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Large Deviations for Random Graphs.

X is the space of symmetric functions f on [0, 1]2

with 0 ≤ f(x, y) ≤ 1.

The topology on X is the one induced by cut metric.

d(f, g) =

sup
h,k;‖h‖∞≤1

‖k‖∞≤1

∫
[0,1]2

[f(x, y)− g(x, y)]h(x)k(y)dxdy
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d(f, g) = sup
E,F

∫
E×F

[f(x, y)− g(x, y)]dxdy
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d(f, g) = sup
E,F

∫
E×F

[f(x, y)− g(x, y)]dxdy

T is a measure preserving transformation of

[0, 1] → [0, 1]

Acts on X by mapping

f(x, y) → (Tf)(x, y) = f(Tx, Ty).
d(Tf, Tg) = d(f, g)

Forms a group S .

f ≃ g if g ∈ {Sf}
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If g ∈ {Sf} then f ∈ {Sg}

Y is the quotient space X/ ≃
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p
+ (1− f(x, y)) log 1−f(x,y)

1−p
dxdy
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If g ∈ {Sf} then f ∈ {Sg}

Y is the quotient space X/ ≃

hp(f) =∫
f(x, y) log f(x,y)

p
+ (1− f(x, y)) log 1−f(x,y)

1−p
dxdy

h(Sf) = h(f). LSC implies that if f ≃ g then
gn = Snf → g

d(Snf, g) → 0

d(f, S−1
n g) → 0
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By LSC, h(gn) = h(f) and h(g) ≤ h(f)
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By LSC, h(gn) = h(f) and h(g) ≤ h(f)

By symmetry h(f) ≤ h(g)

Y is compact.

Let us define a collection of functions {f(x, y)}.

For each ℓ the unit interval is divided into ℓ+ 1
subintervals (J0, . . . , Jℓ+1),

ℓ of them are of equal length and the last one is of
length at most ǫ.
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Consider the set of functions which are some
constants pi,j between 0 and 1 on Ji × Jj for
i > j ≥ 1
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Consider the set of functions which are some
constants pi,j between 0 and 1 on Ji × Jj for
i > j ≥ 1

and extended by symmetry for j > i ≥ 1 and 0
otherwise.

For each ℓ this is a compact set in L1 as well as the
cut topology.

For each ǫ > 0, consider ∪c1(ǫ)≤ℓ≤c2(ǫ).

This is a compact set Γǫ

A finite collection of discs {Dj} of radius ǫ in the
cut topology will cover this.
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Szemeredi’s lemma says for any graph on n vertices
there is a label, i.e. permutation
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Szemeredi’s lemma says for any graph on n vertices
there is a label, i.e. permutation

that will bring it to an ǫ neighborhood in the cut
topology to one of the discs.

There is a finite collection of discs and the orbit of
any graph with n vertices, n! in size, has at least one
member in some disc.

The union of orbits of this finite collection of discs
contains the functions that correspond to all graphs.

Any function f can be approximated by functions
that correspond to graphs with enough vertices.

Replace f by g that is piecewise constant on a finite
grid. Can do it L1 and so in cutmetric.
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Cut up each grid into a large number of sub
sub-squares and make a random choice with the
corresponding probabilities.
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Cut up each grid into a large number of sub
sub-squares and make a random choice with the
corresponding probabilities.

There will be convergence in each sub-square and so
in the full square.

Therefore the space Y can be covered by a finite
number of discs of size 3ǫ for any ǫ > 0.

Y is totally bounded.

The space Y is complete. d̃�(fn, fm) → 0.
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Get a sub-sequence with d̃�(f̃n, f̃n+1) ≤ 2−n
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Get a sub-sequence with d̃�(f̃n, f̃n+1) ≤ 2−n

Track it with fn such that d�(fn, fn+1) ≤ 22−n
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Get a sub-sequence with d̃�(f̃n, f̃n+1) ≤ 2−n

Track it with fn such that d�(fn, fn+1) ≤ 22−n

Use the completeness of d�
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Upper Bound.

For a small ball, one gets the upper bound, by
Chebychev’s inequality and we get the right rate
function.
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Chebychev’s inequality and we get the right rate
function.

After all, any cut neighborhood is contained in a
weak neighborhood, and the upper bound estimate
holds.
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Upper Bound.

For a small ball, one gets the upper bound, by
Chebychev’s inequality and we get the right rate
function.

After all, any cut neighborhood is contained in a
weak neighborhood, and the upper bound estimate
holds.

But to prove in Y we need to get the same estimate
on the orbit of the disc by the group S .
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We saw earlier that there is a finite number of discs
Dǫ

j such that for any n, any graph with n vertices,

permuted suitably, is represented by a function in
Kǫ = ∪jD

ǫ
j.

Random Graphs – p. 11/25



We saw earlier that there is a finite number of discs
Dǫ

j such that for any n, any graph with n vertices,

permuted suitably, is represented by a function in
Kǫ = ∪jD

ǫ
j.

The orbit of Kǫ by the permutation group of size n!
covers all of Y.

Random Graphs – p. 11/25



We saw earlier that there is a finite number of discs
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j such that for any n, any graph with n vertices,

permuted suitably, is represented by a function in
Kǫ = ∪jD

ǫ
j.

The orbit of Kǫ by the permutation group of size n!
covers all of Y.

Pn,p[D(f̃ , η)] ≤ n!Pn,p[D(f̃ , η) ∩Kǫ]
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We saw earlier that there is a finite number of discs
Dǫ

j such that for any n, any graph with n vertices,

permuted suitably, is represented by a function in
Kǫ = ∪jD

ǫ
j.

The orbit of Kǫ by the permutation group of size n!
covers all of Y.

Pn,p[D(f̃ , η)] ≤ n!Pn,p[D(f̃ , η) ∩Kǫ]

Finite number of discs D
2ǫj
j . Take one.
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Estimate Pn,p[D(f̃ , η) ∩D(g, 2ǫ)]
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Estimate Pn,p[D(f̃ , η) ∩D(g, 2ǫ)]

If they do not intersect there is nothing to do.

If they intersect g ∈ D(f̃ , 3ǫ)

h(g) ≥ h(f)− θ
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Estimate Pn,p[D(f̃ , η) ∩D(g, 2ǫ)]

If they do not intersect there is nothing to do.

If they intersect g ∈ D(f̃ , 3ǫ)

h(g) ≥ h(f)− θ

LDP bound for D(g, ǫ) is enough.
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We look at the triangle count. Let T be the number
of triangles in our random graph.
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≃ n3p3

6
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lim
n→∞

1

n2
logPn,p[T ≥ tn3] = −Ip(t)
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We look at the triangle count. Let T be the number
of triangles in our random graph.

≃ n3p3

6

lim
n→∞

1

n2
logPn,p[T ≥ tn3] = −Ip(t)

Ip(t) = inf[hp(f) :∫
f(x, y)f(y, z)f(z, x)dxdydz = 6t]
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We look at the triangle count. Let T be the number
of triangles in our random graph.

≃ n3p3

6

lim
n→∞

1

n2
logPn,p[T ≥ tn3] = −Ip(t)

Ip(t) = inf[hp(f) :∫
f(x, y)f(y, z)f(z, x)dxdydz = 6t]

hp(f) =
1
2

∫
[f(x, y) log f(x,y)

p
+(1−f(x, y)) log 1−f(x,y)

1−p
]dxdy
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Needs an argument that

lim
n→∞

1

n
logPn,p[T ≥ tn3] = −Ip(t)

is strictly increasing for t ≥ p3

6
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Needs an argument that

lim
n→∞

1

n
logPn,p[T ≥ tn3] = −Ip(t)

is strictly increasing for t ≥ p3

6

If p3

6 ≤ t ≤ s ≤ 1 , then with (1− δ)3 = t
s

Ip(t) ≤ [
t

s
]
1
3Ip(s)
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One choice for getting the right number of triangles

is to choose Bernoulli with p = (6t)
1
3
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This gives a function ĥp(t) = hp((6t)
1
3 )
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One compares f with fδ = (1− δ)f + δp and gets
bounds on T and Ip.
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One choice for getting the right number of triangles

is to choose Bernoulli with p = (6t)
1
3

This gives a function ĥp(t) = hp((6t)
1
3 )

One compares f with fδ = (1− δ)f + δp and gets
bounds on T and Ip.

Pick f so that hp(f) ≃ Ip(s) and T (f) ≃ s

(1− δ)3 = t
s

T (fδ) ≥ (1− δ)3T (f) ≥ t
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One choice for getting the right number of triangles

is to choose Bernoulli with p = (6t)
1
3

This gives a function ĥp(t) = hp((6t)
1
3 )

One compares f with fδ = (1− δ)f + δp and gets
bounds on T and Ip.

Pick f so that hp(f) ≃ Ip(s) and T (f) ≃ s

(1− δ)3 = t
s

T (fδ) ≥ (1− δ)3T (f) ≥ t

Ip(t) ≤ hp(fδ) ≤ (1− δ)hp(f) = [ t
s
]
1
3 by convexity.
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The function hp((6t)
1
3 ) need not be convex, although

hp(t) is.
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The function hp((6t)
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3 ) need not be convex, although
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Let ĥp(t) be its convex minorant of hp((6t)
1
3 ) .
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If hp(t) = ĥp(t) i.e they touch at some point t then

Random Graphs – p. 16/25



The function hp((6t)
1
3 ) need not be convex, although

hp(t) is.

Let ĥp(t) be its convex minorant of hp((6t)
1
3 ) .

If hp(t) = ĥp(t) i.e they touch at some point t then

f(x, y) = (6t)
1
3 is the optimizer for that (p, t) and

the graph looks like an Erdös-Renyi graph with a

new p = (6t)
1
3 .
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h is above ĥ which is above its tangent plane at t
where all three touch.
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= argmaxx[ax− ĥp(x)]
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h is above ĥ which is above its tangent plane at t
where all three touch.

Let the tangent line be ax+ b

t = argmaxx[ax+ b− hp(x)]

= argmaxx[ax+ b− ĥp(x)]

= argmaxx[ax− ĥp(x)]

Let ct be the function identically equal to (6t)
1
3
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at− hp(ct) =
∫
[a[ct(x,y)]

3

6 − hp(ct(x, y))]dxdy
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∫
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3

6 − hp(ct(x, y))]dxdy

≥
∫
[a[f(x,y)]

3

6 − hp(f(x, y))]dxdy

because t is the argmax.

≥ a
6

∫ ∫ ∫
f(x, y)f(y, z)f(z, x)dxdydz −∫ ∫

hp(f(x, y))dxdy
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at− hp(ct) =
∫
[a[ct(x,y)]

3

6 − hp(ct(x, y))]dxdy

≥
∫
[a[f(x,y)]

3

6 − hp(f(x, y))]dxdy

because t is the argmax.

≥ a
6

∫ ∫ ∫
f(x, y)f(y, z)f(z, x)dxdydz −∫ ∫

hp(f(x, y))dxdy

≥ at− hp(f)
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at− hp(ct) =
∫
[a[ct(x,y)]

3

6 − hp(ct(x, y))]dxdy

≥
∫
[a[f(x,y)]

3

6 − hp(f(x, y))]dxdy

because t is the argmax.

≥ a
6

∫ ∫ ∫
f(x, y)f(y, z)f(z, x)dxdydz −∫ ∫

hp(f(x, y))dxdy

≥ at− hp(f)

Hölder inequality.
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Let p be small.
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Need t triangles.

Need Ip(t) = c(t) log 1
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c′(t) ≃ 1
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2
3 log 1
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Let p be small.

Need t triangles.

Need Ip(t) = c(t) log 1
p

if limited to E-R graphs.

Need Ip(t) = c′(t) log 1
p

if we form a clique.

c′(t) ≃ 1
2(6t)

2
3 log 1

p
.

c(t) ≃ 1
2(6t)

1
3 log 1

p
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Let p be small.

Need t triangles.

Need Ip(t) = c(t) log 1
p

if limited to E-R graphs.

Need Ip(t) = c′(t) log 1
p

if we form a clique.

c′(t) ≃ 1
2(6t)

2
3 log 1

p
.

c(t) ≃ 1
2(6t)

1
3 log 1

p

c′(t) < c(t)
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Analysis of the variational problem for triangles.
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The region where constants are the best is
determined by
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Analysis of the variational problem for triangles.

The region where constants are the best is
determined by
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1
2 )

This is exact.
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Analysis of the variational problem for triangles.

The region where constants are the best is
determined by

the convex minorant of hp(x
1
2 )

This is exact.

Eyal Lubetsky
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Triangles can be replaced by any regular finite
graph.
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Triangles can be replaced by any regular finite graph.

If d is the degree of the vertices
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Triangles can be replaced by any regular finite graph.

If d is the degree of the vertices

the convex minorant of hp(x
1
d )
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Exponential Families
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Exponential Families

dQn,p = exp[n2F (G)− n2ψn(p, F )]dPn
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Exponential Families

dQn,p = exp[n2F (G)− n2ψn(p, F )]dPn

ψn(p, F ) is the normalizer.
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Example

F (G) =
1

n3
T (G)

where T (G) is the number of triangles.
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Example

F (G) =
1

n3
T (G)

where T (G) is the number of triangles.

The usual LDP related conclusions.

The measure concentrates on the minimizers of

sup
g
[F (g)− hp(g)]
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Sparse Graphs. p = pn
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Sparse Graphs. p = pn

There is no Szemeredi’s Lemma in the general
context.
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Sparse Graphs. p = pn

There is no Szemeredi’s Lemma in the general
context.

Partial Results are known.
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pn ≥ n−1 log n
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pn ≥ n−1 log n

e−c1(δ)n
2p2 log 1

p ≤ Pn,p[T ≥ (1+δ)E[T ]] ≤ e−c2(δ)n
2p2 log 1

p
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pn ≥ n−1 log n

e−c1(δ)n
2p2 log 1

p ≤ Pn,p[T ≥ (1+δ)E[T ]] ≤ e−c2(δ)n
2p2 log 1

p

Finally the correct constant was worked out. (with
additional conditions.)
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