Large deviations of mean-field interacting particle
systems in a fast varying environment

Sarath Yasodharan

Joint work with Rajesh Sundaresan

ECE Department, Indian Institute of Science

Bangalore Probability Seminar
03 May 2021



Background and motivation

» Metastability in dynamical systems perturbed by small-noise.



Background and motivation

» Metastability in dynamical systems perturbed by small-noise.
» Consider the SDE

dX; = —U'(X{)dt + edB;

[ JY)
0O
[ Reyl

R

» Metastability: different behaviour at different time scales.

P Interested in quantifying probabilities of rare dynamical
transitions.



Background and motivation

» Metastability in dynamical systems perturbed by small-noise.
» Consider the SDE

dX; = —U'(X{)dt + edB;

[ JY)
0O
[ Reyl

R

» Metastability: different behaviour at different time scales.

P Interested in quantifying probabilities of rare dynamical
transitions.



Background and motivation

» Metastability in dynamical systems perturbed by small-noise.
» Consider the SDE

dX; = —U'(X{)dt + edB;

[ JY)
0O
[ Reyl

R

» Metastability: different behaviour at different time scales.

P Interested in quantifying probabilities of rare dynamical
transitions.



Background and motivation

» Metastability in dynamical systems perturbed by small-noise.
» Consider the SDE

dX; = —U'(X{)dt + edB;

[ JY)
0O
[ Reyl

R

» Metastability: different behaviour at different time scales.

P Interested in quantifying probabilities of rare dynamical
transitions.



A wireless local area network

» N nodes accessing a common wireless medium.

» Interaction among nodes via the distributed MAC protocol.



A wireless local area network

» N nodes accessing a common wireless medium.
» Interaction among nodes via the distributed MAC protocol.

» Channel state: idle, collision, successful transmission



A wireless local area network

N nodes accessing a common wireless medium.
Interaction among nodes via the distributed MAC protocol.

| 2
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» Channel state: idle, collision, successful transmission
>

State of a node represents aggressiveness of packet
transmission.

» Evolution of the state of a node:
» Becomes less aggressive after a collision.
» Moves to the most aggressive state after a successful packet
transmission.



A sample path of the macroscopic behaviour
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Figure: Evolution of states in a WiFi network under the MAC protocol

> Metastability phenomenon: Multiple stable regions in the

system. Transition between two stable regions occur over
large time durations.
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> We are given functions A\, (-, y), (x,x") € Ex, y € Y and
Yy (), (v:¥') € Ey on My(X).
» Markovian evolution at time t:
> Particles: x — x’ at rate A (pn(t), Yn(t));
» Environment: y — y’ at rate Ny, ,/(pn(t)).
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» (un, Yn) is a Markov process with infinitesimal generator

Fro 30 NEGlen) | (€4 5 G ) ~ 6]

(X7Xl)€gX

+N Z (f(fay/) - f(&ay))’Y}G}’/(g)?

y'i(y.y')eEy

(& y) € M'(X) x Y.
> A “fully coupled” two time scale process.
» Assumptions:
» The graphs (X,Ex) and (Y, Ey) are irreducible.
» The functions A . (-, y) are Lipschitz continuous and
infe Ac (&, y) >0 forall (x,x') €€x and y € V.
» The functions 7, ,/(-) are continuous and inf¢ 7, /(&) > 0 for
all (y,y') € &y.
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Fix a time duration T > 0.
View ppy as a random element of D([0, T], M1 (X)).

Consider the occupation measure of the fast environment:

t
9/\/(1‘)() Z:/O 1{yN(5)€,}dS, 0<t<T.

fn is a random element of D4([0, T], M())), the set of 6 such
that 0; — 0s € M(Y) and 0:()Y) =t for0<s<t < T.

8 € Dy([0, T], M(Y)) is also viewed as a measure on

[0, T] x YV and obeys the disintegration (dydt) = m:(dy)dt
where my € My(Y).

We consider the process (uy, 0y) with sample paths in
D([0, T], My (X)) x Di([0, T], M(Y)).
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The averaging principle

» Suppose we freeze pp(t) to be £&. Then for large N,
» The Yy process would quickly equilibrate to m¢, the unique
invariant probability measure of

Leg(y) = Y. (&)= &) wy(&).y €Y.

y'(yy')EEy
> For a particle, an (x,x’) transition occurs at rate
Zyey A (€, )T (y) =1 A (€, ).
Theorem (Bordenave et al. 2009)

Suppose that pn(0) — v in My(X). Then uy converges in
probability, in D([0, T], M1(X)), to the solution to the ODE

/lt = /\;:tﬂr,ut'ut’ 0<t< T7 Mo = V.

where /_\me(x,x’) = S\X’X/(ut, Tt ).
» L is a small random perturbation of the above ODE. We
study fluctuations of (up, On).
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> S: a metric space. {Xy}n>1 is a sequence of S-valued
random variables.
» Roughly, P(Xy € A) ~ exp{—NIla} where I4 = infyca l(x).

» {Xn}n>1 is said to satisfy the large deviation principle (LDP)
with rate function / : S — [0, 4+o00] if

» for each M >0, {x € S:/(x) < M} is a compact subset of S;
» for each open set G C S,

il >
I|m|mc nf log P(Xn € G) > ):22_ 1(x);

» for each closed set F C S,

lim supN log P(Xny € F) < — mf 1(x).

N— oo
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» S, T are metric spaces. f : S — T is continuous.
» {Xy}s are S-valued random variables. Define Yy = f(Xy).

Theorem (Contraction Principle)

If {Xn} satisfies the LDP with rate function I, then {Yn} satisfies
the LDP with rate function

= inf 1(x).
J(y) XESII}r/]:f(X) (X)

» Compactness of level sets:
{yeT:Jly)<M}=Ff({xeS:I(x)<M}).
» Upper and lower bounds:
P(Yy € A) = P(Xy € F1(A)).
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Theorem

Suppose that {{n(0)}n>1 satisfies the LDP on My(X') with rate
function ly. Then the sequence {(pn(t),On(t)),0 <t < T}y>1
satisfies the LDP on D([0, T], M1(X)) x D+([0, T], M(Y)) with
rate function

(1. 6) = o(4(0)) + J(11,).

Typical (un, On)

A deviation.
Prob ~ e~ N(10),




The rate function J

a€RIXI

J(M79) = /[0 - { sup <<aa (Mt - /_\Zt,mtut»

_ Z T(a(x") = (%)) Axxr (it mt)ﬂt(X)>

(x,x")e€Ex

+ sup Z(‘ng()’)

- > ey - g(y))vy,y/(ut)> mt(y)} dt

y'(y.y')ely
whenever the mapping [0, T] 5 t — p: € Mi(X) is absolutely

continuous, where (dtdy) = m¢(dy)dt, and J(u,0) = +oo
otherwise.

> 7(u)=e"—u—-1lueR



Some remarks about the rate function

> J(1,0) > 0 with equality iff (u, 0) satisfies the mean-field
limit.
» Two parts. The mean-field part (slow component) and
occupation measure part (fast component).
» For the slow component, the average of the fast variable
appears.
» For the fast component, the slow variable is frozen.

» For occupation measure of Markov processes, the canonical
form of the rate function is f[O,T] SUPps0 Dy — L“,f(l;()” my(y)dt
(Donsker and Varadhan, 1973). This can be obtained by

taking h = e8.
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Large deviations of 1y

Corollary
{un} satisfies the LDP on D([0, T], M1(X)) with rate function

p = lo(po) + inf JS(p, 6).

» Follows from contraction principle since the mapping
(1, 0) — p is continuous.

» Can quantify metastable transitions, mean exit time from a
domain etc.

My (X)
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» Usual techniques:
> Discretisation and change of measure: Freidlin and Wentzell
(1984), Liptser (1996), Veretennikov (1999), Dawson and
Gartner (1987), Léonard (1995).
> Weak convergence: Budhiraja et al. (2018).
» Semigroup: Kumar and Popovic (2017), Kraaij and Schlottke
(2020).
» We use the method of stochastic exponentials (Pulahskii
2016, 1994).
» Show exponential tightness. This gives a subsequential LDP.
» Get a condition for any subsequential rate function (in terms
of an exponential martingale).
> Identify the subsequential rate function on “nice” elements of
the space.
» Extend to the whole space using suitable approximations.
» Unique identification any subsequential rate function
(regardless of the subsequence) implies the LDP.

» Also used in the context of invariant measure LDP, Borkar
and Sundaresan (2012).
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Theorem

The sequence {(un(t),On(t)),t € [0, T]}n>1 is exponentially
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Exponential tightness

Theorem

The sequence {(un(t),On(t)),t € [0, T]}n>1 is exponentially
tight in D([0, T], My (X)) x Dy([0, T], M(Y)), i.e., given any
M > 0, there exists a compact set Ky such that

lim sup%IogP({(,uN(t),ON(t)),O <t<T}¢Ky)<-—M.

N—o0
For >0 and a € RI*, with Xy ; = (o, un(t)),
t
eXP{N(ﬁxN,t — BXno — 5/ Py f(1n,s)ds
0

[ 3 ABab) — G Yo dno)es ) 2 2 0,

(x,x’

is an exponential martingale. Use Doob’s inequality and a condition
for exponential tightness in D([0, T],R) (Puhalskii, 1994).
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An equation for the subsequential rate function

> Let {(un,,0n, ) k>1 be a subsequence that satisfies the LDP
with rate function /.

> Let a: [0, T] x My(X) — RI* and
g:]0, T] x Mi1(X) x Y — R be bounded measurable, and
continuous on My (X).

» Define U;"¢ (1, 0) by

/[07t]{<a5(ﬂs),/l5 B Azs,ms“5>
— Z as Ms - Oés(,us)( ))AX,X,(/’LS7m5):u‘5(X)

+ Z< - L#sgs(ﬂa )(Y)

y

© Y rleliey) - el ) ml) f o

yi(y.y')eEy
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An equation for the subsequential rate function

» We can show that, for each « and g,

sup (UT%(p,0) — 1(1,0)) =0, (1)
(p,0)er

where T is the set of (i, ) such that t — pu; absolutely
continuous.
» On one hand, for a smaller class of « and g,

E exp{NUT% (un,0n) + VE(un, Yn)} =1,
where V£ is O(1) a.s.
» On the other hand, Varadhan's lemma tells us that

. ]- 6%
lim — |Og Eexp{Nk UT’g(MNk') aNk) + V?(MNW YNk)}
k—o0 Nk
= sup (U741, 0) — I (1, 9))
(1,0)

This can be extended to (1).
» Moreover, the supremum in (1) is attained.
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A candidate rate function

» Recall that sup(uﬂ)er(U‘;‘-’g(u,H) —I(p,0)) = 0.
» A natural candidate for the rate function

I*(u,0) = sup U7 (i, 0).-
a7g

» It can be shown that /* = J.
» Note that INZ I* on . Qutside I', I* can be shown to be +o0.

» Goal: show that I"g I* whenever [* < +00. Once this is
established, the LDP follows.
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» Other conditions are relaxed using suitable approximations.
We finally get | = I* for all elements.
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