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Reminder Random length worms model

Random length worms model

Definition: Random length worms model

Given some v ∈ R+ and a probability mass function m : N → R the random length
worms model is a Poisson point process X on the space of all the possible Zd -valued
nearest neighbour paths of finite length (the space of worms: W ) with intensity measure
v · m(L(w)) · (2d)1−L(w), where L(w) is the length of such a path w ∈ W . We denote by
Pv the law of X .

This alternative definition yields that the random length worms set Sv at level v can
be defined as Sv := Tr(X ), where X ∼ Pv .

Theorem [Ráth, R.; ’21]: Supercritical worm percolation
Let d ≥ 5. Let ε > 0 and ℓ0 ≥ ee . If

m(ℓ) = c ln(ln(ℓ))ε

ℓ3 ln(ℓ) 1[ℓ ≥ ℓ0], ℓ ∈ N

then for any v > 0 the random length worms model Sv is supercritical:

P( Sv percolates ) = 1.
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Discrete potential theory Capacity: theoretic viewpoint

Equilibrium measure

Given K ⊂⊂ Zd let us denote its entrance and hitting time by TK and T̃K , respectively.
The equilibrium measure of a set K ⊂⊂ Zd is: eK (x) := Px (T̃K = ∞) · 1[x ∈ K ].

Definition: Capacity of a set

Given K ⊂⊂ Zd , the capacity of K is defined by cap(K) :=
∑

x∈Zd eK (x).

Lemma: Last exit decomposition

Let d ≥ 3. For any x ∈ Zd and K ⊂⊂ Zd we have: Px (TK < ∞) =
∑

y∈K g(x , y)eK (y),
where g(·, ·) denotes the Green function. As a consequence:

cap(K) · min
y∈K

g(x , y) ≤ Px (TK < ∞) ≤ cap(K) · max
y∈K

g(x , y).

Theorem [Jain, Orey; ’68]: The capacity of the range of random walk
Let d ≥ 5. There exists a constant e∞ = e∞(d) ∈ (0,+∞) such that

lim
n→∞

1
n cap

(
∪n−1

t=0 {X(t)}
)

= e∞ Po − almost surely.
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Discrete potential theory Capacity: useful approach

Dirichlet energy

Definition: Dirichlet energy

If µ1 and µ2 are measures on Zd then their mutual Dirichlet energy is

E(µ1, µ2) :=
∑
x∈Zd

∑
y∈Zd

g(x , y)µ1(x)µ2(y),

where g(·, ·) is the Green function. When µ1 = µ2 = µ then E(µ) := E(µ, µ) is called the
Dirichlet energy of µ.

Theorem [Jain, Orey; ’73]: Energy characterization of capacity

The capacity of any set K ⊂⊂ Zd

cap(K) = sup
{

E(ν)−1 : ν is a probability measure supported on K
}
.

In order to give a lower bound on cap(K), one just puts a probability measure ν on K
and gives an upper bound on E(ν).

Example: Capacity of a ball

For any R > 0 we have cap(B(R)) ≍ Rd−2, where B(R) denotes the ball around the
origin with radius R by B(R) (here we considered the sup-norm).
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On the road to our method Main idea

Coarse graining

Observation: On the probability of the new box being good
If N denote the number of long worms emanating from the newly considered box, then:

EN ≈
(
v · Rd · P

(
length > R2))

· R2−d · cap (seed)

If we can guarantee that EN is big enough, then P(N ≥ 1) is also big.
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On the road to our method Main idea

Dynamic renormalization

In this case dynamic means that the value of σ(·) depends on the previous values.

Lemma [Grimmett, Marstrand; ’90]: Sufficient condition for eternal exploration

If there exists a constant 0 < c < 1 such that c > psite
c (Zd), moreover

P (σ(0) = 1) ≥ c and P (σ(t + 1) = 1 |σ(0), σ(1), . . . , σ(t)) ≥ c

hold for all t ∈ N0, then we have P(|G∞| = ∞) > 0.

Remark: Eternal exploration implies percolation
By induction it is easy to see that P(|G∞| = ∞) > 0 implies percolation.
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On the road to our method Main idea

Absence of short worms

Here the seed is a slice of the long worm inside the given box with length comparable to
R2, hence we have cap(seed) ≈ R2.

Example: Percolation if m(ℓ) ≈ ℓε/ℓ3 with ε > 0

In this case we have P
(
L > R2) ≈ R2ε/R4, thus

EN ≈
(
v · Rd · R2ε/R4) · R2−d · R2 = v · R2ε

Since v , ε > 0 by choosing R big enough, we can guarantee that EN is big and hence
guarantee that P(N ≥ 1) ≥ 1/2.

Note that 1/2 is enough since for site percolation 1/2 > pc(Zd) if d ≥ 3.
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On the road to our method Fattening

Fattening
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On the road to our method Fattening

Size biasing

Observation: Expected total length of short worms hitting the origin
The expected number of worms of length ℓ that hit o is comparable to v · m(ℓ) · ℓ, thus
the expected total length of short worms that hit o is comparable to v ·E(L2 ·1[L ≤ R2]).

Using similar reasoning that we will use later, one can show that the probability of the
following events are high:

cap(seed) ≈
total length of short worms

hitting the long worm ≈ R2 · v · E(L2 · 1[L ≤ R2]).

Example: Percolation if m(ℓ) ≈ ln(ℓ)γ/(ℓ3 ln(ℓ)) with γ > 1/2

In this case we have E(L2 · 1[L ≤ R2]) ≈ ln(R)γ and P(L > R2) ≈ ln(R)γ−1/R4, thus

EN ≈ (v · Rd · ln(R)γ−1/R4) · (R2−d · Rd · v · ln(R)γ) = v 2 · ln(R)2γ−1.

Since γ > 1/2, by choosing R big enough we can guarantee that P(N ≥ 1) ≥ 1/2 holds.

Note that the γ = 1 case gives m(ℓ) ≈ ℓ−3, thus P(L > ℓ) ≈ ℓ−2, so the behaviour of
the planar ellipses percolation (which exhibits percolation phase transition) differs from
the behaviour of our high dimensional worm percolation model.
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The method Recursive fattening

The snowball effect
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The method Recursive fattening

Dummy calculation

Observation: Snowball effect

Heuristically, for all ℓ ≥ 1 we have cap(Sℓ) ≈ cap(Sℓ−1) · (1 + v · m(ℓ) · ℓ2), thus

cap(SR2 ) ≈ R2 ·
R2∏

ℓ=1

(
1 + v · m(ℓ) · ℓ2) ≈ R2 · exp

v ·
R2∑

ℓ=1

m(ℓ) · ℓ2

 .

In the case when m(ℓ) ≈ ln(ln(ℓ))ε/(ℓ3 ln(ℓ)) with ε > 0 we have
E(L2 · 1[L ≤ R2]) ≈ ln(ln(R))1+ε and P(L > R2) ≈ ln(ln(R))ε/(ln(R) · R4), thus

EN ≈
(

v · Rd · ln(ln(R))ε

ln(R) · R4

)
·R2−d ·R2·exp

{
v · ln(ln(R))1+ε

}
≥ v ·

exp
{

v · ln(ln(R))1+ε
}

ln(R) .

Since ε > 0, by choosing R big enough we can guarantee that P(N ≥ 1) ≥ 1/2.

Remark: Grouping the lengths

Instead of adding the packages of worms of length ℓ = 1, . . . ,R2 one by one, we will
define a sequence of scales (Rn)N+1

n=0 (where RN+1 = R) and we will fatten with all of the
worms of length between R2

n and R2
n+1 in one round.

B. Ráth, S. Rokob (BME) Percolation of worms Bangalore, 2021 11 / 28



The method Summary of the method

Some further comments

Summary: Our method
The infinite component of Sv will be built up using a dynamic renormalization scheme
where for every examined vertex in the coarse grained lattice, there is (i) target shooting
and (ii) recursive capacity doubling using a sequence of rapidly growing scales.

In order to do so, we will also subdivide the PPP of worms into disjoint, hence
independent, packages, where a package contains worms of a certain length scale that
emanate from a box of a certain spatial scale.

Policy: Packages of worms only used once
For the purpose of target shooting or fattening, we will use every package only once.

Remark: Concentration estimates
(a) In order to obtain the requested supercriticality, we need to show that connection

probabilities are bounded away from zero.
(b) This will be guaranteed using concentration estimates in a form: the capacity of the

inductively fattened worm cluster is big enough with high enough probability.
(c) To prove such concentration estimates, we need control the correlation between the

amounts of fat produced at distant parts of the set being fattened.
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General theorem The main theorem

Good sequence of scales

Definition: Good sequence of scales

Let R∗
0 , γ0,∆,∆, α, ψ, s,Λ, v ∈ (0,+∞). We say that an increasing sequence (Rn)N+1

n=0 of
positive integers is a (R∗

0 , γ0,∆,∆, α, ψ, s,Λ, v)-good sequence of scales for a probability
measure m on N if

R0 ≥ R∗
0 , (Initializing)

∀ 0 ≤ n ≤ N :
∆·R2

n+1∑
ℓ=∆·R2

n

ℓ2 · m(ℓ) ≥ α/v (Fattening)

∀ 0 ≤ n ≤ N : 2n · γ0 ≤ ψ · Rd−4
n , (Fattening*)(

2N+1 · γ0 · s
)

· v · R4
N+1 ·

∞∑
ℓ=Λ·R2

N+1

m(ℓ) ≥ 2. (Target shooting)

If E[L2] = +∞ then we can define (Rn)∞
n=0 so that Rn < +∞ and (Fattening) is satisfied

for each n, but E[L2] = +∞ is not enough for (Target shooting) to hold for some N.
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General theorem The main theorem

General version of the main theorem

Theorem [Ráth, R.; ’21]: Good sequence of scales implies supercritical percolation

Let d ≥ 5. There exist constants R∗
0 , γ0,∆,∆, α, ψ, s,Λ ∈ (0,+∞) such that for any

v ∈ (0,+∞) and any probability measure m on N: if there exists an
(R∗

0 , γ0,∆,∆, α, ψ, s,Λ, v)-good sequence (Rn)N+1
n=0 of scales for m then

P( Sv percolates ) = 1.

Note that if the length distribution is

m(ℓ) = c ln(ln(ℓ))ε

ℓ3 ln(ℓ) 1 [ℓ ≥ ℓ0] , ℓ ∈ N,

where ε > 0 and ℓ0 ≥ ee , then for any choice of the above parameters and δ ∈ (0, ε) the
sequence

Rn := exp
(
exp

(
(n + n0)1/(1+δ)))

, n ∈ N0

is a good sequence of scales, if n0 is large enough.
Also note, if we consider the same probability mass function, but with ε ∈ (−1, 0), then
E[L2] = +∞ still holds, but it can be proved that for any choice of the parameters, there
exists ℓ0 big enough such that there is no good sequence of scales.
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End End

End

Thank you for your attention!
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Appendix: Further directions Further directions

Some questions

Questions

(i) Given d ≥ 2, is there a function f : N → R+ satisfying limn→∞ f (n)/n2 = 0 such
that for any choice of ν the condition

∑
H∈H f (|H|) · ν(H) < +∞ implies vc(ν) > 0?

(ii) Is it possible to conclude vc = 0 in the random length worms model if we only
assume m2 = +∞?

(iii) It is not that hard to prove the m1 and m2 lemmas are also true for any Cayley
graph: how can we characterize vc there?

(iv) Conjectures in lower dimensional random length worms model: see Balázs’ talk.
(v) Other properties of the percolation set?
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Appendix: More details on the proof Initialization

Input packages

Observation: Translation invariant law

The law Py,R,z,v is invariant under the translations of Zd in the sense that if
(X ,Z) ∼ Py,R,z,v then (X + x ,Z + x) ∼ Py+x,R,z+x,v for any x ∈ Zd .
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Appendix: More details on the proof Initialization

Good input packages

Definition: Good input package

Let y ∈ Zd , R ∈ N, z ∈ B(y ,R) and γ ∈ R+. We say that an input package (X ,Z) is
(y ,R, z, γ)-good if there is a set H ⊂ Zd which satisfies the following properties:

(i) R2 · γ ≤ cap(H) ≤ R2 · γ + 1, (ii) z ∈ H,
(iii) H ⊆ B(y , 3R) ∩ (Tr(X ) ∪ Tr(Z)), (iv) H is connected.

We call such a set H an (y ,R, z, γ)-good set for (X ,Z). We call the parameter γ the
capacity-to-length ratio (since R2 is the maximal length of Z).

Note that if we choose H := Tr(Z), then it satisfies (ii), (iii) and (iv). Moreover, by the
arrangement of the the input package and the properties of the capacity we can find such
γ0 and R∗

0 such that for all R ≥ R∗
0 that for the chosen set: P(cap(H) ≥ R2 · γ2

0) ≥ 3/4.

Lemma: Initializing the γ of good input packages
There exist dimension-dependent positive finite constants R∗

0 and γ0 such that for any
R ≥ R∗

0 and any v ≥ 0 we have

min
z∈B(R)

Po,R,z,v ( (X ,Z) is (o,R, z, γ0)-good ) ≥ 3/4.
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Appendix: More details on the proof Multi-scale recursion

A long necklace of beads
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Appendix: More details on the proof Multi-scale recursion

Doubling the capacity-to-length ratio

Lemma: Doubling the γ of good input packages by fattening

There exist dimension-dependent positive finite parameters ψ < 1, ∆ < 1, ∆ > 1, α > 1,
such that for any Rs ≤ Rb ∈ N, any γ ∈ R+ satisfying

γ0 ≤ γ ≤ ψ · Rd−4
s , (Fattening*)

any choice of v ∈ R+ and any choice of the probability mass function m satisfying the
inequality

v ·
∆·R2

b∑
ℓ=∆·R2

s

ℓ2 · m(ℓ) ≥ α, (Fattening)

the following implication holds: if

min
z∈B(Rs )

Po,Rs ,z,v ( (X ,Z) is (o,Rs , z, γ)-good ) ≥ 3/4, (Hypothesis)

then
min

z∈B(Rb)
Po,Rb ,z,v ( (X ,Z) is (o,Rb, z, 2γ)-good ) ≥ 3/4. (Doubling)
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Appendix: More details on the proof Multi-scale recursion

Going up the ladder
Let us choose constants from the:
Initializing lemma: R∗

0 , γ0 ∈ (0,+∞), and
γ-doubling lemma: ∆,∆, α, ψ ∈ (0,+∞).
Given v ∈ (0,+∞) and probability mass function m, if a sequence (Rn)N+1

n=0 of scales
satisfies the properties

(Initializing), (Fattening), (Fattening*)

from the definition of good sequence of scales, then we can use induction on
0 ≤ n ≤ N + 1 with
(i) n = 0: R0 ≥ R∗

0 , and
(ii) 0 < n ≤ N: Rs = Rn, Rb = Rn+1 and γ = 2n · γ0

to prove the following lemma.

Lemma: Going up the ladder
Under the previous assumptions

min
z∈B(Rn)

Po,Rn,z,v ( (X ,Z) is (o,Rn, z, 2n · γ0)-good ) ≥ 3/4

holds for all 0 ≤ n ≤ N + 1.
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Appendix: More details on the proof Target shooting

Joining the boxes

Lemma: Target shooting with a boomerang

There exist s > 0 and Λ ∈ N such that for every R ∈ N, y ∈ Zd and every
H ⊆ B(y , 13R) satisfying

cap(H) · s · v · R2 · P
(
L ≥ ΛR2) ≥ 2,

we have Pv (the above event) ≥ 3/4.

Conclusion: Percolation of worms
If we fix our constants as they were in the previous lemmas and do the coarse graining
using radius RN+1 then for the dynamic renormalization scheme we obtain:

P (σ(0) = 1) ≥ 1/2, and P (σ(t + 1) = 1 |σ(0), σ(1), . . . , σ(t)) ≥ 1/2 (t ∈ N0).

As a consequence, by the Grimmett-Marstrand lemma our result follows.
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Appendix: On the proof of the capacity doubling lemma Ingredients

Inside an input package
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Appendix: On the proof of the capacity doubling lemma Ingredients

The candidate set

H := Tr(Z) ∪
⋃

y∈D

Hy ∪
⋃

y∈D

Tr(the previously mentioned worms starting at G)

The way we defined the set H it follows immediately that:

(ii) z ∈ H; (iii) H ⊆ B(3Rb) ∩ (Tr(X ) ∪ Tr(Z)); (iv) H is connected.

Observation: A lower bound is enough
We only need to show that

2 · γ · R2
b ≤ cap(H)

since by throwing away point from H we can also achieve the required upper bound.
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Appendix: On the proof of the capacity doubling lemma Estimating the capacity

Dirichlet energy bound

Observation: Small energy and big total measure
If µ is a measure on H and Σ denotes its total measure, then for any K > 0 we have

P
(
cap(H) < 2 · γ · R2

b
)

≤ P
(

Σ2
µ

E(µ) < 2 · γ · R2
b

)
≤ P

(
E(µ) ≥ K

2·γ·R2
b

)
+ P

(
Σµ ≤

√
K

)
.

Introducing α := v ·
∑∆·R2

b
ℓ=∆·R2

s
ℓ2 · m(ℓ), later we find Σµ ≈ R2

b · γ · α.
Note that if Σ the total length of all worms that only visited one of the sets Hy (y ∈ D)
then we have Σ/3 ≤ Σµ.
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Appendix: On the proof of the capacity doubling lemma Estimating the capacity

Small energy: proof ideas

Lemma: Small energy
There exists C < ∞ such that if ∆ ≥ 16, then for any K > 0

P
(
E(µ) ≥ K

)
≤

C ·
(
1 + ψ · α

)
· (R2

b · γ · α)
K .

Due to the Markov inequality and the bilinearity of the Dirichlet energy we have

E [E(µ)] = E

[ ∑
y,y′∈D

E
[
E(µy , µy′

)
∣∣∣ F

]]
.

For example, if y = y ′ then on the event Hy ̸= ∅ we have

E
[
E (µy )

∣∣∣ F
]

≤ v ·
∆R2

b∑
ℓ=∆R2

s

m(ℓ) ·
∑
x∈G

Px (THy ≤ ⌊ℓ/3⌋ | F) · Eo

 2⌊ℓ/3⌋∑
t,t′=⌊ℓ/3⌋

g
(
X(t),X ′(t ′)

)
≤ C · v ·

∆R2
b∑

ℓ=∆R2
s

m(ℓ) · (ℓ · cap(Hy )) · ℓ ≤ C · α · (C ′ · γ · R2
s )

and since the expected number of visited boxes of side length Rs inside a box of side
length Rb is at most C · (Rb/Rs)2 this gives the upper bound for in this case.
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Appendix: On the proof of the capacity doubling lemma Estimating the capacity

Big total local time: the main obstacles

Lemma: Big total local time

There exist c > 0 and C < ∞ such that if ∆ small enough and ∆ is big enough, then for
any K satisfying c · (R2

b · γ · α) − 3K/2 > 0 we have

P
(
Σ ≤ K

)
≤ C · (R2

b · γ · α) · ψ
K + 0.02 + C · R2

b · (R2
b · γ · α)(

c · (R2
b · γ · α) − 3K/2

)2

Remark: Some caution needed
(i) To guarantee positivity we need to show that the number of visited and good boxes

of the smaller scale is big with high enough probability.
(ii) Since the considered worms can only hit one of the good sets, we need to guarantee

that visited sets on the smaller scale is well spread-out.
(iii) Altough the summands Σ[y ] are independent given F , the conditioning on this

sigma-field might put us in a situation where Hy is surrounded with other sets of
form H ỹ . The effect of such a “crowd” makes it hard for us to give a lower bound
on the total length of worms that only hit Hy .
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Appendix: On the proof of the capacity doubling lemma Estimating the capacity

Big total local time: proof ideas
If Σ′ and Σ denote the total local time of such worms that hit at least one good set and
multiple good sets, respectively, then we have

Σ = Σ′ − Σ
form which it follows that for any K > 0:

P (Σ ≤ K) ≤ P
(
Σ ≥ K/2

)
+ P

(
Σ′ ≤ 3K/2

)
.

Here, to deal with the first term we can use Markov inequality and an upper bound on a
quantity closely related to the Dirichlet energy of the counting measure on the centers of
the sub-boxes visited by the random walk. This produces the first term of the lemma.
Meanwhile the remaining two terms in the upper bound follows from using conditional
Chebysev inequality and the following lemma.

Lemma: Lower bound on the number of good boxes visited by Z
There exists constant c > 0 such that if ∆ is big enough, then we have

P
(

number of good boxes visited by Z > c · R2
b/R2

s
)

≥ 0.98.

It’s proof builds on simple ideas:
(i) a lower bound on the number of smaller scale boxes visited by Z ;
(ii) by the induction hypothesis of the γ-doubling lemma at least half of these boxes are

good.
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