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Setting

• (yi ,Xi)
n
i=1: data

• Xn×p: data matrix with rows X⊤
i

• Generalised linear model:

E[yi |Xi ] = g−1(X⊤
i β).

• Regression:

yi = X⊤
i β + ϵi , (g(x) = x).

• Logistic regression: yi binary coded.

P[yi = 1 | Xi ] =
exp(X⊤

i β)

1 + exp(X⊤
i β)

,

(
g(x) = log

x
1 − x

)
.

• The number of variables p can scale with n.
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The problem of grouped variable selection

• β is group-sparse, i.e. there are groups of variables
C1, . . . CK , [p] = ⊔j∈[K ]Cj , such that

support(β) = Cj1 ∪ · · · ∪ Cjs ,

j1, . . . , js ∈ [K ].

• Want to estimate β from data (y ,X ).
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The lasso penalty [Tibshirani (1996)]

• Penalise via the ℓ1 norm:

L(β) = ∥β∥1 =
∑
j∈[p]

|βj |.

• Optimisation problem:

ℓ(y ,Xβ) + λ · L(β),

where ℓ(y ,Xβ) is some loss function, e.g., 1
2n∥y − Xβ∥2

2,
negative log-likelihood, Huber’s loss, etc.
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The lasso penalty [Tibshirani (1996)]

Figure taken from An Introduction to Statistical Learning, James et al. 5



The group lasso penalty [Yuan and Lin (2006)]

• Use a (weighted) ℓ1 penalty on groupwise ℓ2 norms:

GL(β) =
∑
j∈[K ]

√
|Cj |∥βCj∥2.

• Optimisation problem:

ℓ(y ,Xβ) + λ · GL(β),

where ℓ(y ,Xβ) is some loss function, e.g., 1
2n∥y − Xβ∥2

2,
negative log-likelihood, Huber’s loss, etc.
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The group lasso penalty [Yuan and Lin (2006)]

Figure 1: Consider three variables with two groups {1,2} and {3}. In
this display, we plot of the level set {β | Λt(β) ≤ 1} for different values
of t . The graph G here is the union of an isolated vertex and an edge.
The eigengap λ3 = 2.
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The group lasso penalty [Yuan and Lin (2006)]

• Convex optimisation problem if ℓ(y ,Xβ) is convex.

• Groups need to be known in advance.
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A new penalty based on heat flow

• Assume that the group information comes from a graph G
on the variables.

• Let L = D − A denote the (unnormalised) graph Laplacian.

• Recall: G has K connected components C1, . . . , CK if and
only if L has K zero eigenvalues.

• The eigenspace of 0 is spanned by {
1Cj√
|Cj |

, j ∈ [K ]}.
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A new penalty based on heat flow

• Consider functions

Ψ(β) = β ⊙ β

and
Ψ[−1](β) = (

√
|β1|, . . . ,

√
|βp|)⊤.

• We introduce the heat flow penalty

Λt(β) := ⟨Ψ[−1](e−tLΨ(β)),1p⟩.
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But why?

• Let
L =

∑
i

λiviv⊤
i ,

0 = λ1 = · · · = λK < λK+1 < · · · < λp.

• Note that

e−tLΨ(β) =
∑

i

e−tλi ⟨vi , β ⊙ β⟩vi

=
K∑

i=1

∥βCi∥2
2

|Ci |
1Ci +

∑
i>K

e−tλi ⟨vi , β ⊙ β⟩vi

≈
K∑

i=1

∥βCi∥2
2

|Ci |
1Ci ,

for t large enough (depending on the spectral gap
λK+1 > 0).
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But why?

• Thus

⟨Ψ[−1](e−tLΨ(β)),1p⟩ ≈
〈
Ψ[−1]

( K∑
i=1

∥βCi∥2
2

|Ci |
1Ci

)
,1p

〉
= GL(β).

• Learning with heat flow penalty:

min
β

[ℓ(y ,Xβ) + λ · Λt(β)].

12



Level sets

t = 0.01 t = 0.1

t = 0.5 t = 1

Figure 2: Consider three variables with two groups {1,2} and {3}. In
this display, we plot of the level set {β | Λt(β) ≤ 1} for different values
of t . The graph G here is the union of an isolated vertex and an edge.
The eigengap λ3 = 2.
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Properties

• Non-convex, unlike group lasso.

• Subgradient descent of (block) coordinate descent can be
performed easily.

• Set h = e−tL(β ⊙ β). Then

Λt(β) =

p∑
j=1

√
|hj |.

Thus

∂Λt(β)

∂βℓ
=

p∑
j=1

∂s(hj)
∂hj

∂βℓ
=

p∑
j=1

∂s(hj)2︸ ︷︷ ︸
=:ζj

(e−tL)jℓβℓ,

where s(x) =
√

|x | so that ∂s(x) = sign(x)
2s(x) .
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Properties

• Since e−tL is symmetric, we can write

∂Λt(β) = (e−tLζ)⊙ β.

• Given v ∈ Rp,

(e−tLv)i = E(fZ (t) | Z (0) = i),

where (Z (t))t≥0 is the CTRW on G.

• A Monte Carlo estimate can be easily obtained:

̂(e−tLv)i =
1
B

B∑
j=1

fZ (j)(t),

where Z (1), . . . ,Z (B) are B independent random walks
started at i .
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Advantages

• Learns group structure automatically using only local graph
information — privacy friendly.

• Does not need to know the number of groups K .

• Need to compute the end-points of p · B random walks once
and for all, can be done in parallel.

• To ensure prediction error ≤ ϵ, need O(max(log p, log(1/ϵ)))
many steps in each RW.
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Bounds on prediction error

Theorem

Under “some conditions”, we have with high probability that

1
n
∥X (β̂t ,λ − β∗)∥2

2 = O(∥β∗∥2,1λ|Cmax|+ p3/2e−tλg/2). (1)

If we further assume RE(s) holds for X with parameter κ, then

1
n
∥X (β̂t ,λ − β∗)∥2

2 = O
(

sλ2|Cmax|
κ2 + p3/2e−tλg/2

)
. (2)

RE(s) ensures enough curvature at approximately
s-group-sparse vectors.
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Simulations - I

• The covariates ∼ N (0,Σ), with

Σ =


Σp1(ρ1) 0 0 0

0 Σp2(ρ2) 0 0
0 0 Σp3(ρ3) 0
0 0 0 Σp4(ρ4)

 ,

where Σd(ρ) = (1 − ρ)Id + ρ1d1⊤
d is the equi-correlation

matrix of order d .

• Take some estimate Σ̂ of Σ. Let R̂ be the corresponding
correlation matrix.

• The graph is estimated as follows

Aij = 1{|R̂ij |≥τ(R̂)}.
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Simulations - I

For L we use the Laplacian corresponding to A. Group Lasso is
fed the output of spectral clustering on L (with oracle knowledge
of K ).
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Figure 3: n = 200,p = 100, (p1,p2,p3,p4) = (16,24,40,20),
correlations (ρ1, ρ2, ρ3, ρ4) = (0.6,0.9,0.7,0.4). 19



Simulations - I

Group lasso Heat flow (SD) Heat flow (CD)

Prediction error 0.03 0.02 0.03
Estimation error 0.84 0.48 0.46

Sensitivity 1 1 1
Specificity 0.55 1 1
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Simulations - II

• Some underlying graph G on p variables with Laplacian L
(with a latent block structure).

• The covariates form a massive Gaussian Free Field (GFF)
on G, i.e. distributed as N (0,Σ), where

Σ = (L + ϵI)−1.

• L can be estimated as before, or using graphical lasso.
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Simulations - II
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Figure 4: n = 200,p = 100, G is generated from a stochastic block
model with parameters K = 4, a = 0.5 and b = 0.01.
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Simulations - II

Group lasso Heat flow (SD) Heat flow (CD)

Prediction error 0.09 0.12 0.12
Estimation error 2.24 2.59 2.93

Sensitivity 1.00 0.91 0.61
Specificity 0.36 0.98 0.98
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Graph estimation from GFF samples

Truth n = 200 n = 400

n = 800 n = 1600 n = 3200

Figure 5: Graph estimated by thresholding an estimate of Σ from a
GFF on a graph on p = 200 vertices generated from a stochastic block
model with parameters a = 0.5, b = 0.01. 24



Predicting the monthly temperature at Delhi NCR

Figure 6: Correlation between monthly precipitation in 2.5◦ × 2.5◦

squares on the Arabian Sea and the Bay of Bengal.
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Predicting the monthly temperature at Delhi NCR

Random map off the internet Estimated coefficients
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