Sero-Survey in Karnataka State

Summary, Design, and Statistical Methodology

Giridhara Babu (Principal Investigator) Siva Athreya and Rajesh Sundaresan

Plan of the Talk

• Part I

- Survey Design and Implementation
- Probability Model and Statistical Methodology
- Summary of Findings.

• Part II

- Nuances of the methodology
- C-optimal Design
- Worst Case Design

Goal: To Estimate

- (IgG-Antibody)--the proportion of people who already have had SARS-CoV2 infection;
- (Active Infection)--the proportion of people current active infection;
- (COVID-19 Burden)--the prevalence of COVID-19 in the general population of Karnataka state.

Survey: Units and Implementation

Geographical Spread

- Each of the 29 districts (other than Bengaluru-Urban) was a unit.
- Each zone of BBMP is considered as a unit;
- There will be total of 38 units. (30 districts+ 8 zones)

Within Unit

- Locations around District Hospital, Primary/Community Health Care centres were surveyed.
- Counsellors from ICTC and Health Care workers: conducted the survey.
- Survey used existing public health infrastructure.

Design of Sample at Each Unit

	Risk Subgroups	Samples*	Tests done
Law Diala	Pregnant women presenting for ANC clinic	72	DTDCD and
LOW RISK	Persons attending the outpatient department in the hospitals/ attendees	lgG	
	Bus conductors/Auto drivers	28	
Moderate	Vendors at the vegetable markets	28	
Dick	Healthcare workers	30	
RISK	Individuals in containment zones	28	- RAI, RIPCR^^ and lgG
	Markets, Malls, Retail stores, Bus stops, Railway stations	30	
High Rick	Elderly (over 60)	72	_
ingititist	Persons with co-morbid condition	72	_
		432	

*-Divided uniformly across Health Facilities; **-only if RAT was negative.

Sampling Design

Participant in each group

- Chosen via systematic sampling and Consent was sought.
 - Excluded:
 - --if under 18 years of age
 - --COVID-19 positive patient
 - --Unable to provide informed consent or Not willing to provide sample for test.

Samples

- Blood was drawn for Antibody test, post centrifugal processing sent to designated IgG Lab.
- Rapid Antigen Test done on spot for Moderate and High Risk group participant.
- Swab was sent to designated Reverse transcription polymerase chain reaction labs.

290 Health facilities across the state.

Data from Survey

Collection and Compilation

- Surveyor Entered on an specially designed Survey app: participant details. (Each participant identified by a Unique S.R.F. id)
- IgG lab sent data to State government.
- RTPCR labs entered directly onto ICMR portal; were downloaded by State government.

Analysis

- Preparation of one line list for participants (with IgG, RAT, RTPCR results).
- Different Test patterns
- Joint Estimation of IgG and Active Infection

Table of States and Nominal Test Responses M(s,j)

State of	fIndividual	RAT	RTPCR	lgG
		j = 1	j = 2	<i>j</i> = 3
s = 1	Active infection but no IgG antibodies	1	1	0
s = 2	IgG antibodies present but no evidence of active infection	0	0	1
<i>s</i> = 3	Simultaneous presence of active infection and IgG antibodies	1	1	1
<i>s</i> = 4	Neither active infection nor IgG antibodies	0	0	0

Sensitivity and Specificity

Sensitivity: probability of a positive test given that the patient has the disease. Specificity: probability of a negative test given that the patient is well.

$\sigma(m, j)$	RAT	RTPCR	lgG
	j = 1	j = 2	<i>j</i> = 3
Specificities ($m = 0$)	0.975	0.97	0.977
Sensitivities $(m = 1)$	0.5	0.95	0.921

Model Needs

- Test pattern taken by individual (E.g. No RAT at low Risk)
- Adjust for Sensitivity and Specificity of each test(s)
- Design effect Bias in Sample.

Our First Crude Estimates

Model- Maximum Likelhood Estimate

• The likelihood at a strata, say D-district is then given by

$$L(p; t(D), y(D)) := \prod_{n:n \in D} \left(\sum_{s=1}^{4} p_s q(y(n)|s, t(n)) \right).$$

- The mapping $p \mapsto \log L(p; t(D), y(D))$ is concave
- Numerical, iterative, gradient descent procedure is used to arrive at the maximum likelihood estimate for *p* in this stratum,

$$\hat{p}(D) = (\hat{p}_1(D), \hat{p}_2(D), \hat{p}_3(D), \hat{p}_4(D)).$$

- IgG-Antibody-Estimate $\hat{p}_2(D) + \hat{p}_3(D)$,
- Active prevalence-Estimate $\hat{p}_1(D) + \hat{p}_3(D)$,
- Total prevalence[past and active infection]-Estimate $\hat{\wp}(D) := \hat{p}_1(D) + \hat{p}_2(D) + \hat{p}_3(D)$.

Model-Confidence Interval

- The confidence interval estimations come from the Fisher information matrix associated with this model and a design effect of 3.
- For protocol and logistical reasons, the test patterns differ across the participants.
- So the Fisher information matrices for the different test patterns are averaged in proportion to the observed test patterns. This can be interpreted as a hybrid observation/Fisher information matrix.
- The inverse of this matrix provides an estimate of the covariance of $\hat{p}(D)$.

Karnataka

• The Karnataka estimates are obtained after weighting for district populations:

$$\hat{p} = \sum_{D} w(D)\hat{p}(D),$$

where w(D) is the fraction of Karnataka population that lives in district D.

• Assuming independence across districts, the covariance is

 $\sum_{D} w(D)^2 \operatorname{cov}(\hat{p}(D)).$

Karnataka Numbers

Seroprevalence of IgG and Active infection in Karnataka state.

Туре	Samples	%-IgG against SARS- CoV2	%-Active Infection of COVID-19	%-Prevalence of COVID-19
Crude	15939	2565/15939= 16.1	2363/14132=16.7	4582/15939=28.7
Adjusted	15939	15.4	12.2	26.1
Weighted Adjusted	15624	16.4 (15.117.7)	12.7 (11.513.9)	27.3 (25.728.9)

Both IgG and Active infection in Karnataka state.

16.4 + 12.7 - 27.3 = 1.8

95% Confidence Intervals for Percentage IgG Prevalence

						25.1	
BBMP West					29.9	•33.1	
BBMP South				25.5	•		
BBMP East			P	•			
Vijayapura			22.0				
Belgaum			20.9	7			
Raichur			22.8•	/			
Ballari			•				
Koppal			19.6 22.1				
Mysuru			•				
Mandya			18.8				
Bidar			18.5				
PRMP Rommonoballi			18				
Kalaburasi		17	7.5				
Ralaburagi		16.4 -	17.1				
Davanagere		16	5.4				
Karnataka		16.	2				
Udupi		15.8					
Chamarajanagar		•					
Yadgir		15.4					
Bengaluru Rural		15.2					
Bengaluru Urban		15					
Haveri		14.8 •					
Dakshina Kannada							
BBMP RR Nagar		14.1					
Ramanagar		13.9					
BBMP Yelahanka		13.9					
BBMP Dasarahalli		13.8					
Hassan		•					
Kodagu		13.2					
Chikmagalur		12					
Chitradurga	,	10.2 12					
Kolar		► 10.1					
Littara Kannada	8.1						
Shivamoqqa	7.7						
Dharwad							
BBMP Mahadovpura	7.1						
	7						
Chikkaballapur	6.4 6.8						
Coder	6.3						
Gadag	•						
Bagaikot	4.1 •						
0		10	20 Percentage IgG Prevalence	e	30		40

95% Confidence Intervals for Acute Infection

Epidemiological Metrics

Estimated Infection (EI)

EI = COVID-19 prevalence × Population

Case to Infection Ratio (CIR)

 $CIR = \frac{EI}{Reported Cases up to 2nd September}$

Past Infection (PI)

PI = IgG Prevalence × Population

Infection Fatality Rate (IFR)

 $IFR = \frac{Fatalities Reported up to 2nd September}{Fatalities Reported up to 2nd September + PI}$

Karnataka Estimated Numbers

Cases up to 16/09	Estimated total prevalence as on 16/09	CIR	IFR	Active case per day 02-16	Estimated Active Infection
484954	19321334	1:40	0.05%	98028.5	8988313

Infection Fatality Rate

Case to Infection Ratio

Karnataka: 16.7 % IgG and 0.05 % IFR

High IgG and Low IFR

- The district has had surge in cases in the past
- Underreporting of COVID-19 deaths is a possibility

Low IgG and Low IFR

- District will have surge in cases in the near future
- Low IFR can mean that either there are fewer deaths or there is underreporting.

High IgG and High IFR

- The district has had surge in cases in the past
- The reporting of deaths in the district is relatively reliable

Low IgG and High IFR

- The district is yet to see surge in cases
- High proportion of deaths due to COVID-19 in the early phase of outbreak

%-tage IgG Prevalence vs Infection Fatality Rate

Karnataka: 16.7 % IgG, 1:40 CIR, and 0.05 % IFR

High IgG, High CIR, Low IFR

- District has gone through a surge.
- High IgG and high CIR is a clear indication that cases or areas of circulation have been missed.
- High IgG with Low IFR means that there is underreporting of deaths

High IgG, Low CIR, High IFR

- Despite going through surge in cases in the past, district seems to be detecting cases and areas of circulation
- High IgG with high IFR means that there is reliable reporting of deaths

Infection Fatality Rate vs Case to Infection Ratio

Survey Findings

- Estimates Across Risk Groups: Age, Gender, Sub-Categories
- RAT Sensitivity amongst : asymptomatic ~ 0.46 and symptomatic ~ 0.67
- Prediction of past and current infection from: Symptoms and Pre Existing Health Conditions
- District wise reports and impacting testing policy
- Prediction of past and current infection from: Symptoms and Pre Existing Health Conditions. E.g. Diarrhea and In-contact for past infection.

Predictions

■ Presence of viral RNA ■ Presence of IgG antibodies