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Diffusion in a log-correlated potential

Model for various phenomena of interest in

I Statistical mechanics (e.g. single vortex in a XY spin model

with gaussian random gauge disorder)

I Condensed matter physics (e.g. vacancies in pancake lattices

of layered 3D superconductors)

I Population biology

among others
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Diffusion in a log-correlated potential

Formally the model on R2 is described by a Langevin equation:

dX (t) = −∇η(X (t))dt +
√

T dB(t)

where B(t) is a standard Brownian motion independent of the

potential η satisfying

E (η(x)− η(y))2 ∼ 2σ2 ln |x − y | as |x − y | → ∞
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Diffusion in a log-correlated potential

Physics literatures predict that X (t) is subdiffusive, i.e.

EX (t)2 ∼ t2/Z

where the diffusive exponent Z = Z (T ) is strictly larger than 2

Moreover Z (T ) is predicted to undergo a dynamic phase transition

around the critical temperature Tc = σ
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Diffusion in a log-correlated potential

In fact there is a precise prediction about the exact value of

Z (T ) †

Z (T ) = 2 + 2(Tc/T )2 when T > Tc

= 4Tc/T otherwise

These exponents emerge from the intensive free energy of the

equilibrium measure of the dynamics which is (formally) given by

L2(e−2η/Tdx)
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A discrete version of the dynamics

Consider a random walk on Z2 in a log-correlated environment

A canonical example of a discrete log-correlated field in two

dimensions is the discrete Gaussian free field (GFF)

More precisely we work with the centered Gaussian process

η = {ηx : x ∈ Z2} satisfying

η0 = 0 and E[ηxηy ] = GZ2\{0}(x , y) ∀x , y ∈ Z2
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A discrete version of the dynamics

We work with the GFF pinned to 0 at the origin, i.e.

η0 = 0 and E[ηxηy ] = GZ2\{0}(x , y) ∀x , y ∈ Z2

Here GZ2\{0} is the Green function of simple random walk in

Z2 \ {0}

It follows from standard random walk estimates that for some σ

E (ηx − ηy )2 ∼ 2σ2 ln |x − y | as |x − y | → ∞
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A discrete version of the dynamics

A natural dynamics on Z2 with equilibrium measure e2ηx/T is a

Markov chain with transition rates given by

λη(x , y) = eγ(ηy−ηx )1|x−y |=1 ∀ x , y ∈ Z2

where γ = 1/T is the inverse temperature
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A discrete version of the dynamics

However we will consider the constant speed version of the walk

So conditionally on η, let {Xt}t≥0 be a discrete-time Markov chain

on Z2 with transition probabilities given by

pη(x , y) =
eγ(ηy−ηx )∑

z:|z−x |=1 e
γ(ηz−ηx )

1|x−y |=1
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A discrete version of the dynamics

The transition probabilities are given by

pη(x , y) =
eγ(ηy−ηx )∑

z:|z−x |=1 e
γ(ηz−ηx )

1|x−y |=1

It is reversible with respect to the measure πη defined as

πη(x) =
∑

z:|z−x |=1

eγ(ηz+ηx )
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A discrete version of the dynamics

A trivial manipulation then gives us

pη(x , y) =
eγ(ηy+ηx )∑

z:|z−x |=1 e
γ(ηz+ηx )

1|x−y |=1

It is reversible with respect to the measure πη defined as

πη(x) =
∑

z:|z−x |=1

eγ(ηz+ηx )
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A discrete version of the dynamics

In particular we have

πη(x)pη(x , y) = πη(y)pη(y , x) = eγ(ηx+ηy ) ∀ |x − y | = 1

Due to reversibility there is an associated electrical network Z2
η

Z2
η is Z2 where each edge is equipped with a conductance cη(·, ·)

cη(x , y) = πη(x)pη(x , y) = πη(y)pη(y , x) = eγ(ηx+ηy )
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A discrete version of the dynamics

This formulation allows us to use the theory of electric networks

(or discrete potential theory) to analyze such processes

{Xt}t≥0 is a random walk on random conductances to which a

large body of literature has been devoted in recent years

A crucial difference is that the law of conductances is NOT shift

invariant which makes it difficult to apply classical techniques

Subhajit Goswami IHES



A discrete version of the dynamics

One possible caveat is that the equilibrium measure is

πη(x) =
∑

z:|z−x |=1

eγ(ηx+ηz ) instead of e2γηx

However as we will see later this does not affect the intensive free

energy (asymptotically) which is believed to drive the exponents
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Main results: heat kernel and recurrence

In the rest of the talk we denote by Px
η the law of {Xt}t≥0 starting

from x given η whereas by P the law of the field η

Theorem (Biskup, Ding, G. 2016)

There exists g(t) = to(1) as t →∞ such that for each γ > 0,

lim
t→∞

P[ t−1g(t)−1 ≤ P0
η (X2t = 0) ≤ t−1g(t) ] = 1

Furthermore, {Xt}t≥0 is recurrent for P-almost every η
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Main results: heat kernel and recurrence

In the rest of the talk we denote by Px
η the law of {Xt}t≥0 starting

from x given η whereas by P the law of the field η

Theorem (Biskup, Ding, G. 2016)

There exists g(t) = to(1) as t →∞ such that for each γ > 0,

lim
t→∞

P[ t−1g(t)−1 ≤ P0
η (X2t = 0) ≤ t−1g(t) ] = 1

Furthermore, {Xt}t≥0 is recurrent for P-almost every η
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Main results: subdiffusivity and diffusive exponent

Theorem (Biskup, Ding, G. 2016)

Let τB(N)c denote the first exit time of {Xt}t≥0 from B(N) =

[−N,N]2 ∩ Z2 and g be as before. Then we have

lim
N→∞

P[ g(N)−1NZ ≤ E 0
η (τB(N)c ) ≤ g(N)NZ ] = 1

Here Z = Z (γ−1) is same as before with γc = 1/Tc = 1/σ †
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Main results: diffusive exponent

Theorem (Biskup, Ding, G. 2016)

For P-almost every η,

P0
η [|Xt | ≥ g(t)−1t1/Z ] −→ 1 as t →∞
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Main ideas of the proof: the statics part

The exponent Z emerges from the following asymptotic

πη(B(N)) = NZ+o(1) in probability as N →∞

where let us recall that

πη(B(N)) =
∑

x∈B(N)

πη(x) =
∑

x∈B(N)

∑
z:|z−x |=1

eγ(ηx+ηz )
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Main ideas of the proof: the statics part

πη(B(N)) =
∑

x∈B(N)

πη(x) =
∑

x∈B(N)

∑
z:|z−x |=1

eγ(ηx+ηz )

Up to a factor of No(1) with high probability this is equal to

µη̃(B(N)) =
∑

x∈B(N)

e2γη̃x

where η̃ is a GFF on BN with zero boundary condition
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Main ideas of the proof: the statics part

µη̃(B(N)) =
∑

x∈B(N)

e2γη̃x

Here η̃ is a GFF on BN with zero boundary condition

More precisely η̃ = {η̃x : x ∈ B(N)} is a centered Gaussian process

satisfying

E[η̃x η̃y ] = GB(N)(x , y) ∀x , y ∈ B(N)

where GB(N) is the Green function of simple random walk in B(N)
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Main ideas of the proof: the statics part

It follows from standard estimates that for some constant c

Eη̃2
x ≤ σ2 log N + c ∀x ∈ B(N)

Using the Gaussian formula Ee2γX = e2γ2EX 2
we get

E
∑

x∈B(N)

e2γη̃x 4 N2+2γ2σ2
= N2+2(γ/γc )2

Recall that we defined γc = 1/σ

Subhajit Goswami IHES



Main ideas of the proof: the statics part

E
∑

x∈B(N)

e2γη̃x 4 N2+2γ2σ2
= N2+2(γ/γc )2

= NZ(γ−1) for γ ≤ γc

From Markov’s inequality we therefore get the desired upper bound

for γ ≤ γc
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Main ideas of the proof: the statics part

Roughly speaking the value of η̃x that contributes “most” to the

expected value of e2γη̃x is 2γEη̃2
x

In particular the largeness of our expected measure is attributable

to a value around

2γσ2 log N = (γσ) 2σ log n = 2σ log n γ/γc
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Main ideas of the proof: the statics part

Largeness of the expected measure is attributable to a value around

2γσ2 log N = (γσ) 2σ log n = 2σ log n γ/γc

On the other hand from the standard estimates we get

max
x∈B(N)

η̃x ≤
√

2 log |B(N)|
√

max
x∈B(N)

Eη̃2
x (1 + o(1))

with high probability (w.h.p.) as N →∞
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Main ideas of the proof: the statics part

Largeness of the expected measure is attributable to a value around

2γσ2 log N = (γσ) 2σ log n = 2σ log n γ/γc

Plugging the upper bound on variance we deduce

max
x∈B(N)

η̃x ≤ 2σ log N (1 + o(1)) = mN (say)

w.h.p. as N →∞
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Main ideas of the proof: the statics part

It is therefore clear that for γ > γc the typical order is smaller

Indeed if we consider the truncated expected measure

E[e2γη̃x ; η̃x ≤ mN ] = e2γ2Eη̃2
x P[η̃x ≤ mN − 2γEη̃2

x ]

then we get the correct exponent at all temperatures
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Main ideas of the proof: the statics part

Notice that we did not use any information about the covariances

of the field to derive these upper bounds

The corresponding lower bounds, on the other hand, involve

second moment computations which exploit the covariance

structure of the GFF
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Main ideas of the proof: exit times of the random walk

For S ⊂ Zd , we denote the first hitting time of S by Xt as τS , i.e.

τS = inf{t ≥ 0 : Xt ∈ S}

Recall that τB(N)c is the first exit time of {Xt}t≥0 from B(N)

An expression for E0
ητB(N)c is given by the hitting time identity

E0
ητB(N)c = Rη(0, ∂B(N))

∑
x∈B(N)

πη(x)Px
η [τ0 < τB(N)c ]
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Main ideas of the proof: exit times of the random walk

An expression for E0
ητB(N)c is given by the hitting time identity

E0
ητB(N)c = Rη(0, ∂B(N))

∑
x∈B(N)

πη(x)Px
η [τ0 < τB(N)c ]

where ∂B(N) = B(N + 1) \ B(N)

Rη(·, ·) is the effective resistance in the network B(N + 1)η, i.e.

Rη(S ,T ) = inf
θ unit flow,

src(θ)=S , sink(θ)=T

∑
x ,y∈B(N+1),
|x−y |=1

θ2
x ,y/cη(x , y)
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Main ideas of the proof: exit times of the random walk

An expression for E0
ητB(N)c is given by the hitting time identity

E0
ητB(N)c = Rη(0, ∂B(N))

∑
x∈B(N)

πη(x) Px
η [τ0 < τB(N)c ]

Therefore an immediate upper bound is

E0
ητB(N)c ≤ Rη(0, ∂B(N))

∑
x∈B(N)

πη(x)
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Main ideas of the proof: exit times of the random walk

An expression for E0
ητB(N)c is given by the hitting time identity

E0
ητB(N)c = Rη(0, ∂B(N))

∑
x∈B(N)

πη(x) Px
η [τ0 < τB(N)c ]

Therefore an immediate upper bound is

E0
ητB(N)c ≤ Rη(0, ∂B(N))πη(B(N))
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Main ideas of the proof: exit times of the random walk

An upper bound on the expected first exist time is

E0
ητB(N)c ≤ Rη(0, ∂B(N))πη(B(N))

However we already know

πη(B(N)) ≤ NZ+o(1) w .h.p.

Hence to show E0
ητB(N)c ≤ NZ+o(1) w.h.p. it suffices to prove

Rη(0, ∂B(N)) ≤ No(1) w.h.p.
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Main ideas of the proof: exit times of the random walk

An expression for E0
ητB(N)c is given by the hitting time identity

E0
ητB(N)c = Rη(0, ∂B(N))

∑
x∈B(N)

πη(x) Px
η [τ0 < τB(N)c ]

To prove the corresponding lower bound it suffices to show that

w.h.p. uniformly for all x ∈ B(N1−o(1)) we have

Rη(0, ∂B(N)) Px
η [τ0 < τB(N)c ] ≥ No(1)
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Main ideas of the proof: exit times of the random walk

We want to obtain an expression for

Rη(0, ∂B(N)) Px
η [τ0 < τB(N)c ]

in terms of effective resistances

By the network reduction principle the trace of {Xt} restricted to

{0, x , ∂B(N)} corresponds to a three-node network

∂B(N)

0 x

c0∂ cx∂

c0x
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Main ideas of the proof: exit times of the random walk

The trace of {Xt} restricted to {0, x , ∂B(N)} corresponds to

∂B(N)

0 x

c0∂ cx∂

c0x

in a way that the pairwise effective resistances remain same

However in terms of this network

Px
η [τ0 < τB(N)c ] =

c0x

c0x + cx∂
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Main ideas of the proof: exit times of the random walk

The trace of {Xt} restricted to {0, x , ∂B(N)} corresponds to

∂B(N)

0 x

c0∂ cx∂

c0x

in a way that the pairwise effective resistances remain same

By series and parallel laws

c0x

c0x + cx∂
=

Rη(0, ∂B(N)) + Rη(x , ∂B(N))− Rη(0, x)

2Rη(0, ∂B(N))

Subhajit Goswami IHES



Main ideas of the proof: exit times of the random walk

The trace of {Xt} restricted to {0, x , ∂B(N)} corresponds to

∂B(N)

0 x

c0∂ cx∂

c0x

in a way that the pairwise effective resistances remain same

Therefore we get the identity

2Rη(0,∂B(N)) Px
η [τ0 < τB(N)c ]

= Rη(0, ∂B(N)) + Rη(x , ∂B(N))− Rη(0, x)
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Main ideas of the proof: exit times of the random walk

0

x

∂B(N)

∂B(8n)

∂B(n)

By the metric property of effective resistance

DN,η(x) = Rη(0, ∂B(N)) + Rη(x , ∂B(N))− Rη(0, x)
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Main ideas of the proof: exit times of the random walk

0

x

∂B(N)

∂B(8n)

∂B(n)

By the metric property of effective resistance and planarity

Rη(0, x) ≤ Rη(0, ∂B(8n)) + Rη(x , ∂B(8n)) + Rη(�; n)
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Main ideas of the proof: exit times of the random walk

0

x

∂B(N)

∂B(8n)

∂B(n)

Since ∂B(8n) is a cut-set between y ∈ {0, x} and ∂B(N)

Rη(y , ∂B(N)) ≥ Rη(y , ∂B(8n)) + Rη(∂B(8n), ∂B(N))

Subhajit Goswami IHES



Main ideas of the proof: exit times of the random walk

0

x

∂B(N)

∂B(8n)

∂B(n)

Therefore a lower bound on the difference DN,η(x) is given by

DN,η(x) ≥ 2Rη(∂B(8n), ∂B(N))− Rη(�; n)
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Main ideas of the proof: exit times of the random walk

Showing that there exists some n between N1−o(1) and N w.h.p.

such that

Rη(∂B(8n), ∂B(N))− Rη(�; n) ≥ No(1)

requires delicate analysis involving the Markov property of GFF

However it says that we definitely need lower bounds like

Rη(∂B(n), ∂B(N)) ≥ No(1) w .h.p.
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Main ideas of the proof: bounding resistances

We need bounds of the form

No(1) ≥ Rη(∂B(n), ∂B(N)) ≥ N−o(1) w .h.p.

The idea is to show that the law of effective resistance is

symmetric with respect to inversion x → 1/x

In other words the laws of the effective resistance and effective

conductance are close to each other
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Main ideas of the proof: bounding resistances

Proposition (generalized series law)

For any network (G, c) we have

RG(x , y) = min
P

a set of paths btw x, y

min
{re,P :e∈E(G),P∈P}∈RP

(∑
P∈P

1∑
e∈P re,P

)−1

where RP is the set of all possible choices of re,P ’s such that

∑
P∈P

1

re,P
≤ 1

re
= ce for all e ∈ E (G) .
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Main ideas of the proof: bounding resistances

Proposition (generalized parallel law)

For any network (G, c) we have

CG(x , y) = min
Π

a set of cutsets btw x, y

min
{ce,π :e∈E(G),π∈Π}∈CΠ

(∑
π∈Π

1∑
e∈π ce,π

)−1

where CΠ is the set of all possible choices of re,P ’s such that

∑
π∈Π

1

ce,π
≤ 1

ce
for all e ∈ E (G) .

Subhajit Goswami IHES



Main ideas of the proof: bounding resistances

However since η
∆∼ −η, we have

{cη(x , y)} = {eγ(ηx+ηy )} ∆∼ {e−γ(ηx+ηy )} = {rη(x , y)}

By planar duality a cut-set between two facing walls of a square

corresponds to a path between the other two walls
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Main ideas of the proof: bounding resistances

By planar duality a cut-set between two facing walls of a square

corresponds to a path between the other two walls

The local smoothness of η then implies that

Cη(∂leftB, ∂rightB)
roughly∼ No(1)Rη(∂topB, ∂bottomB)
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Main ideas of the proof: bounding resistances

The local smoothness of η implies that

Cη(∂leftB, ∂rightB)
roughly∼ No(1)Rη(∂topB, ∂bottomB)

Since the law of η is invariant with respect π/2-rotations, we get

Cη(∂leftB, ∂rightB)
roughly∼ No(1)Rη(∂leftB, ∂rightB)
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Main ideas of the proof: bounding resistances

Since the law of η is invariant with respect π/2-rotations, we get

Cη(∂leftB, ∂rightB)
roughly∼ No(1)Rη(∂leftB, ∂rightB)

By a simple application of Gaussian concentration inequality we get

No(1) ≥ Rη(∂leftB, ∂rightB) ≥ N−o(1) w .h.p.
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Main ideas of the proof: bounding resistances

So we have it across squares

No(1) ≥ Rη(∂leftB, ∂rightB) ≥ N−o(1) w .h.p.

But we want it across long rectangles and eventually across annuli

Sounds like Russo-Seymour-Welsh theory in planar percolation
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Thank you for your attention!
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