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Background and motivation

I Metastability in dynamical systems perturbed by small-noise.

I Consider the SDE

dX ε
t = −U ′(X ε

t )dt + εdBt
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I Metastability: different behaviour at different time scales.
I Interested in quantifying probabilities of rare dynamical

transitions.



Background and motivation

I Metastability in dynamical systems perturbed by small-noise.
I Consider the SDE

dX ε
t = −U ′(X ε

t )dt + εdBt

R

U

0a b

I Metastability: different behaviour at different time scales.
I Interested in quantifying probabilities of rare dynamical

transitions.



Background and motivation

I Metastability in dynamical systems perturbed by small-noise.
I Consider the SDE

dX ε
t = −U ′(X ε

t )dt + εdBt

R

U

0a b

I Metastability: different behaviour at different time scales.
I Interested in quantifying probabilities of rare dynamical

transitions.



Background and motivation

I Metastability in dynamical systems perturbed by small-noise.
I Consider the SDE

dX ε
t = −U ′(X ε

t )dt + εdBt

R

U

0a b

I Metastability: different behaviour at different time scales.
I Interested in quantifying probabilities of rare dynamical

transitions.



Background and motivation

I Metastability in dynamical systems perturbed by small-noise.
I Consider the SDE

dX ε
t = −U ′(X ε

t )dt + εdBt

R

U

0a b

I Metastability: different behaviour at different time scales.
I Interested in quantifying probabilities of rare dynamical

transitions.



A wireless local area network

I N nodes accessing a common wireless medium.

I Interaction among nodes via the distributed MAC protocol.

I Channel state: idle, collision, successful transmission

I State of a node represents aggressiveness of packet
transmission.
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I Evolution of the state of a node:
I Becomes less aggressive after a collision.
I Moves to the most aggressive state after a successful packet

transmission.
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A sample path of the macroscopic behaviour

Figure: Evolution of states in a WiFi network under the MAC protocol

I Metastability phenomenon: Multiple stable regions in the
system. Transition between two stable regions occur over
large time durations.



System model

I N particles and an environment.

I At time t,
I The state of the nth particle is XN

n (t) ∈ X ;
I The state of the environment is YN(t) ∈ Y.

I Certain allowed transitions.
I Particles: a directed graph (X , EX );
I Environment: a directed graph (Y, EY).

I Empirical measure of the system of particles at time t:

µN(t) :=
1

N

N∑
n=1

δXN
n (t) ∈ MN

1 (X ) ⊂ M1(X ).

I We are given functions λx ,x ′(·, y), (x , x ′) ∈ EX , y ∈ Y and
γy ,y ′(·), (y , y ′) ∈ EY on M1(X ).

I Markovian evolution at time t:
I Particles: x → x ′ at rate λx,x′(µN(t),YN(t));
I Environment: y → y ′ at rate Nγy ,y ′(µN(t)).
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System model

I (µN ,YN) is a Markov process with infinitesimal generator

f 7→
∑

(x ,x ′)∈EX

Nξ(x)λx ,x ′(ξ, y)

[
f

(
ξ +

δx ′

N
− δx

N
, y

)
− f (ξ, y)

]
+N

∑
y ′:(y ,y ′)∈EY

(f (ξ, y ′)− f (ξ, y))γy ,y ′(ξ),

(ξ, y) ∈ MN
1 (X )× Y.

I A “fully coupled” two time scale process.
I Assumptions:

I The graphs (X , EX ) and (Y, EY) are irreducible.
I The functions λx,x′(·, y) are Lipschitz continuous and

infξ λx,x′(ξ, y) > 0 for all (x , x ′) ∈ EX and y ∈ Y.
I The functions γy ,y ′(·) are continuous and infξ γy ,y ′(ξ) > 0 for

all (y , y ′) ∈ EY .
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The occupation measure process

I Fix a time duration T > 0.

I View µN as a random element of D([0,T ],M1(X )).

I Consider the occupation measure of the fast environment:

θN(t)(·) :=

∫ t

0
1{YN(s)∈·}ds, 0 ≤ t ≤ T .

I θN is a random element of D↑([0,T ],M(Y)), the set of θ such
that θt − θs ∈ M(Y) and θt(Y) = t for 0 ≤ s ≤ t ≤ T .

I θ ∈ D↑([0,T ],M(Y)) is also viewed as a measure on
[0,T ]× Y and obeys the disintegration θ(dydt) = mt(dy)dt
where mt ∈ M1(Y).

I We consider the process (µN , θN) with sample paths in
D([0,T ],M1(X ))× D↑([0,T ],M(Y)).
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The averaging principle

I Suppose we freeze µN(t) to be ξ.

Then for large N,
I The YN process would quickly equilibrate to πξ, the unique

invariant probability measure of

Lξg(y) :=
∑

y ′:(y ,y ′)∈EY

(g(y ′)− g(y))γy ,y ′(ξ), y ∈ Y.

I For a particle, an (x , x ′) transition occurs at rate∑
y∈Y λx,x′(ξ, y)πξ(y) =: λ̄x,x′(ξ, πξ).

Theorem (Bordenave et al. 2009)

Suppose that µN(0)→ ν in M1(X ). Then µN converges in
probability, in D([0,T ],M1(X )), to the solution to the ODE

µ̇t = Λ̄∗µt ,πµtµt , 0 ≤ t ≤ T , µ0 = ν.

where Λ̄µt ,πµt (x , x ′) = λ̄x ,x ′(µt , πµt ).
I µN is a small random perturbation of the above ODE. We

study fluctuations of (µN , θN).
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Large deviations

I S : a metric space. {XN}N≥1 is a sequence of S-valued
random variables.

I Roughly, P(XN ∈ A) ∼ exp{−NIA} where IA = infx∈A I (x).

I {XN}N≥1 is said to satisfy the large deviation principle (LDP)
with rate function I : S → [0,+∞] if
I for each M > 0, {x ∈ S : I (x) ≤ M} is a compact subset of S ;
I for each open set G ⊂ S ,

lim inf
N→∞

1

N
logP(XN ∈ G ) ≥ − inf

x∈G
I (x);

I for each closed set F ⊂ S ,

lim sup
N→∞

1

N
logP(XN ∈ F ) ≤ − inf

x∈F
I (x).
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Large deviations: contraction principle

I S ,T are metric spaces. f : S → T is continuous.

I {XN}s are S-valued random variables. Define YN = f (XN).

Theorem (Contraction Principle)

If {XN} satisfies the LDP with rate function I , then {YN} satisfies
the LDP with rate function

J(y) = inf
x∈S :y=f (x)

I (x).

I Compactness of level sets:
{y ∈ T : J(y) ≤ M} = f ({x ∈ S : I (x) ≤ M}).

I Upper and lower bounds:
P(YN ∈ A) = P(XN ∈ f −1(A)).



Large deviations: contraction principle

I S ,T are metric spaces. f : S → T is continuous.

I {XN}s are S-valued random variables. Define YN = f (XN).

Theorem (Contraction Principle)

If {XN} satisfies the LDP with rate function I , then {YN} satisfies
the LDP with rate function

J(y) = inf
x∈S :y=f (x)

I (x).

I Compactness of level sets:
{y ∈ T : J(y) ≤ M} = f ({x ∈ S : I (x) ≤ M}).

I Upper and lower bounds:
P(YN ∈ A) = P(XN ∈ f −1(A)).



Main result

Theorem
Suppose that {µN(0)}N≥1 satisfies the LDP on M1(X ) with rate
function I0. Then the sequence {(µN(t), θN(t)), 0 ≤ t ≤ T}N≥1

satisfies the LDP on D([0,T ],M1(X ))× D↑([0,T ],M(Y)) with
rate function

I (µ, θ) := I0(µ(0)) + J(µ, θ).

Typical (µN , θN)

A deviation.
Prob ≈ e−NI (µ,θ).
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The rate function J

J(µ, θ) :=

∫
[0,T ]

{
sup

α∈R|X|

(〈
α, (µ̇t − Λ̄∗µt ,mt

µt)
〉

−
∑

(x ,x ′)∈EX

τ(α(x ′)− α(x))λ̄x ,x ′(µt ,mt)µt(x)

)

+ sup
g∈R|Y|

∑
y∈Y

(
−Lµtg(y)

−
∑

y ′:(y ,y ′)∈EY

τ(g(y ′)− g(y))γy ,y ′(µt)

)
mt(y)

 dt

whenever the mapping [0,T ] 3 t 7→ µt ∈ M1(X ) is absolutely
continuous, where θ(dtdy) = mt(dy)dt, and J(µ, θ) = +∞
otherwise.

I τ(u) = eu − u − 1, u ∈ R.



Some remarks about the rate function

I J(µ, θ) ≥ 0 with equality iff (µ, θ) satisfies the mean-field
limit.

I Two parts. The mean-field part (slow component) and
occupation measure part (fast component).
I For the slow component, the average of the fast variable

appears.
I For the fast component, the slow variable is frozen.

I For occupation measure of Markov processes, the canonical

form of the rate function is
∫

[0,T ] suph>0

∑
Y −

Lµt h(y)
h(y) mt(y)dt

(Donsker and Varadhan, 1973). This can be obtained by
taking h = eg .



Large deviations of µN

Corollary

{µN} satisfies the LDP on D([0,T ],M1(X )) with rate function

µ 7→ I0(µ0) + inf
θ
J(µ, θ).

I Follows from contraction principle since the mapping
(µ, θ) 7→ µ is continuous.

I Can quantify metastable transitions, mean exit time from a
domain etc.

M1(X )
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Outline of the proof

I Usual techniques:
I Discretisation and change of measure: Freidlin and Wentzell

(1984), Liptser (1996), Veretennikov (1999), Dawson and
Gärtner (1987), Léonard (1995).

I Weak convergence: Budhiraja et al. (2018).
I Semigroup: Kumar and Popovic (2017), Kraaij and Schlottke

(2020).
I We use the method of stochastic exponentials (Pulahskii

2016, 1994).
I Show exponential tightness. This gives a subsequential LDP.
I Get a condition for any subsequential rate function (in terms

of an exponential martingale).
I Identify the subsequential rate function on “nice” elements of

the space.
I Extend to the whole space using suitable approximations.
I Unique identification any subsequential rate function

(regardless of the subsequence) implies the LDP.

I Also used in the context of invariant measure LDP, Borkar
and Sundaresan (2012).
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I Weak convergence: Budhiraja et al. (2018).
I Semigroup: Kumar and Popovic (2017), Kraaij and Schlottke

(2020).
I We use the method of stochastic exponentials (Pulahskii

2016, 1994).
I Show exponential tightness. This gives a subsequential LDP.
I Get a condition for any subsequential rate function (in terms

of an exponential martingale).
I Identify the subsequential rate function on “nice” elements of

the space.

I Extend to the whole space using suitable approximations.
I Unique identification any subsequential rate function

(regardless of the subsequence) implies the LDP.

I Also used in the context of invariant measure LDP, Borkar
and Sundaresan (2012).



Outline of the proof

I Usual techniques:
I Discretisation and change of measure: Freidlin and Wentzell

(1984), Liptser (1996), Veretennikov (1999), Dawson and
Gärtner (1987), Léonard (1995).

I Weak convergence: Budhiraja et al. (2018).
I Semigroup: Kumar and Popovic (2017), Kraaij and Schlottke

(2020).
I We use the method of stochastic exponentials (Pulahskii

2016, 1994).
I Show exponential tightness. This gives a subsequential LDP.
I Get a condition for any subsequential rate function (in terms

of an exponential martingale).
I Identify the subsequential rate function on “nice” elements of

the space.
I Extend to the whole space using suitable approximations.

I Unique identification any subsequential rate function
(regardless of the subsequence) implies the LDP.

I Also used in the context of invariant measure LDP, Borkar
and Sundaresan (2012).



Outline of the proof

I Usual techniques:
I Discretisation and change of measure: Freidlin and Wentzell

(1984), Liptser (1996), Veretennikov (1999), Dawson and
Gärtner (1987), Léonard (1995).
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Exponential tightness

Theorem
The sequence {(µN(t), θN(t)), t ∈ [0,T ]}N≥1 is exponentially
tight in D([0,T ],M1(X ))× D↑([0,T ],M(Y)), i.e., given any
M > 0, there exists a compact set KM such that

lim sup
N→∞

1

N
logP ({(µN(t), θN(t)), 0 ≤ t ≤ T} /∈ KM) ≤ −M.

For β > 0 and α ∈ R|X |, with XN,t = 〈α, µN(t)〉,

exp

{
N

(
βXN,t − βXN,0 − β

∫ t

0
ΦYN,s

f (µN,s)ds

−
∫ t

0

∑
(x ,x ′

τ(β(α(x ′)− α(x)))λx ,x ′(µN,s ,YN,s)µN,s(x)ds

)}
, t ≥ 0,

is an exponential martingale. Use Doob’s inequality and a condition
for exponential tightness in D([0,T ],R) (Puhalskii, 1994).
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An equation for the subsequential rate function

I Let {(µNk
, θNk

)}k≥1 be a subsequence that satisfies the LDP
with rate function Ĩ .

I Let α : [0,T ]×M1(X )→ R|X | and
g : [0,T ]×M1(X )× Y → R be bounded measurable, and
continuous on M1(X ).

I Define Uα,g
t (µ, θ) by∫

[0,t]

{
〈αs(µs), µ̇s − Λ̄∗µs ,ms

µs〉

−
∑

(x ,x ′)

τ(αs(µs)(x ′)− αs(µs)(x))λ̄x ,x ′(µs ,ms)µs(x)

+
∑
y

(
− Lµsgs(µs , ·)(y)

−
∑

y :(y ,y ′)∈EY

τ(gs(µs , y
′)− gs(µs , y))γy ,y ′(µs)

)
ms(y)

}
ds.
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An equation for the subsequential rate function

I We can show that, for each α and g ,

sup
(µ,θ)∈Γ

(Uα,g
T (µ, θ)− Ĩ (µ, θ)) = 0, (1)

where Γ is the set of (µ, θ) such that t 7→ µt absolutely
continuous.

I On one hand, for a smaller class of α and g ,

E exp{NUα,g
T (µN , θN) + V g

T (µN ,YN)} = 1,

where V g
T is O(1) a.s.

I On the other hand, Varadhan’s lemma tells us that

lim
k→∞

1

Nk
log E exp{NkU

α,g
T (µNk

, θNk
) + V g

T (µNk
,YNk

)}

= sup
(µ,θ)

(Uα,g
T (µ, θ)− Ĩ (µ, θ))

This can be extended to (1).
I Moreover, the supremum in (1) is attained.
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A candidate rate function

I Recall that sup(µ,θ)∈Γ(Uα,g
T (µ, θ)− Ĩ (µ, θ)) = 0.

I A natural candidate for the rate function

I ∗(µ, θ) = sup
α,g

Uα,g
T (µ, θ).

I It can be shown that I ∗ = J.

I Note that Ĩ ≥ I ∗ on Γ. Outside Γ, I ∗ can be shown to be +∞.

I Goal: show that Ĩ ≤ I ∗ whenever I ∗ < +∞. Once this is
established, the LDP follows.
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T (µ, θ)− Ĩ (µ, θ)) = 0.

I A natural candidate for the rate function

I ∗(µ, θ) = sup
α,g

Uα,g
T (µ, θ).

I It can be shown that I ∗ = J.
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I Goal: show that Ĩ ≤ I ∗ whenever I ∗ < +∞. Once this is
established, the LDP follows.



A candidate rate function

I Recall that sup(µ,θ)∈Γ(Uα,g
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Identification of Ĩ on “nice” elements

I Suppose (µ̂, θ̂) is such that I ∗(µ̂, θ̂) < +∞, and
I inft∈[0,T ] minx∈X µ̂t(x) > 0,
I the mapping [0,T ] 3 t 7→ µ̂t ∈ M1(X ) is Lipschitz continuous,
I inft∈[0,T ] miny∈Y m̂t(y) > 0 where θ̂(dydt) = m̂t(dy)dt.

I Then, there exists (α̂, ĝ) that attains supα,g U
α,g
T (µ̂, θ̂).

I With this (α̂, ĝ), get (µ̃, θ̃) that attains the supremum in

sup(µ,θ)∈Γ(U α̂,ĝ
T (µ, θ)− Ĩ (µ, θ)) = 0.

I Hence, I ∗(µ̃, θ̃) ≥ U α̂,ĝ
T (µ̃, θ̃) = Ĩ (µ̃, θ̃).

I Since I ∗ ≤ Ĩ , we get I ∗(µ̃, θ̃) = Ĩ (µ̃, θ̃).

I Show that (µ̃, θ̃) = (µ̂, θ̂).

I It follows that Ĩ (µ̂, θ̂) = I ∗(µ̂, θ̂).
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I Since I ∗ ≤ Ĩ , we get I ∗(µ̃, θ̃) = Ĩ (µ̃, θ̃).

I Show that (µ̃, θ̃) = (µ̂, θ̂).
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I inft∈[0,T ] minx∈X µ̂t(x) > 0,
I the mapping [0,T ] 3 t 7→ µ̂t ∈ M1(X ) is Lipschitz continuous,
I inft∈[0,T ] miny∈Y m̂t(y) > 0 where θ̂(dydt) = m̂t(dy)dt.

I Then, there exists (α̂, ĝ) that attains supα,g U
α,g
T (µ̂, θ̂).

I With this (α̂, ĝ), get (µ̃, θ̃) that attains the supremum in

sup(µ,θ)∈Γ(U α̂,ĝ
T (µ, θ)− Ĩ (µ, θ)) = 0.

I Hence, I ∗(µ̃, θ̃) ≥ U α̂,ĝ
T (µ̃, θ̃) = Ĩ (µ̃, θ̃).

I Since I ∗ ≤ Ĩ , we get I ∗(µ̃, θ̃) = Ĩ (µ̃, θ̃).

I Show that (µ̃, θ̃) = (µ̂, θ̂).

I It follows that Ĩ (µ̂, θ̂) = I ∗(µ̂, θ̂).



Approximation procedure

I For general elements (µ̂, θ̂), (α̂, ĝ) may not exist.

I Produce (µ̂i , θ̂i ) that are “nice”, and satisfy
I (µ̂i , θ̂i )→ (µ̂, θ̂) as i →∞,
I Ĩ = I ∗ on (µ̂i , θ̂i ) for all i ,
I I ∗(µ̂i , θ̂i )→ I ∗(µ̂, θ̂) as i →∞.

I It then follows that Ĩ = I ∗ on (µ̂, θ̂).
I Relaxation of inft∈[0,T ] minx∈X µ̂t(x) > 0:

0

1

τ̂ i
1
iτ i T

µ̂(x)

µ̂i (x)

I Other conditions are relaxed using suitable approximations.
We finally get Ĩ = I ∗ for all elements.
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We finally get Ĩ = I ∗ for all elements.



Approximation procedure

I For general elements (µ̂, θ̂), (α̂, ĝ) may not exist.
I Produce (µ̂i , θ̂i ) that are “nice”, and satisfy

I (µ̂i , θ̂i )→ (µ̂, θ̂) as i →∞,
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Summary and future directions

I We show the LDP for (µN , θN).

I Future directions
I Countable state space for the particles and the environment
I Diminishing rates
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