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What is Percolation?

What is the likelihood that a liquid, say water, will pass through a

porous medium?

(Image source: https://www.theseptictankstore.co.uk/blog/soil-percolation-porosity-test/)
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What is Percolation?

Percolation model arose as a simple stochastic model for such a

situation (Broadbent and Hammersley’57)

(Image source: https://www.theseptictankstore.co.uk/blog/soil-percolation-porosity-test/)
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Mathematical formulation

Z2 T3

blank

Consider a connected graph G, e.g. the square lattice Z2 or a tree
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Mathematical formulation

Z2 T3

blank

Let p be a parameter in [0, 1] (the so-called density)
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Mathematical formulation

Z2 T3

blank

Declare every site to be open with probability p and closed otherwise
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Mathematical formulation

Z2 T3

blank

This model is called site percolation
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Mathematical formulation

Z2 T3

blank

In a different version (bond percolation) we open or close edges
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How does it look like?

(a) p = 0.2 (b) p = 0.6 (c) p = 0.8

Subhajit Goswami IHES



Origin and basic definitions Some questions and few results Going beyond independence More results and open questions

Outline

Origin and basic definitions

Some questions and few results

Going beyond independence

More results and open questions

Subhajit Goswami IHES



Origin and basic definitions Some questions and few results Going beyond independence More results and open questions

Some notations

We encode a percolation configuration by

ω = (ωv : v ∈ G) ∈ {0, 1}G

where

ωv =


1 if v is open

0 if v is closed

Blank space
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Some notations

The probability measure on the space Ω of percolation

configurations for density p is given by

Pp =
∏
v∈G

(pδ1 + (1− p)δ0)
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Some notations

S

T

Primary events of interest:

{S ←→ T} = {S ,T ⊂ G are connected by an open path}

Subhajit Goswami IHES



Origin and basic definitions Some questions and few results Going beyond independence More results and open questions

Some notations

From now onwards G will be an infinite connected graph

Notice that G is a metric space w.r.t. the minimum path length

Λn,x is the ball of radius n around x in graph distance dG , i.e.

Λn,x = {y ∈ G : dG(x , y)≤ n}

The boundary of Λn is ∂Λn,x = Λn,x \ Λn−1,x
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The first question: does it percolate?

The quantity to look at is the one-arm probability:

θn,x(p) = Pp

[
x

∂Λn,x
]

= Pp[x ←→ ∂Λn,x ]

Notice that θn,x(p)↘ θx(p) = Pp[x ←→∞] as n→∞

Also notice that θx(p) > 0 if and only if θy (p) > 0 for all y ∈ G
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The function θx(p)

Can we compute θn,x(p) explicitly? Let’s make an attempt!

θn,x(p) =
∑

ω∈{0←→∂Λn,x}

Pp[ω]

Pp[ω] = p
∑

y∈Λn,x
ωy (1− p)

∑
y∈Λn,x

1−ωy (Easy!)

Evaluate the sum over admissible configurations (VERY difficult!)
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The function θx(p)

One can compare this with the difficulty of computing the partition

function for models in statistical physics (e.g. the Ising model)

In fact this analogy is far from being artificial!

Percolation provides one of the simplest yet extremely rich example

of phase transition (e.g. solid-liquid-gas, ferromagnet-paramagnet)
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The function θx(p): the phase diagram

The following properties are not difficult to see from the definition:

θx(p) is non-decreasing in p, θ(0) = 0 and θ(1) = 1

θx(p)

p

(1, 1)

(0, 0)
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The function θx(p): the phase diagram
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The function θx(p): the critical density

Therefore there exists a critical parameter pc = pc(G) defined as:

pc = sup{p ∈ [0, 1] : θ(p) = 0}

θx(p)

p

(1, 1)

(0, 0)
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The function θx(p): existence of phase transition

Notice that pc can be a priori 0 or 1 (no phase transition)

pc = sup{p ∈ [0, 1] : θ(p) = 0}

θx(p)

p

(1, 1)

(0, 0)

no phase transition

no phase transition
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Existence of phase transition

pc is always positive! In fact, pc(G) ≥ 1
maxv∈G deg(v) (Peierls’36)

The proof is essentially an energy-entropy type argument

pc(Zd) < 1 for all d ≥ 2 whereas pc(Z) = 1

Compare with the fact that the Ising model has no phase transition

in dimension 1! (Ising’25)
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Existence of phase transition: general graphs

Deriving a generic condition on G ensuring pc(G) < 1 is non-trivial

A natural guess would be that some “suitable” notion of dimension

of G is strictly bigger than 1 (Benjamini-Schramm’96)
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Existence of phase transition: general graphs

We say G has isoperimetric dimension at least d > 0 if

|∂K | ≥ c |K |
d−1
d for all finite K ⊂ G

Theorem (Duminil-Copin, G., Raoufi, Severo and Yadin 2018)

Let G a graph of bounded degree with isoperimetric dimension

strictly larger than 4, then pc(G) < 1.
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Existence of phase transition: general graphs

G is called quasi-transitive if the action of the automorphism group

Aut(G) on G has finitely many orbits

Typical examples include Cayley graphs of finitely generated group

We say that G has super-linear growth if lim sup 1
n |Λn,x | =∞
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Existence of phase transition: general graphs

Combined with existing results our result implies:

(Trofimov’84, Lyons-Morris-Schramm’08)

Theorem (Duminil-Copin, G., Raoufi, Severo and Yadin 2018)

Let G be a bounded degree, quasi-transitive graph with super-

linear growth, then pc(G) < 1.
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Existence of phase transition: general graphs

We say that G has spectral dimension at least d > 0 if

pn(x , x) = P[Xn = x |X0 = x ] ≤ c

nd/2

where X is the simple random walk (SRW) on G

As such spectral dimension is a dynamical property of G

equilibrium property and dynamics
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Existence of phase transition: general graphs

We say that G has spectral dimension at least d > 0 if

pn(x , x) = P[Xn = x |X0 = x ] ≤ c

nd/2
for all x ∈ G, n ≥ 1

where X is the simple random walk (SRW) on G

For bounded degree graphs isoperimetric dimension > d implies

spectral dimension > d (Varopoulos’85)
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Existence of phase transition: general graphs

Theorem (Duminil-Copin, G., Raoufi, Severo and Yadin 2018)

Let G a graph of bounded degree with spectral dimension > 4.

Then pc(G) < 1.

Remark: One noteworthy feature of this result is that it connects

percolation threshold, an equilibrium property of G, with spectral

dimension which is a dynamical property
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Existence of phase transition: key ideas of the proof

The Gaussian free field (GFF) on G is a centered Gaussian field

ϕ = {ϕx : x ∈ G}

Its law P is determined by its covariance kernel

E[ϕxϕy ] = g(x , y) =
1

deg(y)

∑
n≥0

pn(x , y)

g(x , y) is called the Green function of the SRW on G
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Existence of phase transition: key ideas of the proof

For any centered Gaussian process ψ on G with covariances K(·, ·),

let use define a (bond) percolation process ηK as follows:

Definition

Given ψ, declare an edge xy to be open with probability

pxy (ψ) = 1− exp(−2(ψx + 1)+(ψy + 1)+)

independently of other edges where a+ = max(a, 0)

Notice that ηg is a dependent percolation process
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Existence of phase transition: key ideas of the proof

Proposition

For every x ∈ G one has

P[x
ηg←→∞] ≥ E[sign(ψx + 1)] > 0
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Existence of phase transition: key ideas of the proof

Let ωp denote the standard percolation on G with density p

The main idea is to interpolate between ωp and ηg

More precisely we prove (here g`(x , y) =
∑

`≤n≤2` pn(x , y))

P[S
ωp ∪ ηg←−−−→ T ] ≤ P[S

ωp+1/`2 ∪ ηg−g`←−−−−−−−−→ T ]

provided pn(x , x) decays sufficiently fast

Now iterate this to deduce phase transition
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Existence of phase transition: open questions

I Prove under the assumption that spectral dimension > 2

I Can we get rid of the assumption of “bounded degree”?
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Off-critical behavior: truncated two-point function

In the remainder of the talk we will confine ourselves to the

hypercubic lattice Zd for d ≥ 2

The truncated two-point function is of central importance in any

model in statistical physics

In the case of percolation it is defined as

τp(x , y) = Pp


x

y

 = Pp[x ←→ y , x 6←→ ∞]
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Off-critical behavior: finite correlation length

It is expected that

τp(0, x) ∼ |x |−ce|x |/ξ(p) as x →∞

where ξ(p), called the correlation length, is finite for all p 6= pc

For p close to 0 or 1 (perturbative regime) finiteness of ξ(p) is not

very difficult to show
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Off-critical behavior: finite correlation length

It is, however, very difficult to prove this for all p 6= pc

In the subcritical regime p < pc , this was proved by Menshikov in

1986 and by Aizenman and Barsky in 1987

In the supercritical regime p > pc this follows from a famous result

by Grimmett and Marstrand in 1990
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Near-critical and critical behavior: correlation length

exponent

Infinite correlation length ξ(pc) is the hallmark of a critical point

It is expected that ξ(p) diverges like

|p − pc |−ν+o(1) as p → pc for some ν > 0
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Near-critical and critical behavior: known cases

Currently the correlation length exponent along with other relevant

exponents are known rigorously for

I dimension 2 (Schramm, Lawler, Werner, Smirnov)

I dimension ≥ 11 (Aizenman, Barsky, Hara, Slade, Fitzner,

Hofstad)
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Going beyond independence

Physical and mathematical motivations abound for dependent

percolation models

Physically relevant models usually involve interaction

Many models in statistical physics have representations in terms of

a percolation process with certain degree of dependence
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Going beyond independence: zeros of random functions

Geometry of the zero sets of random gaussian functions defined

on, e.g. Rn, is a classical topic lying at the crossroads between

probability theory and geomerty

Two types of gaussian random functions have been studied:

I Random polynomials with (independent) Gaussian coefficients

I Gaussian sum of the eigenfunctions of Laplacian on a compact

Riemannian manifold
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Level-sets of Gaussian Free Field

In short there are many natural percolation models arising from

level-sets of gaussian fields with slow decay of correlation

In the discrete set-up a canonical example is the Gaussian free field

(GFF) on Zd for d ≥ 3

Indeed GFF is distributed as a Gaussian sum of the eigenfunctions

of (discrete) ∆ on Zd
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GFF: definition

The GFF on Zd (d ≥ 3) is a stationary, centered Gaussian field

ϕ = {ϕx : x ∈ Zd}

Its law P is determined by its covariance kernel

E[ϕxϕy ] = g(x , y) = Ex [#visits of SRW to y ]

g(x , y) is called the Green function of the SRW on Zd
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GFF: correlation function

The green function is asymptotic to the newtonian potential:

g(x , y) = g(x − y) ∼ |x − y |2−d as |x − y | → ∞

A (two-dimensional) GFF. (A.Kassel)
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Level-sets of GFF

We define the level-set above height h as

{ϕ ≥ h} = {x ∈ Zd : ϕx ≥ h}

These level-sets form a non-increasing family of site percolation

models indexed by height

We can define the corresponding critical value h∗ = h∗(d) as:

h∗ = inf{h ∈ R : P[0
≥h←→∞] = 0}
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Level-sets of GFF: existence of phase transition

(0, 1)

(0, 0) h∗ h

P[0 ≥h←→∞]

By a soft argument based on the Markov property of GFF it is

possible to show that h∗ ≥ 0 (Bricmont-Lebowitz-Maes’87)
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Level-sets of GFF: existence of phase transition

(0, 1)

(0, 0) h∗ h

P[0 ≥h←→∞]

It is much more difficult to prove that h∗ <∞. It was proved for

d = 3 in Bricmont-Lebowitz-Maes’87 (
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Level-sets of GFF: existence of phase transition

(0, 1)

(0, 0) h∗ h

P[0 ≥h←→∞]

It was finally proved by Rodriguez and Sznitman (2013) for all

d ≥ 3 using a renormalization technique(
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Level-sets of GFF: truncated two-point function

Let us recall the definition of truncated two-point function in this

context:

τh(x , y) = P


x

y

 = P[x
≥h←→ y , x

≥h
6←→ ∞]
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Level-sets of GFF: several possible critical points

(0, 1)

(0, 0) h

P[0
≥h←→∞]

h̄ h∗ h∗∗

“like” p > pc “like” p < pc
e.g. τh(0, x) ≤ e−c|x|ρe.g. τh(0, x) ≤ e−c|x|ρ

It is a very important question to know if h̄ = h∗ = h∗∗ it was open

for some time (
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Level-sets of GFF: uniqueness of critical point

Theorem (Duminil-Copin, G., Rodriguez, Severo 2019)

For all d ≥ 3, h̄(d) = h∗(d) = h∗∗(d)

Corollary

For all d ≥ 3 and h 6= h∗, there exists c > 0 and ρ ∈ (0, 1] such

that for all x , y ∈ Zd ,

τh(x , y) ≤ e−c|x−y |
ρ
.
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Level-sets of GFF: key ideas of the proof

Using a sophisticated renormalization argument we first show that

P

 Λr

≥ h

∂ΛR

 , P
 Λr

< h

∂ΛR

 ≥ poly(R)

for all h ∈ (h̄, h∗∗)

Next we show that these probabilities are superpolynomially close

to those for a finitely dependent percolation process
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Level-sets of GFF: open questions

However using existing techniques we can show that a wide class

of finitely dependent percolation processes does not have any such

phase except, possibly, at the critical point

This leads to a contradiction since (h̄, h∗∗) can not be nonempty
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Level-sets of GFF: open questions

I Is ρ actually 1? It seems that the answer might vary based on

the dimension (Popov-Texeira’15, Popov-Ráth’15)

I Is it possible to obtain bounds on the exponent of correlation

length?

I What happens at the critical point?
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Thank you for your attention!
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