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Multiple dependent time series
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Motivation - High-dimensional Examples
Dependent trade and economic networks:
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Motivation - High-dimensional Examples

Reference: Lan, Q., Sun, H., Robertson, J.L., Deng, X., & Jin, R. (2017). Non-invasive Assessment of
Liver Quality in Transplantation based on Thermal Imagining Analysis. Manuscript submitted for
publication, Grado Department of Industrial & Systems Engineering, Virginia Tech, Virginia.
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Three problems

1. Multiple dependent timeseries with some form of “spatial” dependence between the different
timeseries

2. Multiple dependent timeseries with “spatial” embedding of the data and a dependence relation
between the timeseries

3. Multiple dependent timeseries with “spatial” diffusion processes the object of study
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I. Neighborhood Vector Auto Regression

8 / 50



Vector Autoregression (VAR)

A qth order VAR with p dependent time series is given by

yt = A1yt−1 +A2yt−2 + . . .+Aqyt−q + et, t = 1, 2, . . . ,T

where y is the p-dimensional time series given by yt = [y1,t, y2,t, . . . , yp,t], t = 1, 2, . . . ,T

Ai are the p× p coefficient matrices that capture the relationships between the different time series

et is the noise, typically assumed to be zero mean and with no serial correlation. T is the length of the
time series.
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High-dimensional VAR

Complexity in the estimation of the VAR model is due to lag order q and the dimension p, but the
complexity is only linear in q whereas it is quadratic in p. In the high-dimensional case where p is
comparable to T , this leads to serious problems in estimation.

Hence VAR is not preferred in many high-dimensional problems.

e.g.: sensor fusion problems, spatio-temporal problems, image processing problems etc., each developing
their own solutions!
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Sparsity

One way to handle high-dimensional data is to impose some sparsity constraints.

Instead of estimating all p2 coefficients within a coefficient matrix, we assume that only a small number
of these are significant.

Multiple approaches are possible here:

1. Davis et al. (2016) define a “Sparse VAR” algorithm by using partial spectral coherence to
estimate which AR coefficients should be non-zero.

2. Basu and Michailidis (2015) use regularized estimation for sparse estimation. Tan et al. (2016) use
another shrinkage-based estimator.

3. Guo et al. (2016) use a banded VAR approach similar to the banding assumptions used in
estimating covariance matrices (Bickel and Levina (2008) among others). We will expand on this
approach
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Banded VAR
In Banded VAR, the assumption is that the coefficient matrices are “banded”, i.e., the time series show
dependence only among adjacent timeseries. The following figure is from Guo et al. (2016) in
Biometrika.
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Banded VAR

The VAR(q) model in this case can be written as

yt = A1yt−1 + . . .+Aqyt−q + εt, t = 1, . . . T ,
where y is p-dimensional as before.

The sparsity condition for banded VAR is specified as ami,j = 0, |i− j| > k0,m = 1, . . . q so that only the
k0 adjacent timeseries (on either side) affect estimates of the focal timeseries.

k0 is called the bandwidth and it needs to be estimated from the data. Guo et al. (2016) use the
marginal BIC to estimate the bandwidth

Given a particular bandwidth, the coefficient matrices can be estimated using the OLS estimator for each
timeseries separately
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Neighborhood VAR
We make the spatial dependence notion in banded VAR explicit - a few “neighbors” contain most of the
information about the focal timeseries.

We formalize this notion of “neighborhood” using a p× p distance matrix D, where the element Di,j
contains the distance between the timeseries indexed by i and j.

The banded VAR is a special case where the timeseries are always assumed to be arranged in a
one-dimensional lattice with the focal timeseries at the origin and all the successive timeseries arranged
equally away from it, according to their presence in the ordering [y1, . . . yp]

ii-1i-2i+1i+2….….

In a 2-D problem, e.g. a problem from image processing, we can define the distance to be based on a
Manhattan-type distance, where we obtain a generalization of the banded VAR into a block-banded VAR
structure as we consider distances along both dimensions of the matrix

….….….….….….….….….….….….….….….….
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Neighborhood VAR - Definitions

We assume that the timeseries y1, . . . , yp come from sources s1, . . . , sp in some space, say <m with
well-defined distances between them d(i, j). We define the d− neighborhood of si, as

N di = {j : d(si, sj) ≤ d}. Note that every timeseries is a neighbor of itself for every value of d and at
every time instant t

For every timeseries yi, i = 1, . . . , p, we define the neighborhood VAR regression by the equation
yi(t) =

∑
j∈Nd

i
A(i, j)yj(t− 1), t = 2, . . . ,T
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Neighborhood VAR - Algorithm
Algorithm Neighborhood VAR Estimation

Input: [y1, . . .yT], Lag order: q, D (We assume the distance matrix is given)
Output: Coefficient matrices: Â1, . . . Âq
for d in 1 : dmax do

for i in 1 : p do
Find the ‘d-neighborhood’ N d

i of the ith timeseries
Perform regression for the ith timeseries on N d

i and compute coefficients βd,i

Compute the marginal BIC as BIC(d, i) = log(RSS(d, i))+ 1
nd

mCn log(p∨
n), m - dimension of space

end for
end for
Find d̂ = max1≤i≤p(argmin1≤d≤dmax

BICd,i)
Optional: Use BIC within the set given by N d

i to choose a smaller subset of predictors
for each timeseries
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Banded VAR - Asymptotic properties
Summary of Conditions:

1. Strict stationarity of the coefficient matrices
2. Identifiability of coefficients
3. Positive definite autocovariance matrix for the process yt
4. Innovation process εt is iid with zero mean and covariance Σε with finite moments

Theorem
Pr(d̂ = d0)→ 1, as T →∞

Theorem
‖Âj −Aj‖F = OP (p/T )1/2, ‖Âj −Aj‖2 = OP (log p/T )1/2, as T →∞

Theorem
If Σε is banded with bandwidth s0 and has finite L1-norm, for any integers, r, j ≥ 0, there exists a
banded matrix Σ(r)

j with bandwidth 2(2r+ j)d0 + s0 + 1 such that

‖Σ(r)
j − Σj‖2 ≤ C1δ

2(r+j)+1, ‖Σ(r)
j − Σj‖1 ≤ C2δ

2(r+j)+1 for constants C1,C2 independent of r, p
and δ ∈ (0, 1)
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Neighborhood VAR - Asymptotic properties

The asymptotic properties of Neighborhood VAR are the same as those for Banded VAR, in that:

1. The correct distance is selected as T →∞.
2. The norm of the error in coefficients matrix goes down with increasing T .
3. The autocovariance matrix formed using a Neighborhood VAR and the same approximation as in

the Banded VAR paper Guo et al. (2016) will converge to the true autocovariance matrix.
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Neighborhood VAR - Simulation Results

The data is generated from a model with 1-D spatial decay:
yi(t) = β0yi(t− 1) +

∑
j∈Nd0 ,j 6=i(β0 exp(−0.5d(i, j)) + εj(t))yj(t− 1) + et

The distance is computed as d(i, j) = |i− j|, where the ith timeseries is assumed to be located at point
i on the 1-D lattice. This is similar to the banded VAR assumption but we make a realistic assumption
of decaying contribution of any timeseries as a function of their distance from the focal timeseries.

The bandwidth for the model is fixed at k0 so that there is no correlation between timeseries at a
distance more than k0 apart.

Both banded VAR and neighborhood VAR were used to estimate the coefficient matrices and the
bandwidth.
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Neighborhood VAR - Simulation Results

p, k0 Estimated bandwidth BVAR ˆkBV AR Estimated bandwidth NVAR ˆkNVAR
0 1 2 3 0 1 2 3 4 5 6

p = 100, k0 = 1 14 478 8 0 0 230 244 25 1 0 0
p = 100, k0 = 2 74 134 292 0 0 29 318 131 19 2 1
p = 100, k0 = 3 125 155 143 77 0 29 113 308 45 5 0
p = 100, k0 = 4 149 230 99 22 1 70 99 131 186 12 1
p = 100, k0 = 5 196 227 73 4 4 87 120 147 95 45 2
p = 100, k0 = 6 235 215 45 5 4 97 150 129 85 28 7

p, k0 Mean error norm SD error norm Mean error norm SD error norm
(BVAR) (BVAR) (NVAR) (NVAR)

p = 100, k0 = 1 0.28 0.03 0.32 0.05
p = 100, k0 = 2 0.34 0.03 0.36 0.05
p = 100, k0 = 3 0.39 0.05 0.39 0.04
p = 100, k0 = 4 0.43 0.08 0.41 0.05
p = 100, k0 = 5 0.46 0.09 0.42 0.06
p = 100, k0 = 6 0.49 0.11 0.42 0.06
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Neighborhood VAR - Applications
Liver imaging data - 145 time instants of Thermal Imaging of the liver. The last several time instants of
this image series is stationary so can be modeled using VAR models. We look at each pixel series as a
timeseries, with clear dependences across multiple timeseries.

Reference: Lan, Q., Sun, H., Robertson, J.L., Deng, X., & Jin, R. (2017). Non-invasive Assessment of
Liver Quality in Transplantation based on Thermal Imagining Analysis. Manuscript submitted for
publication, Grado Department of Industrial & Systems Engineering, Virginia Tech, Virginia.
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Neighborhood VAR - Applications

We apply the Neighborhood VAR algorithm to the low-resolution (p = 7, 304 timeseries!) liver imaging
data. We estimate the mean square prediction error of the algorithm on a rolling basis.
1. We fix i : i+ 100 time instants as training data for i ranging from 1:44 so that we have 100

training observations always.
2. We estimate the coefficient matrix based on the training data.
3. We compute the mean square prediction error for the out-of-sample holdout data.

Based on our implementation, we find that the mean square prediction error is in the range of 0.09-0.16.
For reference, the actual data is in the range of 5-25. So we get really small prediction errors.

The estimated neighborhood distance is in the range of 0-2 (for different values of i).
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Neighborhood VAR - Applications
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Figure 1: Two illustrative heatmaps showing a visualization of the coefficient matrices for the
VAR(1) model of the liver imaging data with only 100 timeseries. The first coefficient matrix
suggests a distance of 3, while the second suggests a neighborhood distance of 5 is required.
Clearly the Banded VAR cannot capture these patterns.
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Future Directions

1. Extend to more general cases - the networks example - where “distance” is not obviously given -
latent space approaches.

2. Estimating the distance matrix D when it is not given, from the data itself needs to be done
efficiently, and this will need to be worked into the problem.

3. The formulation lends itself to a Bayesian approach in estimation. We will consider this in future
implementations.
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II. Modeling health outcomes using a hierarchical model
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Problem Statement

I Hypothesis: Exposure to heat during pregnancy leads to adverse birth outcomes
I Definitions:

I Heat exposure: A function of the heat/temperature ‘felt’ by individual – physical data
on temperature, but actual ‘exposure’ moderated by occupation, socio-economic
status, infrastructure etc – spatio-temporal modeling for both heat and for exposure

I Adverse birth outcomes: Pre-term births, low birth weight etc. indicative of adverse
birth outcomes – modeling can be at individual level, or at an aggregated level –
dichotomous, continuous or count data
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Prior Work on heat exposure

I Non-accidental mortality increases during heat waves in cities (Anderson and Bell
2011; Peng et al. 2011).

I Previously identified important covariates include SES, age, chronic disease status,
minority status, and geography (greater risk in northern ‘less hot’ cities).

I Basu et al. (2011) reported a positive association between preterm birth and heat
waves in California.

I Others have detected positive associations outside of the U.S. (Strand et al. (2012)
in Brisbane, Australia, Schifano et al. (2013) in Rome, Italy
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Prior Work on exposure effects modeling
Table 1
Characteristics of the included studies on ambient temperature and preterm birth/gestational age.

Study Location Study design Sample Exposure
measurement

Covariates adjusted
for

Statistical method and result Study
qualityscore
(0e12)Statistical method Statistic Estimate

Europe
Lee et al.

(2008)
London, UK Ecological * 482,568 singleton

live births, 1988
e2000

Daily max and min
temperature at the
time of birth

Long-term trend,
seasonality, day of
the week, public
holiday

Time-series logistic
regression

Risk change per 1 !C
increase

Max temperature:
OR ¼ 1.00 (95%CI:
0.99e1.00, p > 0.05)
Min temperature:
OR ¼ 1.00 (95%CI:
1.00e1.00, p > 0.05)

9

Flouris
et al. (2009)

Greece Ecological 516,874 live births,
1999e2003

Mean temperature
during the birth
month

No Correlation analysis Correlation
coefficient between
temperature and
gestational age

Both sex: r ¼ # 0.210
(p < 0.001)
Males: r ¼ # 0.208
(p < 0.001)
Females: r ¼ # 0.211
(p < 0.001)

8

Dadvand
et al. (2011)

Barcelona,
Spain

Retrospective
cohort

7585 singleton births
spontaneous labour,
2002e2005

Heatehumidity index Maternal
demographic and
clinical
characteristics, and
infant sex

Linear regression
model

Gestational age
change after high
heat index exposure
on the day before
delivery

5.3-day reduction
(95% CI: # 10.1 to
# 0.05, p ¼ 0.03)

12

Wolf and
Armstrong
(2012)

Two German
States

Ecological * All reported hospital
singleton births from
Brandenburg (2002
e2010) and Saxony
(2005e2009)

Daily mean
temperature

Long-term trend,
seasonality, day of
the week

Logistic time-series
regression combined
with constrained
distributed lag model

Temperature effect
(ORs) as a linear and a
categorical variable

No clear evidence for
an association
between temperature
and PTB was found
(p > 0.05)

9

Schifano et al.
(2013)

Rome, Italy Ecological * All singleton live
births by natural
delivery, 2001e2010

Maximum apparent
temperature (MAT)
and heat waves in the
month preceding
delivery

Long-term trend,
seasonality, days of
holiday, and air
pollution

Poisson generalized
additive model
combined with
distributed lag model

Percent change
during heat waves
and per 1 !C increase
in MAT

During heat
waves: þ 19% increase
(95% CI: 7.91e31.69)
Per 1 !C increase in
MAT: 1.9% (95%CI:
0.86e2.87)

10

Vicedo-Cabrera
et al. (2014)

Valencia,
Spain

Ecological * 20,148 singleton
natural births during
the warm season
(MayeSeptember),
2006e2010

MAT and daily
minimum
temperature

Long-term trend,
seasonality, day of
the week, public
holiday, and
relative humidity

Quasi-Poisson
generalized additive
models combined
with distributed lag
non-linear models

Percent change in risk
relative to median
temperature

20% increase when
MAT% the 90th
percentile two days
before delivery
5% increase when
minimum
temperature% 90th
percentile in the last
week

10

Vicedo-Cabrera
et al. (2015)

Stockholm,
Sweden

Ecological * All singleton
spontaneous births
collected from the
Swedish Medical
Birth Register, 1998
e2006 (gestational
age % 22weeks)

Daily mean
temperature during
the last month of
gestation

Long-term trend,
seasonality, day of
the week, public
holiday, and
relative humidity

Quasi-Poisson
generalized additive
models combined
with distributed lag
non-linear models

Cumulative risk ratio
relative to median
temperature

Mean
temperature ¼ 75th
percentile: RR ¼ 2.50
(95% CI: 1.02e6.15)

10

Arroyo et al.
(2016b)

Madrid, Spain Ecological * 298,705 live
singleton births, 2001
e2009

Daily maximum
temperature

Linear trends,
seasonality, and the
autoregressive
nature of the series,
day of the week

Autoregressive over-
dispersed Poisson
regression models

Relative risks(RRs) for
interquartile increase
in temperature

RR ¼ 1.055 (95%CI:
1.018e1.092)

10

Cox et al.
(2016)

Flanders,
Belgium

Ecological * 807,835 live-born
singleton births with
a gestational age

Daily minimum and
maximum air
temperature

Long-term trend,
seasonality, day of
the week, public

Quasi-Poisson
generalized additive
models combined

Percent increase in
risk relative to
median temperature

Extreme heat (99th
vs. 50th percentile):
15.6% (95% CI: 4.8

11

(continued on next page)
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Issues in prior work

Definitional issues:
I ‘Heat waves’ are taken to be indicators of exposure. In addition, a variety of heat

wave definitions exist.
I Infrastructure/systematic effects not accounted for.

Modeling issues:
I Exposure taken to be the same as temperature at a spatial location.
I Exposure at a particular point in pregnancy alone considered.

General issues:
I Typically, huge amounts of missing data.
I Small effect sizes – need some kind of modeled causal inference to avoid

over-fitting.
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Heat wave definitions
Smith et al. 2013 Climatic Change 118:811-825
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Heat wave definitions
Smith et al. 2013 Climatic Change 118:811-825

a. b. c.

d. e. f.

g. h. i.

j. k. l.

m. n. o.
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Temporal Variation
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Temporal Variation
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Data

I Address-level birth records were obtained through a Data Sharing Agreement with
Virginia Department of Health and was approved under VDH and VT IRB protocols.

I Addresses from a total of 2,203,198 (86.7%) of the 2, 542, 519 original birth records
were successfully geocoded (highest geocoding rates in later years).

I Singleton births, ≥ 22 weeks gestation are included in the analysis.
I Responses: Preterm Birth (< 37 weeks clinical estimate of gestational age)

(N=239,311) Low birth weight (<2500 g, but greater than 200 g) (N=200,398)
Term low birth weight (<2500 g, but ≥ 37 weeks gestation)

I Individual-level covariates: Payment method, maternal education, maternal age,
birth order, marital status, race, ethnicity
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Data

I Heat data obtained from Phase 2 of the North America Land Data Assimilation
System (NLDAS-2) on 13.75 kilometre grid (hourly data).

I Supplementary heat data on a 1 kilometer grid with a Moderate Resolution Imaging
Spectroradiometer (MODIS) (once in 8 days data).

I Rural-Urban Commuting Area Codes (RUCA), version 2.0 provides a measure of
rurality with 3 categories – “urban focused”, “large rural city/town (micropolitan)
focused”, and “small rural and isolated town focused”.

I CDC’s Social Vulnerability Index uses 15 U.S. census variables at tract level to help
local officials identify communities that may need support in preparing for hazards;
or recovering from disaster.
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Data Structure

Variable Type Range Level Notes
County String County 95 Counties, but there used to be more

DOB Year Int [1990, 2015] Individual
DOB Season String Individual
DOB Day String Individual

DOB Holiday Logical Individual Indicator of whether DOB was a major holiday
Gestation Int [22, 55] Individual Estimated gestation length, thrown out if < 22
Plurality Int [1, ] Individual Thrown out if > 1

Birth Order Int [1, ] Individual
Weight Int [200, 8500] Individual

Mother Age String Individual Aggregated into <18, 18-35, >35
Mother Race String Individual Black or Other

Mother Ethnicity String Individual Hispanic or Other
Mother Education String Individual
Marital Status Logical Individual

SVI String Census Tract Aggregated into Categories
RUCA String Census Tract Aggregated into Percentile groups, 0-25, ..., 75-100
PTB Logical Individual Gestation < 37 weeks
LBW Logical Individual Weight < 2500g
tLBW Logical Individual Weight < 2500g, Gestation > 36 weeks
HIXX Logical Individual Calculated from closest Lat/Long to address
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Modeling solution

A general spatio-temporal modeling solution to address the multiple issues can be
formulated in a hierarchical manner. A rough caricature is:

g(yi|x, s, z) ∼ N(., .) — Observation/Data model
x|f ∼ N(., .); f ∼ GP () — Spatial Process model
st|st−1 ∼ N(., .) — Temporal model

Into this framework, we can introduce missingness mechanisms, causal inference etc.

But, first we work on separate aspects of this problem by breaking things down into their
elements
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Spatial Effect – Systematic/Infrastructural effects
Apart from the spatial correlation in the temperature variable, there are systematic
effects fue to policy or infrastructure.

We model this using a hierarchical model (equivalently, a varying slopes model with
interactions) that captures systematic variations.

Here, the heat exposure effect on pre-term birth is modeled as a random effect, with the
regression coefficients themselves predicted by county-level aggregate variables for
“Social Vulnerability Index (SVI)”, which captures socio-economic characteristics, and
“Rural-Urban Commuting Area Codes (RUCA)”, which captures the rural/urban divide in
infrastructure.

I y = µ+ hβc +Cγ + ε
I βc = γ0 + γ1cSVI + γ2cRUCA + 
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Modeling

M1: y = µ+ hβ+Cγ + ε
I fixed effects for heat exposure and covariates

M2: y = µ+ hβ+ hcSV Iδ1 + hcRUCAδ2 +Cγ + ε
I additional fixed effects for interaction between heat exposure & RUCA and heat

exposure & SVI
M3: y = µ+ hβr + hcSV Iδ1r + hcRUCAδ2r +Cγ + ε

I The hierarchical model equivalent for M3 is:
I y = µ+ hβc +Cγ + ε
I βc = γ0 + γ1cSVI + γ2cRUCA + η
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Heat Exposure Index Descriptive Tables
Using the full data:

HI Definition Reference Births.During.HI..n..... PTB..n..... LBW..n..... tLBW..n.....
HI01 Mean daily temp > 95th percentile for > 1 consecutive days Anderson and Bell 2011 193,207 (4.34%) 15,430 (4.38%) 12,435 (4.55%) 4,298 (4.50%)
HI02 Mean daily temp > 90th percentile for > 1 consecutive days Anderson and Bell 2011 289,025 (6.49%) 22,901 (6.50%) 18,264 (6.69%) 6,299 (6.60%)
HI03 Mean daily temp > 98th percentile for > 1 consecutive days Anderson and Bell 2011 120,816 (2.71%) 9,672 (2.74%) 7,805 (2.86%) 2,662 (2.79%)
HI04 Mean daily temp > 99th percentile for > 1 consecutive days Anderson and Bell 2011 86,173 (1.93%) 6,898 (1.96%) 5,605 (2.05%) 1,901 (1.99%)

Limit to 95th percentile mean daily temperature > 26:

HI Definition Reference Births.During.HI..n..... PTB..n..... LBW..n..... tLBW..n.....
HI01 Mean daily temp > 95th percentile for > 1 consecutive days Anderson and Bell 2011 102,371 (2.86%) 8,271 (2.91%) 6,794 (3.08%) 2,415 (3.13%)
HI02 Mean daily temp > 90th percentile for > 1 consecutive days Anderson and Bell 2011 171,453 (4.80%) 13,768 (4.84%) 11,081 (5.02%) 3,874 (5.02%)
HI03 Mean daily temp > 98th percentile for > 1 consecutive days Anderson and Bell 2011 54,205 (1.52%) 4,427 (1.56%) 3,677 (1.67%) 1,280 (1.66%)
HI04 Mean daily temp > 99th percentile for > 1 consecutive days Anderson and Bell 2011 33,899 (0.948%) 2,730 (0.959%) 2,313 (1.05%) 814 (1.05%)

Limit to 95th percentile mean daily temperature > 28:

HI Definition Reference Births.During.HI..n..... PTB..n..... LBW..n..... tLBW..n.....
HI01 Mean daily temp > 95th percentile for > 1 consecutive days Anderson and Bell 2011 4,172 (1.21%) 379 (1.35%) 342 (1.55%) 132 (1.68%)
HI02 Mean daily temp > 90th percentile for > 1 consecutive days Anderson and Bell 2011 8,562 (2.49%) 740 (2.63%) 630 (2.86%) 234 (2.98%)
HI03 Mean daily temp > 98th percentile for > 1 consecutive days Anderson and Bell 2011 1,606 (0.467%) 143 (0.509%) 141 (0.639%) 53 (0.675%)
HI04 Mean daily temp > 99th percentile for > 1 consecutive days Anderson and Bell 2011 798 (0.232%) 73 (0.26%) 67 (0.304%) 28 (0.357%)
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Model Coefficient Graphs
Using the full data:
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Model Coefficients (M1.1)
Here, we fit models for each county with 1000 or more observations. This shows the range of HI odds ratios for
different response and predictor combinations.
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III. Spatio-temporal topic flow modeling of twitter data
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Topic Flow Modeling to detect polarization

• Objective:
Forecast threats due to polarization in society induced by diffusion of information on online 
social media

• Impact:
“Information warfare” has a become a real and tangible threat and can be combated only by 
understanding information diffusion patterns and their outcomes
• Methods:
We postulate a novel Spatio-temporal LDA model for online social media data, create a 
polarization measure and build an accompanying threat barometer that can help 
monitor/forecast spatio-temporal units that are most under threat due to polarization
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Latent Dirichlet Allocation (LDA)

D

MN K!"#$,& '($,&)$*

M – number of documents 
N – number of words
K – number of topics 
#$,& - nth word in mth document
($,& - nth topic in mth document
!" - distribution of words in topic k
)$ - distribution of topics in document m
*, ' – parameters for word,topic distributions

Hierarchical model:
!" ∼ ,-. ' , )$ ∼ ,-. * , ($,& ∼ /012 )$ ,#$,& ∼ /012 !($,&

1. For each topic, choose the distribution of words in the dictionary (!")
2. For each document, choose the distribution of topics ()$)
3. For each word in the document:

a. first choose a topic the word comes from (($,&)
b. then, choose a word from the topic (#$,&)

Latent Dirichlet Allocation (LDA)

Blei, Ng, Jordan (2003), Pritchard, Stephens, Donnelly (2000)

46 / 50



Many LDAs

1. Dynamic LDA (Blei and Lafferty, 2006)
2. Correlated Topic Model (Blei and Lafferty, 2006, 2007)
3. Hierarchical LDA (Blei et al. 2004, Li and Perona, 2005)
4. Weighted LDA (Tang et al, 2005)
5. Spatial LDA (Wang and Grimson, 2007)
6. Twitter opinion Topic model (Lim and Buntine, 2014)
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Spatio-Temporal LDA (ST-LDA)

t – time index
L – spatial locations
For time and location -, /:
12,/,3,4 - nth word in mth document
52,/,3,4 - nth topic in mth document
62,/,3 - distribution of topics in document m
72,/ – topic distribution parameter

ST-LDA: Spatio-Temporal LDA
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ST-LDA

Modeling Topic Flows (Conceptual)

Ω" = $(&)Ω"() + +,; For time . = 1,… , 2.							VAR	process	for	time	correlation

$(&)(E),EF) = GFH
IJKLM"

N(E),EF) + GO; Spatial locations Q1, Q2 .

The specific topic proportions for each document in a spatio-temporal unit are: 
G",E,S ∼ U(V",E, WX

FY)
Random effects model to model document variability

Temporal Diffusion

Spatial process: &={G), GF, GO} are scale, length-scale and nugget parameters

Z",..|\",.., ]^_,.. ∼ Multinomial(]^_,..)

]^_,b,c,d
∼ Dirichlet(g)

\",E,S,h|G",E,S ∼ Multinomial(G",E,S)

Word Frequencies for document m at time t

Topic evolution at time t

Latent Dirichlet Allocation Topic Flow Model for evolving spatial-temporal topics.

Note: Indexing has been abbreviated or suppressed for brevity.

To
pi

c 
Fl

ow

Scenario 1: Low polarization/Bonding

Scenario 2: Medium polarization

Scenario 3: High polarization

49 / 50



Implementation

1. Implemented a pipeline for tweetbase – 11 million tweets over 2 weeks spread
across the US. (this is highly selective already!)

2. Creating elasticsearch database
3. Implementing NLP – stemming, sentiment analysis etc.
4. Implemented a variational EM algorithm on subset of tweets
5. Some natural topics spring out but lots of junk too – related to non-convexity –

need to add robustness
6. Inference too slow – need for speed
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