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What is the question?

Suppose we have a continuous time Gaussian Stationary Process
{X(t)}t≥0 with EX(t) = 0,EX(t)2 = 1, and continuous sample
paths.

We want to study

p(T ) := P( inf
t∈[0,T ]

X(t) > 0),

which is the probability that X(.) persists above 0 for the entire
time interval [0, T ].

It is not hard to see that p(T )→ 0 as soon as the covariance
function ρ(t) := EX(0)X(t) converges to 0.

We want to study the decay rate of p(T ).
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Slepian’s Lemma

A very powerful tool for understanding GSPs is the following
classical lemma due to Slepian 1962.

Suppose {X(t)}t≥0 and {Y (t)}t≥0 are two centered GSPs with
EX(t)2 = EY (t)2 = 1.

Assume that EX(s)X(t) ≤ EY (s)Y (t).

Then
P( inf
t∈[0,T ]

X(t) > 0) ≤ P( inf
t∈[0,T ]

Y (t) > 0).

Comment: Slepian’s Lemma applies for non stationary Gaussian
processes.
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Slepian+non-negative covariance

More is known about this problem when the covariance function
ρ is non-negative.

In this case Slepian’s Lemma gives

P( inf
t∈[0,T+S]

X(t) > 0)

≥P( inf
t∈[0,T ]

X(t) > 0)P( inf
t∈[T,T+S]

X(t) > 0) [ρ(.) ≥ 0]

=P( inf
t∈[0,T ]

X(t) > 0)P( inf
t∈[0,S]

X(t) > 0) [Stationary]

By sub-additivity, θρ := − lim
T→∞

1
T log p(T ) exists in [0,∞].
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Finiteness

Can θρ =∞?

Ans: No!

Slepian’s Lemma gives

P( inf
t∈[0,T ]

X(t) > 0) ≥ P( inf
t∈[0,1/k]

X(t) > 0)Tk.

Taking log and dividing by T gives

1

T
logP( inf

t∈[0,T ]
X(t) > 0) ≥ k logP( inf

t∈[0,1/k]
X(t) > 0).
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Finiteness

If P(inft∈[0,1/k]X(t) > 0) is not 0 for some k, then θρ <∞.

Otherwise we have P(inft∈[0,1/k]X(t) > 0) = 0 for all k.

Letting k →∞ we have

inf
t∈[0,1/k]

X(t)
a.s.→ X(0),

by continuity of sample paths.

But this is a contradiction, as P(X(0) > 0) 6= 0.
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Positivity

Question: Can θρ = 0?

Ans: Yes!

It was shown in Newell-Rosenblatt 1962 that θρ = 0, if ρ(t) ∼ t−α
as t→∞.

Much more recently, it was shown in Dembo-M. 2015 that θρ = 0,
if ρ(t) is regularly varying, and

∫∞
0
ρ(t)dt =∞.

Finally, in Aurzada-M. 2020 it was shown that

θρ = 0 ⇔
∫ ∞
0

ρ(t)dt =∞.
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Continuity of exponents

Suppose ρk is a sequence of covariance functions converging
point-wise to ρ∞.

Does this imply θρk → θρ∞? Ans: Not always!

Suppose ρ(int) and ρ(non) are two non-negative covariance
functions, such that ρ(int) is integrable and ρ(non) is not.

Let ρk = (1− 1
k )ρ(int) + 1

kρ
(non).

Then ρk is not integrable for any k, and so θρk = 0.

On the other hand lim
k→∞

ρk = ρ(int) which is integrable, and so

θρ(int) > 0.
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Continuity of exponents

Need some sort of uniform integrability type condition to ensure∫∞
0
ρk(t)dt and

∫∞
0
ρ(t)dt are close.

Theorem (Dembo-M. 2012)

θρk → θρ∞ , provided the following conditions hold:

(a) ρk(.) converges to ρ∞(.) pointwise; (Finite dim convergence)

(b) lim sup
t→∞

sup
k≥1

ρk(t)
|t|α <∞ for some α > 1; (uniform decay of correlations)

(c) lim sup
t→0

sup
k≥1
| log t|β(1− ρk(t)) <∞ for some β > 1. (tightness)
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Outside non-negative correlation

It is not known that there is an exponent θρ.

Even if θρ exists, it can be +∞.

As an example, let X(t) = Z1 cos(t) + Z2 sin(t), where

Z1, Z2
i.i.d.∼ N(0, 1).

Then EX(t)X(s) = cos(t− s), and so the process is stationary.

For any T ≥ 2π, we have

inf
t∈[0,T ]

{Z1 cos(t) + Z2 sin(t)} = −
√
Z2
1 + Z2

2 .

Thus logP(
√
Z2
1 + Z2

2 < 0) = −∞. Consequently, θρ =∞.
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The sinc process

A more interesting example is the sinc process, which has
correlation

ρ(t) = sinc(t) =
sin(t)

t
.

In this case the correlation function ρ(.) is not absolutely
integrable.

It was shown by Antezana et al. 2012 that in this case there
exists positive finite constants C1 < C2, such that for all T large
enough we have

e−C2T ≤ p(T ) ≤ e−C1T .

The existence of exponent for the sinc process remained open.
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Connection to Spectral Measure

Since ρ(.) is a continuous covariance function, by Bochner’s
theorem there is a measure µ whose Fourier transform is ρ.

More precisely, for every t ≥ 0 we have∫
R
e−itxµ(dx) = ρ(t)

Here µ is a finite measure on R which is symmetric about the
origin.

Moreover, given any finite symmetric measure µ, its Fourier ρ is a
continuous correlation function.

As an example, for the sinc process, µ is 1
2 times Lebesgue

measure on [−1, 1].
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Parametrizing via spectral measure

Building on this connection, in Feldheim-Feldheim 2013 the
authors give a general sufficient condition for exponential decay
of p(T ).

Theorem (Feldheim-Feldheim 2013)

Suppose the spectral measure µ satisfies the following conditions:

(a) There exists β > 0 such that
∫
R |x|

βµ(dx) <∞.

(b) There exists finite positive reals m,M , and a small neighborhood
(−α, α) of the origin, such that for any interval I ⊂ (−α, α) we have

m|I| ≤ µ(I) ≤M |I|.

Then there exists finite positive constants C1 < C2 such that

e−C2T ≤ p(T ) ≤ e−C1T .
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What remained open?

It was not known whether there is a persistence exponent result
for general correlations.

In fact, the existence of exponent was not known in any
non-trivial example (including the sinc process).

Can we study continuity properties of such exponents, in terms of
ρ(.) or µ?

Can we compare persistence exponents by comparing spectral
measures?
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Outline

1 What is the question?

2 An overview of our results

3 Outline of the proof
Smooth densities
UB for general densities
LB for general densities
Important tools

4 Conclusion
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Some notations

Similar to Feldheim-Feldheim 2013, we will parametrize a GSP
via its spectral measure.

Let µ be a spectral measure, i.e. a symmetric finite measure on
R.

Define its Fourier transform ρµ by setting

ρµ(t) :=

∫
R
e−itxµ(dx).

Let {Xµ(t)}t≥0 denote a centered GSP with correlation ρµ.

Let pT (µ) := P(inft∈[0,T ]Xµ(t) > 0).
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First main result: Existence

Theorem (Feldheim-Feldheim-M. 2021+)

The exponent

θ(µ) := − lim
T→∞

1

T
log pT (µ)

exists in [0,∞), provided the following conditions hold:

(A1) There exists β > 1 such that µ has finite logβ moment, i.e.∫
[1,∞)

(log x)βµ(dx) <∞.

(A2) The limit

µ′(0) := lim
ε↓0

µ[−ε, ε]
2ε

exists in (0,∞].
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Positivity and Finiteness

Assume (A1) throughout this slide.

If µ′(0) =∞, then θ(µ) = 0.

Conversely, if µ′(0) <∞ and µ has a non singular component,
then θ(µ) > 0.

If µ′(0) > 0 then θ(µ) <∞.

Conversely, if µ([0, t]) ∼ tα for α < 1 near 0, then θ(µ) =∞
(Feldheim-Feldheim-Nitzan 2017).
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Examples

In particular for the sinc process µ equals 1
2 Lebesgue measure on

[−1, 1], which is compactly supported, hence has logβ moment
finite (A1 holds).

Also µ has a density which is continuous and strictly positive on
(−1, 1), so the second condition (A2) holds as well.

It follows from the above theorem that θ(µ) exists in (0,∞), i.e.
the sinc process does have an exponent.

Suppose µ is a spectral measure which satisfies our conditions.
Then the truncated measure µ[−L,L] satisfies our conditions.

More generally, let h(.) be a bounded non-negative function
which is continuous near 0, with h(0) 6= 0.
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Examples

Then the measure ν defined by dν
dµ = h satisfies our conditions.

If µ and ν satisfy our conditions, so does µ+ ν, αµ and µ(.α) for
any α > 0.

If µ and ν satisfies our conditions, and one of the measures have a
bounded continuous density, then so does the convolution µ ∗ ν.

If the correlation function ρ(.) is absolutely integrable, and
1− ρ(t) satisfies very mild decay conditions for t ≈ 0, then our
conditions hold.
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Comments on the theorem

The logβ moment condition (A1) on µ is very mild, and implies
continuity of Xµ(.).

This ensures that inft∈[0,T ]Xµ(t) is well
defined.

This basically says that the spectral measure is nice near ∞.

We also need (A2), which demands that µ is nice near 0 (µ′(0)
exists and is positive).

To show the necessity of this, we show the existence of positive
reals A < B such that with

µ(dx) = (A+B cos(1/x))1{|x| < 1}dx,

the exponent θ(µ) does not exist.
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To show the necessity of this, we show the existence of positive
reals A < B such that with

µ(dx) = (A+B cos(1/x))1{|x| < 1}dx,

the exponent θ(µ) does not exist.
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Comments on the theorem

In this example µ is a compactly supported absolutely continuous
spectral measure.

Further, the density is continuous in the neighborhood (−1, 1),
except at 0.

This example demonstrates the special role of the origin, as a
discontinuity away from the origin does not impact existence of
exponent.

We conjecture that the exponent θ(µ) does not exist in this
example for any A,B (as opposed to some A,B).
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Second main result: Impact of singular measures

Suppose µ is a measure which satisfies our regularity conditions
(nice near 0 and ∞), and ν is a measure which is nice near ∞.

Assume further that ν′(0) = 0.

Then µ+ ν is nice near 0, and nice near ∞.

Consequently, θ(µ) and θ(µ+ ν) are both well defined.

Theorem (Feldheim-Feldheim-M. 2021+)

θ(µ+ ν) ≥ θ(µ), with equality iff ν is purely singular.
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Comments on this theorem

In particular, if ν is a singular measure whose support does not
contain 0, then θ(µ+ ν) = θ(µ).

This allows us to throw away
any singular part away from the origin.

As for example, if ν is a point mass at 0, then the process is

Xµ(.)⊕ σZ.

Here Z ∼ N(0, 1), and the sign ⊕ denotes point-wise sum of
independent processes.

In this case, we have

P( inf
t∈[0,T ]

{Xµ(t)⊕ σZ} > 0) ≥ P( sup
t∈[0,T ]

|Xµ(t)| < K)P(σZ > K).
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Example

The second term in the RHS is free of T , and does not impact
the exponent.

For the first term, we have the lower bound

P( sup
t∈[0,T ]

|Xµ(t)| < K) ≥ P( sup
t∈[0,1]

|Xµ(t)| < K)T .

This is by the Khatri-Sidak inequality, which says

P( sup
t∈[0,T+S]

|Xµ(t)| < K) ≥ P( sup
t∈[0,T ]

|Xµ(t)| < T )P( sup
t∈[0,S]

|Xµ(t)| < K).

In the above two displays we also use stationarity.

Finally, P(supt∈[0,1] |Xµ(t)| < K)→ 1 as K →∞.
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Example

Combining we have

P( inf
t∈[0,T ]

{Xµ(t)⊕σZ} > 0) ≥ P( sup
t∈[0,T ]

|Xµ(t)| < K)P(σZ > K)

≈ e−o(T ).

Consequently, θ(µ+ ν) = 0 for any µ, and so ν does change the
exponent.

On the other hand let ν = 1
2 (δ1 + δ−1) be supported away from 0.

In this case the process is

Xµ(.)⊕ Z1 cos(.)⊕ Z2 sin(.),

where Z1, Z2
i.i.d.∼ N(0, 1).
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Example

We claim that

P( inf
t∈[0,T ]

{Xµ(t)⊕Z1 cos(t)⊕Z2 sin(t)} > 0)
T
≈ P( inf

t∈[0,T ]
Xµ(t) > 0).

LHS
T
≥ RHS is conceptually easier, via the bound

LHS
T
≥ P( inf

t∈[0,T ]
X(t) > δ)P(|Z1| ⊕ |Z2| < δ).

Since P(|Z1| ⊕ |Z2| < δ) > 0 is free of T , this does not impact the
exponent.

We now claim that we can change the level δ to 0 at a low cost,
i.e.

P( inf
t∈[0,T ]

Xµ(t) > δ)
T
≈ P( inf

t∈[0,T ]
Xµ(t) > 0).

This completes the proof of one direction.
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Example

The proof of the other direction is non-trivial, and requires the
log-concavity of the Gaussian measure.

Perhaps surprisingly, the other direction works for all measures,
and does not require the measure ν to be singular.

More precisely, we claim that the bound

pT (µ+ ν)
T
≤ pT (µ),

holds for any ν satisfying ν′(0) = 0.

This will be sketched in the second part of the talk.
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Continuity in levels

Recall that we used continuity of the persistence
probability/exponent in its levels.

There does exist continuity of exponent results for GSPs in the
literature.

However, the state of the art result applies only to non-negative
covariances which are strictly decreasing (Li-Shao 2005).

One of our central estimates is a change of level lemma for
general GSPs, which applies under the much weaker assumptions
(A1) and (A2).

In particular, this change of level lemma applies to “any”
non-negative correlation function.
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Continuity in levels

There are counter-examples to the change of level lemma if one
drops (A1): µ′(0) > 0.

In particular, consider the recurring counter example
µ = 1

2 (δ1 + δ−1), where µ′(0) = 0.

In this case, for T ≥ 2π,

P( inf
t∈[0,T ]

{Z1 cos(t)⊕ Z2 sin(t)} > δ) =0 if δ ≥ 0,

=c > 0 if δ < 0.

Consequently,

− lim
T→∞

1

T
logP( inf

t∈[0,T ]
{Z1 cos(t)⊕ Z2 sin(t)} > δ) =∞ if δ ≥ 0,

=0 if δ < 0.
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Why are singular measures special?

Study of persistence relates very closely to study of small ball
probabilities, of the form

P( sup
t∈[0,T ]

|Xµ(t)| < `).

Similar to persistence exponents, it is convenient to define the
small exponent at level ` > 0:

ψ(µ, `) := − lim
T→∞

1

T
P( sup
t∈[0,T ]

|Xµ(t)| < `).

Unlike persistence exponents θ(µ), small ball exponents ψ(µ, `)
always exist.

This is because the Khatri-Sidak inequality gives

P( sup
t∈[0,T+S]

|Xµ(t)| < `) ≥ P( sup
t∈[0,T ]

|Xµ(t)| < `)P( sup
t∈[0,S]

|Xµ(t)| < `).

Theorem (Feldheim-Feldheim-M. 2021+)

ψ(µ, `) = 0 iff µ is singular.
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Why are singular measures special?

As an illustration, again let µ = 1
2 (δ1 + δ1).

In this case Xµ(t) = Z1 cos(t)⊕ Z2 sin(t).

Then

sup
t∈[0,T ]

{Z1 cos(t)⊕ Z2 sin(t)} =
√
Z2
1 ⊕ Z2

2

for T ≥ 2π.

Since P(
√
Z2
1 ⊕ Z2

2 < `) > 0, we have ψ(µ, `) = 0.

The general proof proceeds via approximating a singular Xµ as a
combination of o(T ) many Gaussians.
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Third main result: Continuity

Theorem (Feldheim-Feldheim-M ’2020)

θ(µk)→ θ(µ∞), if the following hold:

(a) {µk}k≥1 are uniformly nice near ∞, i.e. for some β > 1 we have
supk≥1

∫
[1,∞)

(log x)βµk(dx) <∞.

(b) {µk}k≥1 are uniformly nice near 0, i.e. there exists α,A > 0 such
that for all x ∈ [0, A] we have

α ≤ µk([−x, x])

2x
≤ 1

α
.

(c) dTV (µk, µ∞)→ 0.

(d) µ′k(0)→ µ′∞(0).
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Comments on the theorem

The demand that the sequence is uniformly nice near 0 and ∞
are natural analogues of previous results.

The total variation convergence of µk to µ∞ can be stated after
removing the singular parts away from the origin.

In particular, no convergence is necessary for singular component
of the measure sequence (away from the origin), as they do not
impact persistence.

This result generalizes the continuity of exponent result for
non-negative correlations obtained in Dembo-M. 2012.
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Outline

1 What is the question?

2 An overview of our results

3 Outline of the proof
Smooth densities
UB for general densities
LB for general densities
Important tools

4 Conclusion
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Smooth densities

We first prove the existence of exponent for spectral measures
µ = fdλ with f ∈ C2, and supported on [−L,L].

Differentiating by parts, we have

ρ(t) =

∫ L

−L
e−itxf(x)dx

=− 1

it

∫ L

−L
f ′(x)e−itxdx

=
1

t2

∫ L

−L
f ′′(x)e−itxdx.

Since ‖f ′′‖∞ <∞, this gives the bound |ρ(t)| ≤ C
t2 for all t ≥ 1.
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Breaking into smaller intervals

Fixing M, δ > 0, split the interval [0, T ] into intervals of length
M , separated by intervals of length δM .

Then we get N := T
M(1+δ) many separated intervals of length M

in this process, say {Ii}1≤i≤N .

Consequently,

P( inf
t∈[0,T ]

Xµ(t) > 0) ≤P( inf
t∈Ii

Xµ(t) > 0, 1 ≤ i ≤ N)

M
≈

N∏
i=1

P( inf
t∈Ii

Xµ(t) > 0) [Using fast decay+big gaps]

=P( inf
t∈[0,M ]

Xµ(t) > 0)N .
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Finishing the proof

Taking log and dividing by T gives

1

T
log pT (µ) ≤ 1

M(1 + δ)
log pM (µ) + oM (1).

Taking a lim sup over T gives

lim sup
T→∞

1

T
log pT (µ) ≤ 1

M(1 + δ)
log pM (µ) + oM (1).

Taking a lim inf over M now gives

lim sup
T→∞

1

T
log pT (µ) ≤ lim inf

M→∞

1

M(1 + δ)
log pM (µ).

The existence of the limit follows since δ > 0 is arbitrary.
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Upper bound for general densities

Assume µ is absolutely continuous measure with Radon-Nikoydm
derivative f which is not smooth.

Note that this covers the sinc
process.

Let g be a C2 function supported on [−L,L], such that∫
R
|g(x)− f(x)|dx ≈ 0, g(0) ≈ f(0)

Setting ν = gdλ, we now claim that pT (µ)
T
≈ pT (ν).

Since θ(ν) exists, this will imply θ(µ) exists.

For simplicity we will assume ν ≥ µ.

We split the proof into upper and lower bounds, the proofs of
which are very different.
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Justification of upper bound

We will first verify

pT (µ)
T
≤ pT (ν).

Set σ = ν − µ, one has ν = µ+ σ.

Also the assumption ν ≥ µ implies σ is a measure.

This gives Xν
D
= Xµ ⊕Xσ.

Consequently,

P( inf
t∈[0,T ]

Xν(t) > 0) ≥ P( inf
t∈[0,T ]

Xµ(t) > δ)P( sup
t∈[0,T ]

|Xσ(t)| < δ)
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Justification of upper bound

Also, Khatri-Sidak’s inequality gives

P( sup
t∈[0,T ]

|Xσ(t)| < δ) ≥ P( sup
t∈[0,1]

|Xσ(t)| < δ)T .

To complete the proof, it suffices to show the following:

P( sup
t∈[0,1]

|Xσ(t)| < δ) ≈1,

P( inf
t∈[0,T ]

Xµ(t) > δ) ≈P( inf
t∈[0,T ]

Xµ(t) > 0).

The first one follows from standard estimates, since σ = ν − µ is
small in total variation.

The second one follows by another application of the change of
level lemma.
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Lower bound for general densities

We need to show

pT (µ)
T
≥ pT (ν).

In the proof of the upper bound we only used σ = ν − µ is small
in TV.

In particular we never used ν′(0) ≈ µ′(0).

This will be used in the lower bound.

Using the assumption gives σ′(0) = ν′(0)− µ′(0) ≈ 0.
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Justification of lower bound

For simplicity, assume the stronger condition that σ vanishes on
a small interval [−a, a] around the origin.

Thus µ = ν on [−a, a].

Let

h(x) = 1− |x|
a

if x ∈ [−a, a],

= 0 otherwise.

Then h2σ is the identically 0 measure.

It thus suffices to show that

pT (µ) = pT (µ+ h2σ)
T
≥ pT (µ+ σ) = pT (ν).
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Justification of lower bound

We claim that

pT (µ+ h2σ)
T
≥ pT (µ+ σ)

holds for general measures µ, σ and function h(.).

For verifying the claim, note that h2σ is the spectral measure of
the following process ∫

R
H(t− s)Xσ(s)ds.

Here H(.) is the Fourier transform of h(.), given by

H(t) = ĥ(t) = a · sinc2(at).

Note that if µ = 0, the claim reduces to pT (h2σ)
T
≥ pT (σ), which

is conceptually easier.
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H(t) = ĥ(t) = a · sinc2(at).

Note that if µ = 0, the claim reduces to pT (h2σ)
T
≥ pT (σ), which

is conceptually easier.

Sumit Mukherjee, Department of Statistics, Columbia Persistence exponent for GSPs 45/55



Justification of lower bound

We claim that

pT (µ+ h2σ)
T
≥ pT (µ+ σ)

holds for general measures µ, σ and function h(.).

For verifying the claim, note that h2σ is the spectral measure of
the following process ∫

R
H(t− s)Xσ(s)ds.

Here H(.) is the Fourier transform of h(.), given by
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Justification of lower bound

Indeed, in this case we need to show that

P( inf
t∈[0,T ]

∫
Xσ(t− s)H(s)ds > 0)

T
≥ P( inf

t∈[0,T ]
Xσ(t) > 0).

This seems straight-forward, as Xσ(t) ≥ 0 implies∫
Xσ(t− s)H(s)ds > 0.

Note however that Xσ(.) is only non-negative on [0, T ].

Assume that H has a compact support [−L,L].

Then

inf
t∈[−L,T+L]

Xσ(t) ≥ 0⇒ inf
t∈[0,T ]

∫
Xσ(t− s)H(s)ds ≥ 0.
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Justification of lower bound

This gives the exact bound

pT (h2σ) ≥ pT+2L(σ).

This effectively solves the case µ = 0 and compactly supported
H.

For a general µ, we use log-concavity of the Gaussian measure,
and the fact

∫
H(s)ds = h(0) = 1. This gives, for any v(.),∫

H(s) logP( inf
t∈[0,T ]

{Xµ(t) + v(t− s)} > 0)ds

≤ logP
(

inf
t∈[0,T ]

{Xµ(t) +

∫
H(s)v(t− s)ds} > 0

)
.

Using stationarity+compact support of H, the LHS is lower
bounded by

logP( inf
t∈[−L,T+L]

{Xµ(t) + v(t)} > 0).
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logP( inf
t∈[−L,T+L]

{Xµ(t) + v(t)} > 0).
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Justification of lower bound

Plugging in v = Xσ gives

P( inf
t∈[−L,T+L]

{Xµ(t) +Xσ(t)} > 0)

≤P
(

inf
t∈[0,T ]

{Xµ(t) +

∫
H(s)Xσ(t− s)ds} > 0

)
.

This is same as

pT+2L(µ+ σ) ≤ pT (µ+ h2σ),

which is what we wanted.

Our H is not of compact support, but has integrable tails
H(t) ≤ C

t2 .

We thus proceeding via truncating H, thus getting

pT+2L(µ+ σ)
T
≤ pT (µ+ h2σ).

This completes the sketch of the lower bound.
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A comparison lemma+Truncations

An important conclusion of this proof technique is the following
comparison lemma.

Lemma (Feldheim-Feldheim M. 2021+)

Suppose µ, σ are spectral measures (nice at 0 and ∞), and h(.) be a

non-negative function with h(0) = 1. If ĥ(.) is non-negative, and
satisfies mild decay conditions, then

θ(µ+ h2σ) ≤ θ(µ+ σ).

In particular let µ = ν[−L,L] and σ = ν − ν[−L,L]. Then with

h(x) = 1− |x|L on [−L,L] gives h2σ = 0.

Thus

θ(ν[−L,L]) = θ(µ) = θ(µ+ h2σ) ≤ θ(µ+ σ) = θ(ν).
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Singular measures don’t change exponent

Suppose µ is nice near 0 and ∞, and σ is a singular measure
supported away from the origin.

Then we have

P( inf
t∈[0,T ]

{Xµ(t)⊕Xσ(t)} > 0)

≥P( inf
t∈[0,T ]

Xµ(t) > δ)P( sup
t∈[0,T ]

|Xσ(t)| < δ).

As stated in our main results, for a singular σ,

P( sup
t∈[0,T ]

|Xσ(t)| < δ)
T
≈ 1.

Also changing levels we have

P( inf
t∈[0,T ]

Xµ(t) > δ)
T
≈ P( inf

t∈[0,T ]
Xµ(t) > 0).

Combining we have

pT (µ+ σ)
T
≥ pT (µ)⇒ θ(µ+ σ) ≤ θ(µ).
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Singular measures don’t change exponent

For the other direction, note that σ is supported outside [−a, a]
by assumption.

Thus with h(x) = 1− |x|a for x ∈ [−a, a], the measure h2σ ≡ 0.

Using the comparison lemma we have

θ(µ) = θ(µ+ h2σ) ≤ θ(µ+ σ).

Combining, we have θ(µ) = θ(µ+ σ).

We also show that equality does not hold if σ is not singular.
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Outline

1 What is the question?

2 An overview of our results

3 Outline of the proof
Smooth densities
UB for general densities
LB for general densities
Important tools

4 Conclusion
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Summary of results

We give a general set of tools for analyze persistence of GSPs,
which go far beyond the setting of non negative correlations.

We establish existence of persistence exponent for any GSP,
under mild conditions on the spectral measure near 0 and ∞.

We give examples to demonstrate that the condition near 0 is
tight.

We study continuity of persistence exponents on the space of
spectral measures with respect to the metric

dTV (µ, ν) + |µ′(0)− ν′(0)|.

We also show that ball exponent ψ(µ, `) = 0 if and only if µ is
singular.

Using this, we show that the persistence exponent does not
change on adding a singular measure supported away from the
origin.
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Future Scope

What is the exponent θ(µ)?

Nobody knows!

In this talk, we only studied exponents when 0 < µ′(0) <∞.
What happens if µ′(0) ∈ {0,∞}? We know θ(µ) ∈ {0,∞} (and
rates Feldheim-Feldheim-Nitzan 2017), but maybe there is an
exponent?

Can we handle non-stationary Gaussians? One advantage of
correlation function is that it makes sense even for non-stationary
Gaussian processes.

Can we say how does the GSP look like conditioned on
persistence?
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