
Fluctuations in the number of level sets
of planar Gaussian fields

Stephen Muirhead (University of Melbourne)

joint work with
Dmitry Belyaev (University of Oxford)

Michael McAuley (University of Helsinki)

Bangalore Probability Seminar, September 2020



Recall that NLS(R; `) and NES(R; `) are the number of level/
excursion set components of a Gaussian field f inside a ball B(R),
with cLS(`) := limR→∞NLS(R; `)/(πR2) and cES similar.

Theorem (Belyaev, McAuley, M., ’19)
For the BF field

Var[NLS(R; `)] & R2

for all ` ∈ R such that c ′LS(`) 6= 0, and similarly for NES(R; `).

For the RPW
Var[NLS(R; `)] & R3

for all ` ∈ R\{0} such that c ′LS(`) 6= 0, and similarly for NES(R; `).

The orders R2/R3 for the BF/RPW are quite natural and we
expect them to be tight (at least for generic levels).
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We can also deduce a lower bound on the variance at certain
explicit levels:

Corollary (Belyaev, McAuley, M.)

The variance of NLS/NES is of ‘full order’ for the following levels:

I BF field (‘full order’ = R2)

I LS: ` ∈ (−∞,−1.38) ∪ (1.38,∞)

I ES: ` ∈ (−ε, 0.64) ∪ (1.02,∞)

I RPW (‘full order’ = R3)

I LS: ` ∈ (−∞,−1] ∪ [1,∞)

I ES: ` ∈ (−∞, 0) ∪ (0, 0.87) ∪ [1,∞)
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There are three main ideas in the proof:

1) One can bound global topological events by local observables.

2) Gaussian fields can ‘breathe’, i.e. f and f + ε are statistically
indistinguishable on a compact domain D ⊂ R2 for small enough
ε > 0 (depending on D).

3) By a coupling argument, one can deduce variance lower bounds
for the number of level sets at a fixed level by considering the
change as the level varies.
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1) Bounding topological events with local observables

Lemma
For every ` ∈ R and R > 0,

NLS(R; `) . # critical points in B(R).

Hence, by the Kac-Rice formula

E[NLS(R; `)2]
≤ E[NLS(R; `)(NLS(R; `)− 1)]

=
∫

x ,y∈B(R)
E
[
|det(∇2f (x)∇2f (x))|

∣∣∇f (x) = ∇f (y) = 0
]

× ϕ∇f (x),∇f (y)(0, 0) dxdy
. R4.
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We need a slightly refined version valid for small height windows:

Lemma (M. 20)

For every ` ∈ R, R > 0 and a < b,

|NLS(R; b)−NLS(R; a)| . # critical points in B(R) with level in [a, b].

Hence, by the Kac-Rice formula

E[(NLS(R; b)− NLS(R; a))2]

≤
∫

x ,y∈B(R)
s,t∈[a,b]

E
[
|det(∇2f (x)∇2f (x))|

∣∣(∇f (x),∇f (y),f (x),f (y))=(0,0,s,t)
]

× ϕ∇f (x),∇f (y),f (x),f (y)(0, 0, s, t) dxdy dsdt
. min{R4(b − a)2,R2(b − a),R4}.
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2) Gaussian fields can ‘breathe’

We next consider how small ε > 0 needs to be, as a function of R,
such that the fields

f |B(R) and (f + ε)|B(R)

are close in total variation distance (and hence any functionals of
the fields are also close in TV-distance).

Caution: In fact these fields are never close in TV-distance for
any ε > 0 (unless there is an atom in the spectral measure)!

Nevertheless, an approximate version of this comparison is true
and this is sufficient for our purposes.
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Let us first consider the BF field.

Fact 1: Since the covariance kernel K is in L1(R2), f has a
‘moving average representation’

f = q ?W

where q ∈ L2(R2) is a kernel such that q ? q = K , and W is the
white noise on R2.

Fact 2: Let WD = W1D be white noise on a compact domain
D ⊂ R2. Then fD = q ?WD has an ‘orthogonal decomposition’

fD = q ?WD =
∑
i≥1

Zi (q ? ϕi )

where Zi is a sequence of independent standard Gaussians, and ϕi
is any orthonormal basis of L2(D).
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Fact 3: For a standard Gaussian vector Z = (Z1, . . .Zn),

dTV (Z ,Z + ε) . ε
√

n.

Proof. Use Pinsker’s inequality dTV (µ, ν) .
√

dKL(µ||ν), and then
the additivity of relative entropy for product measures.
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Putting these together we have:

Proposition
For the BF field

dTV
(
f |B(R), (f + εg |B(R))

)
. εR

where g = (q ? 1B(2R))|B(R) ≈ (
∫

q)× 1B(R).

Proof. Divide the plane into unit boxes Di , then decompose
orthogonally each W1Di with ϕ1 = c1Di , and then shift the
Gaussians Z1 by ε in each box.

Upshot: Since
∫

q > 0 for the BF field, the number of
level/excursion set components of

f |B(R) and
(
f + ε

)∣∣
B(R)

are close in total variation distance as soon as ε� 1/R.
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The proceeding argument works for any field f whose spectral
density ρ does not vanish at the origin (the condition

∫
q > 0 is

equivalent to ρ(0) > 0).

However, for the RPW this argument does not work (K /∈ L1, and
the spectral measure is Lebesgue on the unit circle).

There is a good reason for this – the RKHS of the RPW consists
of solutions of the Helmholtz equation ∇f = −f which does not
contain constant functions (or any approximation of them).

So one cannot expect f and f + ε to be comparable in total
variation distance.
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For the RPW we use a slightly different approach. Recall the
orthogonal decomposition of the RPW

f (x) = f (r , θ) = <
( n=∞∑

n=−∞
Zne2πinθJ|n|(r)

)
where Zn are independent (complex) standard Gaussians.

Since Jn(r) decays exponentially for n� r , the truncation fn of this
series at n = 2R is a close approximation of the RPW on B(R).

Fact 3∗: For a standard Gaussian vector Z = (Z1, . . .Zn),

dTV
(
Z ,Z (1 + ε)

)
. ε
√

n.

Proof. Again use Pinsker’s inequality.
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Upshot: Fix ` 6= 0. Then the fields

fn|B(R) and
(

fn ×
`+ ε

`

)∣∣∣
B(R)

are close in total variation distance as soon as ε� 1/
√

R.

Hence so are the number of components of the level sets

{f |B(R) = `} and {f |B(R) = `+ ε}.
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To sum-up, we have:

BF: The number of level/excursion set components of f |B(R) at
levels

` and `+ ε

are close in total variation distance for ε� 1/R.

RPW: The number of level/excursion set components of f |B(R) at
levels

` and `+ ε

are close in total variation distance for ε� 1/
√

R.

The fact that we can shift levels by 1/
√

R (� 1/R) for the RPW
is a manifestation of the strong degeneracies in the RPW.
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3) A coupling method for variance lower bounds
Recently Chatterjee proposed a general coupling method for
proving lower bounds on variances:

Lemma (Chatterjee 2017)

Let X and Y be two random variables defined on the same
probability space. Then for every a ≤ b,

P(a ≤ X ≤ b) ≤ 1
2
(

1 + P(|X − Y | ≤ b − a) + dTV (X ,Y )
)
.

Hence, if Xn is a sequence of random variables and there exist
another sequence Yn, and constants σn, δ > 0, such that:

I P(|Xn − Yn| > δσn) > 1/4

I dTV(Xn,Yn) < 1/8.

then Xn fluctuates on the scale & σn, and hence Var(Xn) & σ2
n.

15 23



3) A coupling method for variance lower bounds
Recently Chatterjee proposed a general coupling method for
proving lower bounds on variances:

Lemma (Chatterjee 2017)

Let X and Y be two random variables defined on the same
probability space. Then for every a ≤ b,

P(a ≤ X ≤ b) ≤ 1
2
(

1 + P(|X − Y | ≤ b − a) + dTV (X ,Y )
)
.

Hence, if Xn is a sequence of random variables and there exist
another sequence Yn, and constants σn, δ > 0, such that:

I P(|Xn − Yn| > δσn) > 1/4

I dTV(Xn,Yn) < 1/8.

then Xn fluctuates on the scale & σn, and hence Var(Xn) & σ2
n.

15 23



Completing the proof

Let’s put everything together:

Fix ` ∈ R and a sequence εR → 0, and let

XR = NES(R; `) and YR = NES(R; `+ εR).

Recall that
cES(`) := lim

R→∞
XR/(πR2).

By controlling the error in the above convergence, if c ′ES(`) 6= 0 we
can prove that

E[YR − XR ] = εRR2c ′ES(`) + o(εRR2).
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Moreover, by considering critical points with heights in [`, `+ εR ],
we have

E[(YR − XR)2] . ε2
RR4.

Hence the Paley-Zigmund inequality implies the existence of δ > 0
such that

P(|XR − YR | > δεRR2) > 1/4.

To conclude, for the BF we have dTV (XR ,YR) . 1 as long as
εR . 1/R, and so the coupling method gives
Var[XR ] & (εRR2)2 & R2.

On the other hand, if ` 6= 0 then for the RPW we have
dTV (XR ,YR) . 1 as long as εR . 1/

√
R, and so the coupling

method gives Var[XR ] & (εRR2)2 & R3.
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Validating the conditions

How can we determine if c ′LS(`) 6= 0 or c ′ES(`) 6= 0 for fixed levels?

Recall that we can prove

cES(`) =
∫ ∞
`

pm+(x)− ps−(x) dx =
∫ ∞
`

pm+(x)− ps(x)g(x) dx .

where ps(`) is the density of saddle points, and

g(`) := P[0 is a lower connected saddle | 0 is a saddle with height `].

Hence c ′ES(`) 6= 0 is equivalent to

g(`) 6= pm+(`)/ps(`)

and the right-hand side is explicitly computable.
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g(`) := P[0 is a lower connected saddle | 0 is a saddle with height `].

Hence c ′ES(`) 6= 0 is equivalent to

g(`) 6= pm+(`)/ps(`)
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It is also intuitive that g(`) is increasing in ` (as the level is raised,
it should become easier for the saddle to connect below its level).

This is surprisingly hard to prove in general. But by considering the
field conditioned to have a saddle at 0 at height x (and using
explicit properties of the BF/RPW) we can prove:

Lemma
For both the BF and RPW, g(`) is strictly increasing in `.

Since g(0) = 1/2 (by symmetry), this yields

g(`) =
{
> 1/2 if ` > 0,
< 1/2 if ` < 0,

which gives regions where g(`) 6= pm+(`)/ps(`) and so c ′ES(`) 6= 0.

A similar argument works for c ′LS(`).
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We can glean a bit more information from this line of reasoning:

1) For the BF field, we can additionally prove that g(`) is
continuous, hence for every δ > 0 there exists a ε > 0 such that

g(`) > 1/2− δ for ` > −ε.

This allows us to extend our control on c ′ES(`) to the window
(−ε, 0).

2) For the RPW, there are no local maxima at levels ` < 0.

Hence c ′ES(`) > 0 for all ` ≤ 0.
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The result of this argument is explicit, but somewhat modest:

Corollary (Belyaev, McAuley, M.)

We have c ′LS(`) 6= 0 and c ′ES(0) 6= 0 (and hence ‘full order’
variance, except at ` = 0 for the RPW) for the following levels:

I BF field

I LS: ` ∈ (−∞,−1.38) ∪ (1.38,∞)

I ES: ` ∈ (−ε, 0.64) ∪ (1.02,∞)

I RPW

I LS: ` ∈ (−∞,−1] ∪ [1,∞)

I ES: ` ∈ (−∞, 0.87) ∪ [1,∞)
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Future directions

Some questions raised by our work:

1. We believe that cLS (resp. cES) has at most two (resp. one)
critical points. Is this true? Can we at least show that the set
of critical points is finite?

2. Are fluctuations of the number of level/excursion sets
genuinely of lower order if c ′LS(`) = 0 and c ′ES(`) = 0? We
think this is not true for the BF field, but might be true for
the RPW (by analogy with the length of the nodal set, where
this phenomena occurs and is known as Berry cancellation).
If it’s true, how small are the fluctuations in these cases?

3. Matching upper bounds / leading order constants / CLTs?
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Thank you!
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