
Genealogy and spatial distribution

of the N - particle branching random walk

with polynomial tails

Sarah Pennington

University of Bath

Joint work with Matt Roberts and 2-sofia Talyigas



Branching- selection systems
• Particle systems : particles branch ( produce offspring) and move in space

killing rule keeps total number of particles constant .

• Toy models for a population under selection .

Location of a particle f- individual) represents its evolutionary fitness .

• Introduced by Brunet and Derrida in 1990s
.

Recent results and open conjectures about long-term behaviour
.

Genealogy :

t

coalescent process
time



N - particle branching random walk (N - BRW )

Discrete-time branching- selection system .

N particles with locations in IR at each timestep.

Let ✗ be a real - valued random variable ( jump distribution) .

At each time ne No
,
each particle has two offspring .

Each of the 2N offspring particles makes an independent jump from its parent 's location ,
with the same law as X

.

The N rightmost particles (of the 2N offspring particles) form the population at time nt 1 .

%%→ *%

Notation : ✗Y' (a) s ✗EYED s . . .
s ✗ (n) ordered particle positions at time n .
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Light- tailed jump distribution

Asymptotic speed
✗
'Fln)If E- [X] < • then Fvn c- (o , a) sit .

lim
n

= vn = Iim
✗ (n)

a. s .
and

n→ a n→& n in E.

Theorem (Bérard and Gouéré 20107 If E[é×]< ✗ for some I> 0 (+ technical assumptions )
then Iimn→•Vn= Va exists and Va - Vn ~ c(1ogN )

"

as IN → a.

Conjectured by Brunett Derrida 1997 .

Related result for Fisher - KPP equation with noise
(Mueller, Mytnik > Quastel 2009 )
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Genealogy

sample K particles from the N particles and trace their ancestry backwards in time

→ coalescent process .

Conjecture (Brunet , Derrida , Mueller , Manier)

If ✗ is light - tailed then the genealogy of a sample on a ( logNP timescale converges to
a Bolthausen - Sznitman coalescent as N→x .



Coalescent processes

Kingman's coalescent Bolthausen - Sznitman coalescent

Neutral population : choose particles to kill Population under selection .

uniformly at random in each generation .

Thanks to Goltz Kersting
and Anton Wako /binger
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N - BRW with heavy- tailed jump distribution

suppose P(✗ > x) ~ oil as x→x
, for some x>0.

Asymptotic speed
Theorem ( Bérard and Maillard 2014)

✗ I'mIf E[×] < ✗ , lim
n

= vn where rn ~ c.
✗
N
"✗

( logNik
-1

as N→ a
.

n→x

If E- [X]=a , cloud of particles accelerates .

Genealogy

conjecture (Bérard and Maillard)
The genealogy on a log N timescale is approximately given by a star-shaped coalescent
when N is large .



Time and space scales

Let PCX > a) =
'

hfx)
for 0C > 0

.

Assume his regularly varying with index a> 0

i. e. for any y> 0 , hlxy)
h(⇒

" Y
"

as x→ • .

and PCX > 07=1 (no negative jumps) .

Let ln = Hogan
? timescale

Let an = hi
'

( 2N ln )
,

where ti
'

Gc) := inf { y> 0 : hop > x } . space scale

E[# jumps of size > cyan in

a time interval of length czen ]
= 2N • czln P( ✗ > cyan)

= 2N czln
~

2N Czln
CFZNew

= ÉhK±an)
as N→x

.



Main result

w.h.pe .

= with probability → 1 as N→ &
.

Theorem (P.

,
Roberts

,
Talgigas 2021)

For y > 0 , bee IN and t > 4hr , the following occurs w.h.pe .

:

• spatial distribution : At time t
,
there are N - o (N ) particles in

[✗Y' (f) , ✗Y'(f) + man ] .

• Genealogy : The genealogy on an ln - timescale is asymptotically given by a

star - shaped coalescent .

i.e. F Te [t - Zen , t - ln] s.t.w.h.pe , for a uniform sample of K particles
at time t

, every particle is descended from the rightmost particle at time T

and no pair of particles in the sample has a common ancestor after time

Tt Enln , for any LENIN with En → 0 and Enln → ✗ as N→ 0
.
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1- Te [t - Zen , f- In] s.t.w.h.pe , for a uniform sample of k particles
at time t

, every particle is descended from the rightmost particle at time T

and no pair of particles in the sample has a common ancestor after time

Tt Enln , for any LENIN with En → 0 and Enln → ✗ as N→ 0
.



spatial distribution

At time t
,
there are N - o(N ) particles in [✗747 >

✗Y'(f) + Man ] w.h.pe .

Proposition (PRT 2021 ) There exist 0 < prsqr < I s.t.gr → 0 as r→ ou

and pr → 1 as r → 0 S.t. for r > 0
, for N sufficiently large and t > 31N ,

P( ✗ 'I' (f) - Xi" (f) > ran) c- [ pr , qr] .

Genealogy

w.h.p.tt Te [t - Zen , t - ln] s.t.w.h.pe , for a uniform sample of K particles
at time t

, every particle is descended from the rightmost particle at time T

and no pair of particles has a common ancestor after time Tt o @ µ ) .

Proposition (PRT 2021 ) For Oss ,
< szs 1 , I p > 0 st . for N sufficiently large

and t > 41N , p( Te [t - Lents , en , t - Zlntszln]) > P .
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Jump distribution X .

Time to coalesce coalescent

Light - tailed PCX > a) sé
"

,
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Heavy - tailed PCX> a)not , a> 0 10GW star-shaped
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tail

Heavy - tailed PCX> a)not , a> 0 10GW Star-shaped

work in progress with E. Talyigas .

Simulation by 2. Talyigas .



N - particle branching Brownian motion ( N - BBM)

• N particles move in IR according to

independent Brownian motions .

time
• Each particle , independently . . branches

into two particles after an Exp (1) time .

• Each time a particle branches , the

leftmost particle in the system is killed .

& & & & &

N particles in the system at all times .
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• N particles move in IR according to ÷&•BH. Ho Ho Ho Ho

independent Brownian motions . 38 36 §ÉzE
time &#%BB%•% % %B• %

• Each particle , independently . . branches 3f§ of got
into two particles after an Exp (1) time . i¥÷¥%•¥•%•D Home Ho Ho Ho

} } } }{• Each time a particle branches , the

leftmost particle in the system is killed .

% % % % %

N particles in the system at all times .
Introduced by Maillard 12012) .

Conjecture (Brunet / Derrida , Maillard) : Genealogy of a sample on a (logNP timescale

converges to a Bolthansen
- Sznitman coalescent as N→x .

One tool : over a fixed timescale , as N→ •
, density converges to solution of a

free boundary problem . ( Hydrodynamic limit : De Masi / Ferrari / Presutti /Soprano - Loto
'
17)
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Time and space scales

1
Let P(✗ > x) =

hex,
for x> 0.

Assume his regularly varying with index a> 0

i. e. for any y> 0 , hlxy)
h(⇒

" Y
"

as ✗→ • .

and PCX > 07=1 (no negative jumps) .

Let ln = Hogan
? timescale

Let an -_ hi'(2Nln )
,

where ti
'

Gc) := inf { y> 0 : hly) > x } . space scale



Main result

w.h.pe .

= with probability → 1 as N→ &
.

Theorem (P.

,
Roberts

,
Talgigas 2021)

For y > 0 , bee IN and t > 4hr , the following occurs w.h.pe .

:

• spatial distribution : At time t
,
there are N - o (N ) particles in

[✗747 , ✗Y'(f) + man ] .

• Genealogy : The genealogy on an ln - timescale is asymptotically given by a

star - shaped coalescent .

i.e. F Te [t - Zen , f-In] s.t.w.h.pe , for a uniform sample of K particles
at time t

, every particle is descended from the rightmost particle at time T

and no pair of particles in the sample has a common ancestor after time

Tt Enln , for any LENIN with En → 0 and Enln → ✗ as N→ 0
.



Warm up lemma

Recall ln=MogzN?

Recall ✗Y' (f) s ✗%t)s . . .

s ✗Ict) ordered particle positions at time t .

Lemma For se No , Hits + In ) > ✗if
>

(s) .



Warm up lemma

Recall ln= Mogan?

Recall ✗Y' (f) s ✗Ict) s . . .

s ✗
'F' (t) ordered particle positions at time t .

Lemma For se No , Hits + In ) > ✗if
>

(s) .

Proof : Suppose ( for a contradiction) that ✗Y' (f) < ✗hY(s) the [s , stew ] n No .

Then since all jumps are non - negative , the rightmost particle at times has

21N descendants at time stew .

Since 21N > N
,
this implies ✗Y'Cstln) > ✗¥1s) .

So 1- s* c- [s , stln]n No Srt . ✗Y'(E)> ✗fY(s) .

All jumps are 70 ,
so ✗Y'(stln) > ✗Y'(5) . ☐

.



Construction of N - BRW from BRWS
.

BRW : Initial particle at xe IR at time 0 .

At each time ne No , each time - n particle has two offspring , each of which
makes an independent jump from its parent's location with the same distribution

as ✗ .

The time- Cnt 1) particles are these offspring particles .

Number of time - t particles is 2£
.



Construction of N - BRW from BRWS
.

BRW : Initial particle at xe IR at time 0 .

At each time ne No , each time - n particle has two offspring , each of which
makes an independent jump from its parent's location with the same distribution

as ✗ .

The time- Cnt 1) particles are these offspring particles .

Number of time - t particles is 2£
.

Construction of N - BRW with initial particle locations 0C
, ,

. . .

, ocn :

\

Take N independent BRWS with initial particles at 0C
, ,

. . .

, ocn .

Colour BRW particles blue or red
.

All time -0 particles are blue .

For ne No , the N rightmost offspring particles of time- n blue particles are
coloured blue

.
All other time- Cnt 1) particles are coloured red .

Blue particles form an N - BRW
.

Path of jumps from ancestor to descendant in N- BRW = path in one of the BRWS .



Random walk with heavy tailed jump distribution

P(✗ > x) =
'

hey ,
h regularly varying with index a> 0.

✗
i.
✗
2 >
✗
3 , . . .

i. i. d. with ✗
,

=D ✗
.

n

Fix c > 0 small
.

For x v. large , unlikely that ⇐ ✗k > x and

✗ks ex Hks n .
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✗
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2 >
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3 , . . .

i. i. d. with ✗
,

=D ✗
.

Fix c > 0 small
.

For x v. large , unlikely that &
,

✗k > x and

✗pescx V- ksn .

Lemma ( Durrett
'

83
,
Gantert ' 00)

For ME IN
, q> 0 , I> 0 and O<r< 1^111^0

gq
, for N sufficiently large , if

xn > N
"
then mln

PCE ✗ j# ✗jsrxn > xD _< Ñ?
j=l
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Random walk with heavy tailed jump distribution

Lemma ( Durrett
'

83
,
Gantert ' 00)

For ME IN
, q> 0 , I> 0 and O<r< 1^111^0

gq
, for N sufficiently large , if

mln
xn > N

"
then

p( §,✗j✗j< room > xD _< Ñ?

Proof : Take 2q1og2< c <
✗ (1^2) 1092

.

r

By Markov 's inequality , N%g2
mln

Pj§✗j# ✗jsrxn> xn) =P (
edn×ÑÉ?%#xjsrxn

> e'deny
a- N

-É ☒ [eclnxñ
'

✗ ✗srxn]
men

.

Use identity
E- [ e
"#*Kady> k ,] = ftp.?vemp--u)duteVkip-3K,)-(eVK2-Dp-1> Kz)

to show tI[edNxÑ✗#xsrxn ] = It (N
-

E) for some E> 0 .

☐
.



Random walk with heavy tailed jump distribution

Lemma ( Durrett
'

83
,
Gantert ' 00)

For ME IN
, q> 0 , I> 0 and O<r< 1^111^0
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Random walk with heavy tailed jump distribution

Lemma ( Durrett
'

83
,
Gantert ' 00)

For ME IN
, q> 0 , I> 0 and 0 < r < In kind

gq
, for N sufficiently large , if

mln
✗
µ
> N
"
then

p(EXj✗j< room
> xD ← Ñ?

j =L

Use with xn = const . an .

Recall an = h
"

(2N ln )
,
so an

"
~

"

(2N In )
"?

Fix ee lo , 1) small . A jump larger than pan is a
"

big jump?

For c⇒ e , it is very unlikely that there is a time - t particle > can away
from its time - It - Olln)) ancestor unless an ancestor made a big jump .

A jump is big wp . hlean)
"
~ e-

✗

( 2Nln5
'

,

so we see big jumps at rate ④Uni
'

)
.
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Let T= last time before time t, when a particle makes a jump > pan and takes
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time
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Proof heuristics t
,

: = t - l
µ .

Let T= last time before time t, when a particle makes a jump > pan and takes
"

big jump
" the lead .

time

A : A particle makes a big jump at time T and takes the lead ( by ④ Can ) ) .

Its descendants stay in the lead until time t
, (other particles can't

take the lead with a big jump ,
and can't move far without a big jump ) .
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Proof heuristics t
,

: = t - l
µ .

Let T= last time before time t, when a particle makes a jump > pan and takes
"

big jump
" the lead .

time

B : There are 011) big jumps in time interval [t± , t] , each with o ( N )

descendants at time t
.
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Proof heuristics t
,

: = t - l
µ .

Let T= last time before time t, when a particle makes a jump > pan and takes
"

big jump
" the lead .

time

C : The tribe descended from the time-T leader doubles in size at each

timestep until almost time Ttln .
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Proof heuristics t
,

: = t - l
µ .

Let T= last time before time t, when a particle makes a jump > pan and takes
"

big jump
" the lead .

time

D: On the time interval [Ttln , t ] , the time -T leader 's tribe has

size N - o (N ) .
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Proof heuristics t
,

: = t - l
µ .

Let T= last time before time t, when a particle makes a jump > pan and takes
"

big jump
" the lead .

time

Te [t ,
- ln , t ,] w.h.pe .

:

If no particle takes the lead with a big jump during [s ,Sten] , then
✗Y' (stln ) > ✗¥4s) and so tan ( ✗ hY(stln) - XY

>
(stln )) is small w.tn . p .
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Proof heuristics t
,

: = t - l
µ .

Let T= last time before time t, when a particle makes a jump > pan and takes
"

big jump
" the lead .

time

N - o (N ) particles are close to leftmost at time t (on an space scale)
No big jumps in the time -T leader 's tribe up to time Ttln > t± .

0(1) big jumps in the tribe during [Ttln , t] , each with o (N ) descendants .
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Proof heuristics t
,

: = t - l
µ .

Let T= last time before time t, when a particle makes a jump > pan and takes
"

big jump
" the lead .

time

star - shaped genealogy No time - (Tt Enln ) particles have ④ (N) time - t descendants
.

None of the particles in the time -T leader 's tribe have moved far by time Tt Enln ,
so each has ! IN 2-

↳%) = o(N ) descendants at time t .


