
Distances between transition probabilities of
diffusions and applications.

Stanislav Shaposhnikov
Department of Mechanics and Mathematics

Moscow State University



Assume that there are two diffusion processes ξ1
t and ξ2

t such
that

dξ1
t = σ1(ξ1

t )dwt + b1(ξ1
t ) dt , dξ2

t = σ2(ξ2
t )dwt + b2(ξ2

t ) dt ,

and ξ1
0 = ξ2

0 = x0.

PROBLEM: to obtain an estimate of the difference between the
corresponding distributions µ1

t and µ2
t :

µ1
t (B) = P(ξ1

t ∈ B), µ2
t (B) = P(ξ2

t ∈ B).



Applications:
I Nonlinear equations
I Optimal control problems
I Mean Field Games
I Computer simulations
I Ergodicity problems



Fokker–Planck–Kolmogorov equations
We recall that µ1

t and µ2
t satisfy the following equations

∂tµ
1,2
t = ∂xi∂xj

(
aij

1,2µ
1,2
t

)
− ∂xi

(
bi

1,2µ
1,2
t

)
,

where
A1,2 = σ1,2σ

∗
1,2/2

and we assume the summation over the repeated indexes.
Thus we would like to estimate the distance between µ1

t and µ2
t

over the difference of b1 − b2 and A1 − A2.



We consider the Cauchy problem

∂tµ = ∂xi∂xj (a
ijµ)− ∂xi (b

iµ), µ|t=0 = ν. (1)

I A(x , t) = (aij(x , t))1≤i,j≤d is a positive symmetric matrix
(called the diffusion matrix) with Borel measurable entries,

I b(x , t) = (bi(x , t))1≤i≤d is a Borel measurable mapping
(called the drift coefficient),

I ν is a probability measure on Rd .
Set Lu = aij∂xi∂xj u + bi∂xi u, L∗u = ∂xi∂xj (a

iju)− ∂xi (b
iu).

Then the equation from (1) can be written shortly:

∂tµ = L∗µ.



A solution µ = µt (dx) dt is given by a family (µt )t∈(0,T ) of
probability measures µt on Rd such that t 7→ µt (B) is
measurable for every Borel set B ⊂ Rd and for every
ϕ ∈ C∞0 (Rd ) the equality∫

Rd
ϕdµt =

∫
Rd
ϕdν +

∫ t

0

∫
Rd

Lϕdµs ds

holds for almost all t ∈ (0,T ).



Suppose that
I b is locally bounded, i.e., for every ball U ⊂ Rd , there is a

number B = B(U) ≥ 0 such that

|b(x , t)| ≤ B(U) ∀ x ∈ U, t ∈ [0,T ],

I A is locally Lipschitzian in x and locally strictly positive, i.e.,
for every ball U ⊂ Rd , there exist numbers λ = λ(U) ≥ 0,
α = α(U) > 0 and m = m(U) > 0 such that

|aij(x , t)− aij(y , t)| ≤ λ|x − y |, α · I ≤ A(x , t) ≤ m · I

for every x , y ∈ U, t ∈ [0,T ].



Under this assumptions there hold
I Existence: for every probability measure ν there exists a

subprobability solution µ = µt (dx) dt (µt ≥ 0 and
µt (Rd ) ≤ 1) of the Cauchy problem (1). Moreover if at least
one of the following two conditions is fulfilled:
(i) (1 + |x |)−2|aij |, (1 + |x |)−1|b|,∈ L1(Rd × [0,T ], µ),
(ii) there exist a nonnegative function V ∈ C2(Rd )

(Lyapunov function) and a number M ≥ 0 such that
lim|x |→∞ V (x) = +∞ and LV ≤ MV ,
then µt are probability measures (µt ≥ 0 and µt (Rd ) = 1).

I Uniqueness: if at least one of the conditions (i) or (ii) is
fulfilled, then such solution is unique.



Example
Let A = I. Suppose that for some numbers γ1 > 0 and γ2 > 0 we
have

〈b(x , t), x〉 ≤ γ1 + γ2|x |2.

Then there exists a unique probability solution.



Example
There exists a smooth function B on R such that the probability
solution ν of the equation ν ′′ − (Bν)′ = 0 is not invariant measure for
the corresponding semigroup Tt with the generator L but only
subinvariant: T ∗t ν < ν if t > 0.
Let now C(y) = (C1(y),C2(y)) be a smooth vector field on R2 for
which there are two different probability solutions σ1 and σ2 of the
equation ∆σ − div(Cσ) = 0. Set

µ1
t = ν ⊗ σ1, µ2

t = (ν − T ∗t ν)⊗ (σ2 − σ1) + ν ⊗ σ1.

We construct two different probability solutions of the Cauchy
problem ∂tµt = ∆µ− div(bµ), µ0 = ν ⊗ σ1, where
b = (B(x),C1(y),C2(y)).



Let us formulate the main result.

Let µ = %µ(x , t) dxdt and σ = %σ(x , t) dxdt . Set

v(x , t) =
%σ(x , t)
%µ(x , t)

, i.e., σ = v · µ.



Let us introduce vector mappings

hµ = (hi
µ)d

i=1, hσ = (hi
σ)d

i=1, hi
µ = bi

µ −
d∑

j=1

∂xj a
ij
µ,

hi
σ = bi

σ −
d∑

j=1

∂xj a
ij
σ.



Set
Φ =

(Aµ − Aσ)∇%σ
%σ

− (hµ − hσ).

The latter mapping is crucial: the distances between µt and σt

will be estimated through the L2(σ)-norm of A−1/2
µ Φ. Observe

that in case of equal diffusion matrices we obtain just the
difference of the drifts:

Φ = bσ − bµ.

In case of equal drifts and constant diffusion matrices, only the
first term of this mapping appears.



Theorem
Let |A−1/2

µ Φ| ∈ L2(Rd × [0,T ], σ). Suppose also that at least
one of the following two conditions is fulfilled:
(a)

(1+|x |)−2|aij
µ|, (1+|x |)−1|bµ|, (1+|x |)−1|Φ| ∈ L1(Rd×[0,T ], σ).

(b) there exist a nonnegative function V ∈ C2(Rd ) and a
number M ≥ 0 such that

lim
|x |→∞

V (x) = +∞, LAµ,bµV ≤ MV ,
〈Φ,∇V 〉
1 + V

∈ L1(Rd×[0,T ], σ).

Then

H(σt |µt ) =

∫
Rd

v log v dµt ≤
1
2

∫ t

0

∫
Rd

∣∣A−1/2
µ Φ

∣∣2 dσs ds. (2)



Recall the classical Pinsker–Csiszár–Kullback inequality

‖µ− σ‖2TV ≤ 2H(σ|µ)

or the estimate established by F. Bolley and C. Villani (2005):

‖ϕ(µ− σ)‖2TV ≤ 2
(

1 + log
(∫

Rd
eϕ

2
dµ
))∫

Rd
v log v dµ (3)

for two probability measures µ and σ = v · µ on Rd and a Borel
function ϕ ≥ 0.



Corollary
Let Aµ = Aσ = I. Under the assumptions of the theorem, for
every nonnegative Borel measurable function ϕ on Rd × [0,T ],
we have

‖ϕ(µt − σt )‖2TV ≤
(
1 + logα(t)

) ∫ t

0

∫
Rd
|bµ − bσ|2 dσs ds,

where
α(t) :=

∫
Rd

eϕ
2(x ,t) µt (dx).

Finally, in case ϕ = 1 these bounds hold with 1 in place of
1 + logα(t).



Corollary
Let Aµ = Aσ = I. Suppose that for some numbers γ1 > 0 and
γ2 > 0 we have

〈bµ(x , t), x〉 ≤ γ1 + γ2|x |2.

Then

‖µt − σt‖2TV ≤
∫ t

0

∫
Rd
|bµ − bσ|2 dσs ds.



Moreover, for any p ≥ 1 and K > 0 the following estimate holds:

‖(1 + |x |p)(µt − σt )‖2TV ≤ N(t)
∫ t

0

∫
Rd
|bµ − bσ|2 dσs ds,

where

N(t) = 2K−1
(

1 + log
(∫

Rd
eK (1+|x |p)2

µt (dx)
))

.



Note that if Aµ = I and for some p ≥ 1, K > 0, γ1 > 0 and
γ2 > 2pK we have

〈bµ(x , t), x〉 ≤ γ1 − γ2|x |2p,

then for some C > 0 and all t ∈ [0,T ] one has by Gronwall’s
inequality∫

Rd
eK |x |2p

µt (dx) ≤ eCt + eCt
∫
Rd

eK |x |2p
ν(dx).



Let α, m and Λ do not depend on U and ν = %0 dx . The
following estimate of the L2(σ)-norm of ∇%σ/%σ holds:∫ τ

0

∫
Rd

|∇%σ|2

%σ
dx dt ≤

≤ C
(

1 + ‖bσ‖2L2(σ) +

∫
Rd
%0 ln %0 dx+∫

Rd
ln(max |x |,1)%σ(x , τ) dx

)
.

(Bogachev V.I., Röckner M., Shaposhnikov S.V 2005)



Corollary
Assume also that |x |2m ∈ L1(ν), ν = %0 dx, %0 ln %0 ∈ L1(Rd )
and

〈bµ(x , t), x〉 ≤ γ1 + γ2|x |2, |bσ(x , t)| ≤ γ3 + γ4|x |m

for some numbers m, γi ≥ 0. Then

‖µt − σt‖2TV ≤ sup
x ,t
‖Aµ − Aσ‖2C(T )+

2α−1
∫ t

0

∫
Rd
|hµ − hσ|2 dσs ds,

where C(T ) depends on T ,m, α,Λ, γi ,
∫
|x |2m dν, and

‖%0 ln %0‖L1(Rd ).



Proof.
Renormalized solutions
(I) (R.J. DiPerna, P.L. Lions 1989)
Let us consider the Cauchy problem for the continuity equation

∂tu + div(bu) = 0, u|t=0 = u0.

We say that u is a renormalized solution if

∂t f (u) + div(bf (u)) ≤ (f (u)− uf ′(u))divb

for every convex function f . For example, if the above inequality
holds, then for f (u) = |u| we obtain (unformally)

d
dt

∫
R
|u|dx ≤ 0,

that implies the uniqueness.
(C. Le Bris, P.L. Lions 2008)



(II) (P. Bauman 1984)
Let us consider the elliptic equation of the double devergence
form:

∂xi∂xj

(
aiju

)
= 0.

Fix a positive solution u and for another solution w we
introduce the function v = w/u. The function v satisfies to the
new equation with the matrix A · u. It turns out that the
renormalized solution v possesses many nice properties: the
maximum principle, Harnack’s inequality, Hölder’s continuity
with constants which are independent of the smoothness A.
(L. Escauriaza 2000)



The proof of the main theorem is based on the combination of
this two methods.
Set v = %σ/%µ. Then for every f ∈ C2((0,+∞))

∂t
(
%µf (v)

)
= L∗µ

(
%µf (v)

)
− %µf ′′(v)|

√
Aµ∇v |2 − f ′(v)div

(
Φ%σ

)
.

Multiplying this equation by the function ψ ∈ C∞0 (Rd ) and
integrating, we arrive at the equality



∫
Rd

f (v(x , t))ψ(x)%µ(x , t) dx+

∫ t

0

∫
Rd
ψf ′′(v)|

√
Aµ∇v |2%µ dx ds =

= f (1)

∫
Rd
ψ dν +

∫ t

0

∫
Rd

[
f (v)Lµψ

]
%µ dx ds+

+

∫ t

0

∫
Rd

[
〈Φ,∇v〉f ′′(v)ψ%σ + f ′(v)〈Φ,∇ψ〉%σ

]
dx ds.



Assume that ψ ≥ 0 and f ′′ ≥ 0. Applying the Cauchy inequality
we obtain∫

Rd
f (v(x , t))ψ(x)%µ(x , t) dx ≤ f (1)

∫
Rd
ψ dν+

+
1
2

∫ t

0

∫
Rd
|A−1/2
µ Φ|2f ′′(v)v%σ dx ds+

+

∫ t

0

∫
Rd

[
f (v)Lµψ

]
%µ dx ds+

+

∫ t

0

∫
Rd

[
f ′(v)〈Φ,∇ψ〉%σ

]
dx ds.



Let ψN be such that

LµψN → 0, |∇ψN | → 0, ψN → 1.

Replace in the above inequality ψ by ψN and tend N →∞ we
obtain∫
Rd

f (v(x , t))%µ(x , t) dx ≤ f (1)+
1
2

∫ t

0

∫
Rd
|A−1/2
µ Φ|2f ′′(v)v%σ dx ds.

Setting f (v) = v ln v we derive the assertion of the theorem.



Nonlinear equations
Suppose now that for every measure µ on Rd × (0,T ) given by
a family (µt )t∈(0,T ) of probability measures on Rd we are given
a locally bounded Borel measurable mapping

b(µ, ·, ·) : Rd × [0,T ]→ Rd .

Then we can consider the Cauchy problem for the nonlinear
Fokker–Planck–Kolmogorov equation

∂tµ = ∆µ− div(b(µ, x , t)µ), µ|t=0 = ν. (4)

(McKean, H.P. 1966, Funaki, T. 1984, Veretennikov A. Yu. 2006,
2016, Manita O.A., Romanov M.S., Shaposhnikov S.V. 2015)



Let C+[0,T ] denote the set of nonnegative continuous
functions on [0,T ]. Suppose that V ∈ C2(Rd ) and V ≥ 1. For
α ∈ C+[0,T ] and τ ∈ (0,T ] we set

Mτ,α(V ) =

{
µ(dxdt) = %(x , t) dx dt : % ≥ 0,∫

%(x , t) dx = 1,
∫
Rd

V (x)%(x , t) dx ≤ α(t), t ∈ [0, τ ]

}
.

If V (x) = eK |x |2p
, then the corresponding setMτ,α(V ) will be

denoted byMK ,p
τ,α .

Let ‖%‖p,τ be the norm defined by

‖%‖2p,τ :=

∫ τ

0

(∫
(1 + |x |p)|%(x , t)|dx

)2
dt .



Corollary
Let p ≥ 1, K > 0 and suppose that for every function
α ∈ C+[0,T ] there exist numbers γ1(α) > 0 and γ2(α) > 2pK
such that for every τ ∈ (0,T ] and µ ∈MK ,p

τ,α one has

〈b(µ, x , t), x〉 ≤ γ1(α)− γ2(α)|x |2p ∀ (x , t) ∈ Rd × [0, τ ].

Suppose also that

|b(µ, y , t)− b(σ, y , t)| ≤ CeK |y |2p/2‖(1 + |x |p)(µt − σt )‖TV .

Then, for every probability measure ν on Rd such that
eK |x |2p ∈ L1(ν), there exist τ ∈ (0,T ] and α ∈ C+[0,T ] such that
a solution to the Cauchy problem (4) in the class of measures
MK ,p

τ,α exists and is unique.



Example
Let

b(µ, x , t) = β(x , t) +

∫
Rd

K (x , y)µt (dy),

where β : Rd × [0,T ]→ Rd and K : Rd × Rd → Rd are Borel
measurable locally bounded mappings such that there exist numbers
C > 0, 2p > q > 0, γ1 > 0, γ2 > 2pK for which

|K (x , y)| ≤ C(1 + |x |q)(1 + |y |p), 〈β(x , t), x〉 ≤ γ1 − γ2|x |2p.

Then all conditions of the above corollary are fulfilled.



Proof.
Let us define a mapping F : MK ,p

τ,α →MK ,p
τ,α by

µ = F (σ)⇐⇒ ∂tµ = ∆µ− div(b(σ)µ), µ|t=0 = ν.

It turns out that there exist τ > 0 and α such that the mapping
F is contracting. Indeed, we have

‖(1 + |x |p)(µ1
t − µ2

t )‖2TV ≤

C̃
∫ t

0

∫
Rd
|b(σ1)− b(σ2)|2 dσ ≤ Ĉ‖σ1 − σ2‖2p,τ ,

where Ĉ does not depend on τ , but only on T . Integrating in t
over [0, τ ], we find that

‖F (σ1)− F (σ2)‖2p,τ ≤ τ Ĉ‖σ1 − σ2‖2p,τ .



The next example demonstrates that uniqueness depends on
the given metric on the space of measures and also depends
on the regularity of the initial condition. Moreover the term
|∇%σ|2/%σ in the right side of our estimate is essential.



Example
Let d = 1, A = a(t , µ), b = 0 and ν = δ0. Set µ1 = µ1

t dt and
µ2 = µ2

t dt , where

µ1
t = (2πt)−1/2e−x2/2t dx , µ2

t = (8πt)−1/2e−x2/8t dx .

Note that ‖µ1
t − µ2

t ‖TV = c0 > 0 and c0 does not depend on t . Let

a(t , µ) = 1 +
3
c0
‖µt − µ1

t ‖TV .

We have a(t , µ1) = 1, a(t , µ2) = 4 and
|a(t , µ)− a(t , σ)| ≤ 3

c0
‖µt − σt‖TV . The measures µ1 and µ2 are two

different solutions to the Cauchy problem with this coefficient a and
ν = δ0.



Optimal control
Our next application is concerned with optimal control. For a
given bounded probability density σ on Rd and τ ∈ (0,1), we
consider the problem of minimization of the function

J(u) =
1
2

∫
Rd
|%(x , τ, u)− σ(x)|2 dx +

u2

2
, u ∈ R, (5)

in the class of probability densities x 7→ %(x , t ,u) on Rd such
that %(x , t ,u) solves the Cauchy problem on [0, τ ] for the
Fokker–Planck–Kolmogorov equation

∂t% = ∆%− div(b(·, ·,u)%), %|t=0 = %0.

(Annunziato M., Borzi A. 2010, 2013, Pardoux E., Veretennikov
A.Yu. 2003)



We assume that the initial condition %0 is a bounded probability
density with %0 ln(4 + |x |) ∈ L1(Rd ) and the drift b depending on
the parameter u satisfies the inequality

|b(x , t ,u)|+ |∂ub(x , t ,u)|+ |∂2
ub(x , t ,u)| ≤ M

for every (x , t) ∈ Rd × [0,1], u ∈ R.



Corollary
There is τ > 0 such that J from (5) has a unique point of
minimum.



Proof.
Indeed, the function J is continuous and tends to +∞ as
|u| → +∞, which implies the existence of a point of minimum.
The function % is differentiable in u. Hence the function J is
differentiable, and at the point of minimum

J ′(u) =

∫
Rd

(%(x , τ, u)− σ(x))∂u%(x , τ, u) dx + u = 0.

Let us consider the mapping G : R→ R given by

G(u) = −
∫
Rd

(%(x , τ, u)− σ(x))∂u%(x , τ, u) dx .

The points of minimum of J are fixed points of G. It turns out
that for sufficiently small τ > 0 the mapping G is contracting,
which yields the uniqueness of a point of minimum.



Mean Field Games
We consider yet another possible application, which concerns
the so-called mean field games. A typical model for mean field
games is the system{

∂tu + ∆u − H(x ,∇u) = F (x , µt ),
∂tµt −∆µt + div(b(x ,∇u)µt ) = 0, (x , t) ∈ Rd × (0,T ),

(6)
with initial-terminal conditions u(x ,T ) = G(x , µT ) and
µt |t=0 = ν, where ν is a Borel probability measure, H, F , G are
given functions and b is a vector field, usually
b(x ,p) = ∂H(x ,p)/∂p, but we do not assume this relation.
(Gueant O., Lasry, J.M., Lions P.L. 2011, Gomes D.A., Saude J.
2014, Cardaliaguest P. 2013)



Let P(Rd ) be the space of all Borel probability measures on Rd .
Suppose that F and G are functions on Rd × P(Rd ), H is a
function on Rd × Rd and b : Rd × Rd → Rd is a vector field
such that



(C1) F and G are continuous, G(x , µ) is continuously
differentiable in x and there exist numbers L0 > 0, L1 > 0 such
that

|F (x , µ)|+ |G(x , µ)|+ |∇xG(x , µ)| ≤ L0,

|F (x , µ)− F (x , σ)|+ |G(x , µ)−G(x , σ)|
+ |∇xG(x , µ)−∇xG(x , σ)| ≤ L1‖µ− σ‖TV

for all x ∈ Rd , µ, σ ∈ P(Rd );



(C2) H and b are continuous and for every R > 0 there exist
numbers M0(R) > 0 and M1(R) > 0 such that, whenever
x ∈ Rd and |p| ≤ R,

|H(x ,p)| ≤ M0(R),

|H(x ,p)− H(x ,q)|+ |b(x ,p)− b(x ,q)| ≤ M1(R)|p − q|.



A solution to (6) is a pair consisting of a mapping
u ∈ C([0,T ],C1

b(Rd )) and a flow of probability measures µt on
Rd such that µt is a solution to the Cauchy problem

∂tµt −∆µt − div(Hp(x ,∇u)µt ) = 0, µt |t=0 = ν,

and u satisfies the identity

u(x , t) =

∫
Rd

Z (x − y ,T − t)G(y , µT ) dy

+

∫ T

t

∫
Rd

Z (x − y , τ − t)
(
H(y ,∇u(y , τ)) + F (y , µτ )

)
dy dτ,

where
Z (x , t) = (4πt)−d/2 exp(−|x |2/4t).



Corollary
There is T > 0 such that (6) has a unique solution on [0,T ].



Proof.
We apply the contracting mapping theorem to the mapping

F : C([0,T ],C1
b(Rd ))→ C([0,T ],C1

b(Rd )),

where C([0,T ],C1
b(Rd )) is equipped with its natural norm

‖v‖ = sup
t∈[0,T ]

sup
x

[
|v(x , t)|+ |∇xv(x , t)|

]
,

defined as follows:



for each v ∈ C([0,T ],C1
b(Rd )) we find a solution µt (which is

unique under our assumptions) to the Cauchy problem

∂tµt −∆µt − div(b(x ,∇v)µt ) = 0, µt |t=0 = ν,

and set

F(v) =

∫
Rd

Z (x − y ,T − t)G(y , µT ) dy

−
∫ T

t

∫
Rd

Z (x − y , τ − t)
(
H(y ,∇v(y , τ)) + F (y , µτ )

)
dy dτ.



Convergence to the stationary measure
Let us consider the Cauchy problem

∂tµt = ∆µt − div(b(x , µt )µt ), µ0 = ν.

Assume that
b(x , µ) = b0(x) + εb1(x , µ)

and
〈b0(x), x〉 ≤ −γ|x |2, |b1| ≤ M1,

|b1(x , µ)− b1(x , σ)| ≤ M2‖(1 + |x |)(µ− σ)‖TV .



Let µ be a stationary measure.
Problem: to prove that µt → µ and to obtain the following
estimate ‖(1 + |x |)(µt − µ)‖ ≤ α1e−α2t .
Note that it is often simpler, and in the case of a degenerate
diffusion matrix more natural, to consider convergence in the
Kantorovich metric. Results of this sort for non-gradient drift
coefficients were apparently first obtained by N.U. Ahmed and
X. Ding, and have been recently generalized by A. Eberle, A.
Guillin, R. Zimmer, A. Yu. Veretennikov, F.-Y. Wang.
The gradient case, where b = ∇V , has been studied in many
papers, starting from D.A. Dawson, J. Gärtner, Y. Tamura and
further studied in many papers on the theory of gradient flows
by L. Ambrosio, N. Gigli, G. Savaré, F. Bolley, I. Gentil, A.
Guillin, J.A. Carrillo, R.J. McCann, C. Villani, ...
Here we discuss the convergence in variation.
(O.A. Butkovsky, A. Eberle, ...)



It is known that

‖(1 + |x |)(µ− σt )‖TV ≤ λ1e−λ2t‖(1 + |x |)(µ− ν)‖TV ,

where
∂tσt = ∆σt − div(b(x , µ)σt ), σ0 = ν.

Let t ∈ [0,T ]. According to the above estimate we have

‖(1+|x |)(µt−σt )‖2TV ≤ C(T )ε

∫ t

0
‖(1+|x |)(µ−µs)‖2TV ds, t ∈ [0,T ].



Then

‖(1 + |x |)(µ− µt )‖2TV ≤
2‖(1 + |x |)(µ− σt )‖2TV + 2‖(1 + |x |)(σt − µt )‖2TV ≤

≤ 2λ2
1e−2λ2t‖(1 + |x |)(µ− ν)‖2TV +

εC(T )

∫ t

0
‖(1 + |x |)(µ− µs)‖2TV ds.



Apply the Gronwall inequality we obtain

‖(1 + |x |)(µ−µt )‖2TV ≤ ‖(1 + |x |)(µ−ν)‖2TV (2λ2
1e−2λ2t +εC(T )).

For sufficiently small ε we have

‖(1 + |x |)(µ− µT )‖TV ≤ q‖(1 + |x |)(µ− ν)‖TV , 0 < q < 1.

Thus
‖(1 + |x |)(µ− µt )‖TV ≤ α1e−α2t .
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