\mu + h^2\sigma) \stackrel{T}{\geq} p_T(\mu + \sigma)$$

holds for general measures μ, σ and function h(.).

• We claim that

$$p_T(\mu + h^2 \sigma) \stackrel{T}{\geq} p_T(\mu + \sigma)$$

holds for general measures μ, σ and function h(.).

• For verifying the claim, note that $h^2\sigma$ is the spectral measure of the following process

$$\int_{\mathbb{R}} H(t-s) X_{\sigma}(s) ds.$$

• We claim that

$$p_T(\mu + h^2 \sigma) \stackrel{T}{\geq} p_T(\mu + \sigma)$$

holds for general measures μ, σ and function h(.).

• For verifying the claim, note that $h^2\sigma$ is the spectral measure of the following process

$$\int_{\mathbb{R}} H(t-s) X_{\sigma}(s) ds.$$

• Here H(.) is the Fourier transform of h(.), given by

$$H(t) = \hat{h}(t) = \mathbf{a} \cdot \operatorname{sinc}^2(at).$$

Sumit Mukherjee, Department of Statistics, Columbia Persi

• We claim that

$$p_T(\mu + h^2\sigma) \stackrel{T}{\geq} p_T(\mu + \sigma)$$

holds for general measures μ, σ and function h(.).

• For verifying the claim, note that $h^2\sigma$ is the spectral measure of the following process

$$\int_{\mathbb{R}} H(t-s) X_{\sigma}(s) ds.$$

• Here H(.) is the Fourier transform of h(.), given by

$$H(t) = \hat{h}(t) = \mathbf{a} \cdot \operatorname{sinc}^2(at).$$

• Note that if $\mu = 0$, the claim reduces to $p_T(h^2\sigma) \stackrel{T}{\geq} p_T(\sigma)$, which is conceptually easier.

$$\mathbb{P}(\inf_{t\in[0,T]}\int X_{\sigma}(t-s)H(s)ds>0) \stackrel{T}{\geq} \mathbb{P}(\inf_{t\in[0,T]}X_{\sigma}(t)>0).$$

• Indeed, in this case we need to show that

$$\mathbb{P}(\inf_{t\in[0,T]}\int X_{\sigma}(t-s)H(s)ds>0) \stackrel{T}{\geq} \mathbb{P}(\inf_{t\in[0,T]}X_{\sigma}(t)>0).$$

• This seems straight-forward, as $X_{\sigma}(t) \ge 0$ implies $\int X_{\sigma}(t-s)H(s)ds > 0.$

$$\mathbb{P}(\inf_{t\in[0,T]}\int X_{\sigma}(t-s)H(s)ds>0) \stackrel{T}{\geq} \mathbb{P}(\inf_{t\in[0,T]}X_{\sigma}(t)>0).$$

- This seems straight-forward, as $X_{\sigma}(t) \ge 0$ implies $\int X_{\sigma}(t-s)H(s)ds > 0.$
- Note however that $X_{\sigma}(.)$ is only non-negative on [0, T].

$$\mathbb{P}(\inf_{t\in[0,T]}\int X_{\sigma}(t-s)H(s)ds>0) \stackrel{T}{\geq} \mathbb{P}(\inf_{t\in[0,T]}X_{\sigma}(t)>0).$$

- This seems straight-forward, as $X_{\sigma}(t) \ge 0$ implies $\int X_{\sigma}(t-s)H(s)ds > 0.$
- Note however that $X_{\sigma}(.)$ is only non-negative on [0, T].
- Assume that H has a compact support [-L, L].

$$\mathbb{P}(\inf_{t\in[0,T]}\int X_{\sigma}(t-s)H(s)ds>0) \stackrel{T}{\geq} \mathbb{P}(\inf_{t\in[0,T]}X_{\sigma}(t)>0).$$

- This seems straight-forward, as $X_{\sigma}(t) \ge 0$ implies $\int X_{\sigma}(t-s)H(s)ds > 0.$
- Note however that $X_{\sigma}(.)$ is only non-negative on [0, T].
- Assume that H has a compact support [-L, L].
- Then

$$\inf_{t \in [-L, T+L]} X_{\sigma}(t) \ge 0 \Rightarrow \inf_{t \in [0,T]} \int X_{\sigma}(t-s) H(s) ds \ge 0.$$

• This gives the exact bound

 $p_T(h^2\sigma) \ge p_{T+2L}(\sigma).$

• This gives the exact bound

$$p_T(h^2\sigma) \ge p_{T+2L}(\sigma).$$

• This effectively solves the case $\mu = 0$ and compactly supported H.

• This gives the exact bound

$$p_T(h^2\sigma) \ge p_{T+2L}(\sigma).$$

- This effectively solves the case $\mu = 0$ and compactly supported H.
- For a general μ , we use log-concavity of the Gaussian measure, and the fact $\int H(s)ds = h(0) = 1$.

• This gives the exact bound

$$p_T(h^2\sigma) \ge p_{T+2L}(\sigma).$$

- This effectively solves the case $\mu = 0$ and compactly supported H.
- For a general μ , we use log-concavity of the Gaussian measure, and the fact $\int H(s)ds = h(0) = 1$. This gives, for any v(.),

$$\int H(s) \log \mathbb{P}(\inf_{t \in [0,T]} \{X_{\mu}(t) + v(t-s)\} > 0) ds$$
$$\leq \log \mathbb{P}\left(\inf_{t \in [0,T]} \{X_{\mu}(t) + \int H(s)v(t-s) ds\} > 0\right).$$

Sumit Mukherjee, Department of Statistics, Columbia

• This gives the exact bound

$$p_T(h^2\sigma) \ge p_{T+2L}(\sigma).$$

- This effectively solves the case $\mu = 0$ and compactly supported H.
- For a general μ , we use log-concavity of the Gaussian measure, and the fact $\int H(s)ds = h(0) = 1$. This gives, for any v(.),

$$\int H(s) \log \mathbb{P}(\inf_{t \in [0,T]} \{X_{\mu}(t) + v(t-s)\} > 0) ds$$

$$\leq \log \mathbb{P}\left(\inf_{t \in [0,T]} \{X_{\mu}(t) + \int H(s)v(t-s) ds\} > 0\right).$$

• Using stationarity+compact support of H, the LHS is lower bounded by

$$\log \mathbb{P}(\inf_{t \in [-L, T+L]} \{ X_{\mu}(t) + v(t) \} > 0).$$

• Plugging in $v = X_{\sigma}$ gives

$$\mathbb{P}(\inf_{t\in[-L,T+L]}\{X_{\mu}(t)+X_{\sigma}(t)\}>0)$$
$$\leq \mathbb{P}\Big(\inf_{t\in[0,T]}\{X_{\mu}(t)+\int H(s)X_{\sigma}(t-s)ds\}>0\Big).$$

• Plugging in $v = X_{\sigma}$ gives

$$\mathbb{P}\left(\inf_{t\in[-L,T+L]} \{X_{\mu}(t) + X_{\sigma}(t)\} > 0\right)$$
$$\leq \mathbb{P}\left(\inf_{t\in[0,T]} \{X_{\mu}(t) + \int H(s)X_{\sigma}(t-s)ds\} > 0\right).$$

• This is same as

$$p_{T+2L}(\mu+\sigma) \le p_T(\mu+h^2\sigma),$$

which is what we wanted.

• Plugging in $v = X_{\sigma}$ gives

$$\mathbb{P}\left(\inf_{t\in[-L,T+L]} \{X_{\mu}(t) + X_{\sigma}(t)\} > 0\right)$$
$$\leq \mathbb{P}\left(\inf_{t\in[0,T]} \{X_{\mu}(t) + \int H(s)X_{\sigma}(t-s)ds\} > 0\right).$$

• This is same as

$$p_{T+2L}(\mu+\sigma) \le p_T(\mu+h^2\sigma),$$

which is what we wanted.

• Our H is not of compact support, but has integrable tails $H(t) \leq \frac{C}{t^2}$.

• Plugging in $v = X_{\sigma}$ gives

$$\mathbb{P}\left(\inf_{t\in[-L,T+L]} \{X_{\mu}(t) + X_{\sigma}(t)\} > 0\right)$$
$$\leq \mathbb{P}\left(\inf_{t\in[0,T]} \{X_{\mu}(t) + \int H(s)X_{\sigma}(t-s)ds\} > 0\right).$$

• This is same as

$$p_{T+2L}(\mu+\sigma) \le p_T(\mu+h^2\sigma),$$

which is what we wanted.

- Our H is not of compact support, but has integrable tails $H(t) \leq \frac{C}{t^2}$.
- We thus proceeding via truncating H, thus getting

$$p_{T+2L}(\mu+\sigma) \stackrel{T}{\leq} p_T(\mu+h^2\sigma).$$

• Plugging in $v = X_{\sigma}$ gives

$$\mathbb{P}\left(\inf_{t\in[-L,T+L]} \{X_{\mu}(t) + X_{\sigma}(t)\} > 0\right)$$
$$\leq \mathbb{P}\left(\inf_{t\in[0,T]} \{X_{\mu}(t) + \int H(s)X_{\sigma}(t-s)ds\} > 0\right).$$

• This is same as

$$p_{T+2L}(\mu+\sigma) \le p_T(\mu+h^2\sigma),$$

which is what we wanted.

- Our H is not of compact support, but has integrable tails $H(t) \leq \frac{C}{t^2}$.
- We thus proceeding via truncating H, thus getting

$$p_{T+2L}(\mu+\sigma) \stackrel{T}{\leq} p_T(\mu+h^2\sigma).$$

• This completes the sketch of the lower bound.
• An important conclusion of this proof technique is the following comparison lemma.

• An important conclusion of this proof technique is the following comparison lemma.

Lemma (Feldheim-Feldheim M. 2021+)

Suppose μ, σ are spectral measures (nice at 0 and ∞), and h(.) be a non-negative function with h(0) = 1.

• An important conclusion of this proof technique is the following comparison lemma.

Lemma (Feldheim-Feldheim M. 2021+)

Suppose μ, σ are spectral measures (nice at 0 and ∞), and h(.) be a non-negative function with h(0) = 1. If $\hat{h}(.)$ is non-negative, and satisfies mild decay conditions, then

 $\theta(\mu + h^2 \sigma) \le \theta(\mu + \sigma).$

• An important conclusion of this proof technique is the following comparison lemma.

Lemma (Feldheim-Feldheim M. 2021+)

Suppose μ, σ are spectral measures (nice at 0 and ∞), and h(.) be a non-negative function with h(0) = 1. If $\hat{h}(.)$ is non-negative, and satisfies mild decay conditions, then

$$\theta(\mu + h^2 \sigma) \le \theta(\mu + \sigma).$$

• In particular let $\mu = \nu_{[-L,L]}$ and $\sigma = \nu - \nu_{[-L,L]}$.

• An important conclusion of this proof technique is the following comparison lemma.

Lemma (Feldheim-Feldheim M. 2021+)

Suppose μ, σ are spectral measures (nice at 0 and ∞), and h(.) be a non-negative function with h(0) = 1. If $\hat{h}(.)$ is non-negative, and satisfies mild decay conditions, then

$$\theta(\mu + h^2 \sigma) \le \theta(\mu + \sigma).$$

• In particular let $\mu = \nu_{[-L,L]}$ and $\sigma = \nu - \nu_{[-L,L]}$. Then with $h(x) = 1 - \frac{|x|}{L}$ on [-L, L] gives $h^2 \sigma = 0$.

• An important conclusion of this proof technique is the following comparison lemma.

Lemma (Feldheim-Feldheim M. 2021+)

Suppose μ, σ are spectral measures (nice at 0 and ∞), and h(.) be a non-negative function with h(0) = 1. If $\hat{h}(.)$ is non-negative, and satisfies mild decay conditions, then

$$\theta(\mu + h^2 \sigma) \le \theta(\mu + \sigma).$$

• In particular let $\mu = \nu_{[-L,L]}$ and $\sigma = \nu - \nu_{[-L,L]}$. Then with $h(x) = 1 - \frac{|x|}{L}$ on [-L, L] gives $h^2 \sigma = 0$.

• Thus

$$\theta(\nu_{[-L,L]}) = \theta(\mu) = \theta(\mu + h^2 \sigma) \le \theta(\mu + \sigma) = \theta(\nu).$$

• Suppose μ is nice near 0 and ∞ , and σ is a singular measure supported away from the origin.

- Suppose μ is nice near 0 and ∞ , and σ is a singular measure supported away from the origin.
- Then we have

$$\mathbb{P}(\inf_{t\in[0,T]} \{X_{\mu}(t)\oplus X_{\sigma}(t)\} > 0)$$

$$\geq \mathbb{P}(\inf_{t\in[0,T]} X_{\mu}(t) > \delta)\mathbb{P}(\sup_{t\in[0,T]} |X_{\sigma}(t)| < \delta).$$

- Suppose μ is nice near 0 and ∞ , and σ is a singular measure supported away from the origin.
- Then we have

$$\mathbb{P}(\inf_{t\in[0,T]} \{X_{\mu}(t) \oplus X_{\sigma}(t)\} > 0)$$

$$\geq \mathbb{P}(\inf_{t\in[0,T]} X_{\mu}(t) > \delta) \mathbb{P}(\sup_{t\in[0,T]} |X_{\sigma}(t)| < \delta).$$

 \bullet As stated in our main results, for a singular $\sigma,$

$$\mathbb{P}(\sup_{t\in[0,T]}|X_{\sigma}(t)|<\delta) \stackrel{T}{\approx} 1.$$

- Suppose μ is nice near 0 and ∞ , and σ is a singular measure supported away from the origin.
- Then we have

$$\mathbb{P}(\inf_{t\in[0,T]} \{X_{\mu}(t)\oplus X_{\sigma}(t)\} > 0)$$

$$\geq \mathbb{P}(\inf_{t\in[0,T]} X_{\mu}(t) > \delta)\mathbb{P}(\sup_{t\in[0,T]} |X_{\sigma}(t)| < \delta).$$

• As stated in our main results, for a singular σ ,

$$\mathbb{P}(\sup_{t\in[0,T]}|X_{\sigma}(t)|<\delta) \stackrel{T}{\approx} 1.$$

• Also changing levels we have

$$\mathbb{P}(\inf_{t\in[0,T]}X_{\mu}(t)>\delta) \stackrel{T}{\approx} \mathbb{P}(\inf_{t\in[0,T]}X_{\mu}(t)>0).$$

- Suppose μ is nice near 0 and ∞ , and σ is a singular measure supported away from the origin.
- Then we have

$$\mathbb{P}(\inf_{t\in[0,T]} \{X_{\mu}(t) \oplus X_{\sigma}(t)\} > 0)$$

$$\geq \mathbb{P}(\inf_{t\in[0,T]} X_{\mu}(t) > \delta) \mathbb{P}(\sup_{t\in[0,T]} |X_{\sigma}(t)| < \delta).$$

• As stated in our main results, for a singular σ ,

$$\mathbb{P}(\sup_{t\in[0,T]}|X_{\sigma}(t)|<\delta) \stackrel{T}{\approx} 1.$$

• Also changing levels we have

$$\mathbb{P}(\inf_{t\in[0,T]}X_{\mu}(t)>\delta) \stackrel{T}{\approx} \mathbb{P}(\inf_{t\in[0,T]}X_{\mu}(t)>0).$$

• Combining we have

$$p_T(\mu + \sigma) \stackrel{T}{\geq} p_T(\mu)$$

- Suppose μ is nice near 0 and ∞ , and σ is a singular measure supported away from the origin.
- Then we have

$$\mathbb{P}(\inf_{t\in[0,T]} \{X_{\mu}(t) \oplus X_{\sigma}(t)\} > 0)$$

$$\geq \mathbb{P}(\inf_{t\in[0,T]} X_{\mu}(t) > \delta) \mathbb{P}(\sup_{t\in[0,T]} |X_{\sigma}(t)| < \delta).$$

• As stated in our main results, for a singular σ ,

$$\mathbb{P}(\sup_{t\in[0,T]}|X_{\sigma}(t)|<\delta) \stackrel{T}{\approx} 1.$$

• Also changing levels we have

$$\mathbb{P}(\inf_{t\in[0,T]}X_{\mu}(t)>\delta) \stackrel{T}{\approx} \mathbb{P}(\inf_{t\in[0,T]}X_{\mu}(t)>0).$$

• Combining we have

$$p_T(\mu + \sigma) \stackrel{T}{\geq} p_T(\mu) \Rightarrow \theta(\mu + \sigma) \le \theta(\mu).$$

• For the other direction, note that σ is supported outside [-a, a] by assumption.

- For the other direction, note that σ is supported outside [-a, a] by assumption.
- Thus with $h(x) = 1 \frac{|x|}{a}$ for $x \in [-a, a]$, the measure $h^2 \sigma \equiv 0$.

- For the other direction, note that σ is supported outside [-a, a] by assumption.
- Thus with $h(x) = 1 \frac{|x|}{a}$ for $x \in [-a, a]$, the measure $h^2 \sigma \equiv 0$.
- Using the comparison lemma we have

$$\theta(\mu)=\theta(\mu+h^2\sigma)\leq\theta(\mu+\sigma).$$

- For the other direction, note that σ is supported outside [-a, a] by assumption.
- Thus with $h(x) = 1 \frac{|x|}{a}$ for $x \in [-a, a]$, the measure $h^2 \sigma \equiv 0$.
- Using the comparison lemma we have

$$\theta(\mu)=\theta(\mu+h^2\sigma)\leq\theta(\mu+\sigma).$$

• Combining, we have $\theta(\mu) = \theta(\mu + \sigma)$.

- For the other direction, note that σ is supported outside [-a, a] by assumption.
- Thus with $h(x) = 1 \frac{|x|}{a}$ for $x \in [-a, a]$, the measure $h^2 \sigma \equiv 0$.
- Using the comparison lemma we have

$$\theta(\mu)=\theta(\mu+h^2\sigma)\leq\theta(\mu+\sigma).$$

- Combining, we have $\theta(\mu) = \theta(\mu + \sigma)$.
- We also show that equality does not hold if σ is not singular.

Outline

3 Outline of the proof

• We give a general set of tools for analyze persistence of GSPs, which go far beyond the setting of non negative correlations.

- We give a general set of tools for analyze persistence of GSPs, which go far beyond the setting of non negative correlations.
- We establish existence of persistence exponent for any GSP, under mild conditions on the spectral measure near 0 and ∞.

- We give a general set of tools for analyze persistence of GSPs, which go far beyond the setting of non negative correlations.
- We establish existence of persistence exponent for any GSP, under mild conditions on the spectral measure near 0 and ∞.
- We give examples to demonstrate that the condition near 0 is tight.

- We give a general set of tools for analyze persistence of GSPs, which go far beyond the setting of non negative correlations.
- We establish existence of persistence exponent for any GSP, under mild conditions on the spectral measure near 0 and ∞.
- We give examples to demonstrate that the condition near 0 is tight.
- We study continuity of persistence exponents on the space of spectral measures with respect to the metric

 $d_{TV}(\mu,\nu) + |\mu'(0) - \nu'(0)|.$

- We give a general set of tools for analyze persistence of GSPs, which go far beyond the setting of non negative correlations.
- We establish existence of persistence exponent for any GSP, under mild conditions on the spectral measure near 0 and ∞.
- We give examples to demonstrate that the condition near 0 is tight.
- We study continuity of persistence exponents on the space of spectral measures with respect to the metric

$$d_{TV}(\mu,\nu) + |\mu'(0) - \nu'(0)|.$$

• We also show that ball exponent $\psi(\mu, \ell) = 0$ if and only if μ is singular.

- We give a general set of tools for analyze persistence of GSPs, which go far beyond the setting of non negative correlations.
- We establish existence of persistence exponent for any GSP, under mild conditions on the spectral measure near 0 and ∞.
- We give examples to demonstrate that the condition near 0 is tight.
- We study continuity of persistence exponents on the space of spectral measures with respect to the metric

$$d_{TV}(\mu,\nu) + |\mu'(0) - \nu'(0)|.$$

- We also show that ball exponent $\psi(\mu, \ell) = 0$ if and only if μ is singular.
- Using this, we show that the persistence exponent does not change on adding a singular measure supported away from the origin.

Future Scope

• What is the exponent $\theta(\mu)$?

• What is the exponent $\theta(\mu)$? Nobody knows!

- What is the exponent $\theta(\mu)$? Nobody knows!
- In this talk, we only studied exponents when $0 < \mu'(0) < \infty$.

- What is the exponent $\theta(\mu)$? Nobody knows!
- In this talk, we only studied exponents when $0 < \mu'(0) < \infty$. What happens if $\mu'(0) \in \{0, \infty\}$?

- What is the exponent $\theta(\mu)$? Nobody knows!
- In this talk, we only studied exponents when $0 < \mu'(0) < \infty$. What happens if $\mu'(0) \in \{0, \infty\}$? We know $\theta(\mu) \in \{0, \infty\}$ (and rates Feldheim-Feldheim-Nitzan 2017), but maybe there is an exponent?

- What is the exponent $\theta(\mu)$? Nobody knows!
- In this talk, we only studied exponents when $0 < \mu'(0) < \infty$. What happens if $\mu'(0) \in \{0, \infty\}$? We know $\theta(\mu) \in \{0, \infty\}$ (and rates Feldheim-Feldheim-Nitzan 2017), but maybe there is an exponent?
- Can we handle non-stationary Gaussians?

- What is the exponent $\theta(\mu)$? Nobody knows!
- In this talk, we only studied exponents when $0 < \mu'(0) < \infty$. What happens if $\mu'(0) \in \{0, \infty\}$? We know $\theta(\mu) \in \{0, \infty\}$ (and rates Feldheim-Feldheim-Nitzan 2017), but maybe there is an exponent?
- Can we handle non-stationary Gaussians? One advantage of correlation function is that it makes sense even for non-stationary Gaussian processes.

- What is the exponent $\theta(\mu)$? Nobody knows!
- In this talk, we only studied exponents when $0 < \mu'(0) < \infty$. What happens if $\mu'(0) \in \{0, \infty\}$? We know $\theta(\mu) \in \{0, \infty\}$ (and rates Feldheim-Feldheim-Nitzan 2017), but maybe there is an exponent?
- Can we handle non-stationary Gaussians? One advantage of correlation function is that it makes sense even for non-stationary Gaussian processes.
- Can we say how does the GSP look like conditioned on persistence?

