Random Graphs

ISI, Bangalore, 27/1/2017



rge Deviations for Random Graphs.



Large Deviations for Random Graphs.

X is the space of symmetric functions f on [0, 1]?
with 0 < f(z,y) < 1.

Random Granhs — p. 2/25



Large Deviations for Random Graphs.

X is the space of symmetric functions f on [0, 1]?
with 0 < f(z,y) < 1.

The topology on X 1is the one induced by cut metric.

Random Granhs — p. 2/25



Large Deviations for Random Graphs.

X is the space of symmetric functions f on [0, 1]?
with 0 < f(z,y) < 1.

The topology on X is the one induced by cut metric.

d(f,g) =

sup / f(z,y) — g(z,y)|h(z)k(y)dzdy
0,1)°

h,k;[|hlloo <1
[klloo<1
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d(f,g) = Sup /E ><F[f(:lﬁ,y) — g(w, y)]dzdy




d(f,g) = SUP/E F[f(x,y) — g(z,y)|dzdy

EF

1" 1s a measure preserving transformation of
0,1] = [0,1]
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d(f,g) = SUP/E F[f(x,y) — g(z,y)|dzdy

EF

1" 1s a measure preserving transformation of
0,1] = [0,1]

Acts on X by mapping
f(z,y) = (Tf)(z,y) = f(Tz, Ty).
d(T'f, Tg) = d(f,9)
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d(f,g) = SUP/E F[f(x,y) — g(z,y)|dzdy

E,F
1" 1s a measure preserving transformation of
0,1] = [0,1]

Acts on X by mapping
f(z,y) = (Tf)(z,y) = f(Tz, Ty).
d(T'f, Tg) = d(f,9)

Forms a group S.

f~giftge{Sf}
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g € {Sf)} then f € {Sg}



g€ {Sf}then f € {Sg}
is the quotient space X/ ~



If g € {Sf}then f € {Sg}
Y is the quotient space X/ ~

hp(f) —
[ f(x,y)log 222+ (1 — f(x,y))log H oL dady
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If g € {Sf}then f € {Sg}
Y is the quotient space X/ ~

hp(f) —
[ f(@,y)log L2 4 (1 — f(z,y)) log L dxdy

1—p
h(Sf) = h(f). LSC implies that if f ~ ¢ then
In = Snf — ¢
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If g € {Sf}then f € {Sg}
Y is the quotient space X/ ~

hp(f) —
J f(@,y)log {28 4 (1 — f(x,y))log 2L dwdy

1—p
h(Sf) = h(f). LSC implies that if f ~ ¢ then
In = Snf — ¢

d(Snf,9) = 0
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If g € {Sf}then f € {Sg}
Y is the quotient space X/ ~

hp(f) —
J f(@,y)log {28 4 (1 — f(x,y))log 2L dwdy

1—p
h(Sf) = h(f). LSC implies that if f ~ ¢ then
In = Snf — ¢

d(Snf,9) = 0

d(f,S,"'g) =0

Random Granhs — p. 4/25



LSC, h(gn) = h(f) and h(g) < h(f)




and h(g) < h(f)

LSC, h(gn) = h(f)
< h(g)

symmetry h(f)



and h(g) < h(f)

LSC, h(gn) = h(f)
< h(g)

symmetry h(f)

1S compact.



By LSC, h(gn) = h(f) and h(g) < h(f)
h

By symmetry h(f) < h(g)
Y is compact.

Let us define a collection of functions { f(z,y)}.
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By LSC, h(gn) = h(f) and h(g) < h(f)
h

By symmetry h(f) < h(g)
Y is compact.

Let us define a collection of functions { f(z,y)}.

For each ¢ the unit interval 1s divided into ¢
subintervals (Jy, ..., Jyi1),
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By LSC, h(gn) = h(f) and h(g) < h(f)
h

By symmetry h(f) < h(g)
Y is compact.

Let us define a collection of functions { f(z,y)}.

For each ¢ the unit interval is divided into ¢ + 1
subintervals (Jy, ..., Jyi1),

¢ of them are of equal length and the last one is of
length at most e.
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Consider the set of functions which are some
constants p; ; between 0 and 1 on J; x J; for
1> 97 > 1
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otherwise.

Random Granhs — n. 6/25



Consider the set of functions which are some
constants p; ; between 0 and 1 on J; x J; for
1> 97> 1

and extended by symmetry for y > ¢ > 1 and 0
otherwise.

For each / this is a compact set in L as well as the
cut topology.

Random Granhs — n. 6/25



Consider the set of functions which are some
constants p; ; between 0 and 1 on J; x J; for
1> 97> 1

and extended by symmetry for y > ¢ > 1 and 0
otherwise.

For each / this is a compact set in L as well as the
cut topology.

For each € > 0, consider U, ()</<c,(e)-

Random Granhs — n. 6/25



Consider the set of functions which are some
constants p; ; between 0 and 1 on J; x J; for
1> 97> 1

and extended by symmetry for y > ¢ > 1 and 0
otherwise.

For each / this is a compact set in L as well as the
cut topology.

For each € > 0, consider U, ()</<c,(e)-

This 1s a compact set I,

Random Granhs — n. 6/25



Consider the set of functions which are some
constants p; ; between 0 and 1 on J; x J; for
1> 97> 1

and extended by symmetry for y > ¢ > 1 and 0
otherwise.

For each / this is a compact set in L as well as the
cut topology.

For each € > 0, consider U, ()</<c,(e)-
This 1s a compact set I,

A finite collection of discs { D, } of radius € in the
cut topology will cover this.
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Szemered1’s lemma says for any graph on n vertices
there 1s a label, 1.e. permutation
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Szemered1’s lemma says for any graph on n vertices
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that will bring 1t to an € neighborhood in the cut
topology to one of the discs.
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any graph with n vertices, n! in size, has at least one
member 1n some disc.
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Szemered1’s lemma says for any graph on n vertices
there 1s a label, 1.e. permutation

that will bring 1t to an € neighborhood in the cut
topology to one of the discs.

There 1s a finite collection of discs and the orbit of
any graph with n vertices, n! in size, has at least one
member 1n some disc.

The union of orbits of this finite collection of discs
contains the functions that correspond to all graphs.

Any function f can be approximated by functions
that correspond to graphs with enough vertices.

Replace f by g that is piecewise constant on a finite
grid. Can do it L; and so in cutmetric.
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Cut up each grid into a large number of sub
sub-squares and make a random choice with the
corresponding probabilities.
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Cut up each grid into a large number of sub
sub-squares and make a random choice with the
corresponding probabilities.

There will be convergence in each sub-square and so
in the full square.
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Cut up each grid into a large number of sub
sub-squares and make a random choice with the
corresponding probabilities.

There will be convergence in each sub-square and so
in the full square.

Therefore the space Y can be covered by a finite
number of discs of size 3¢ for any € > 0.

Y is totally bounded.
The space Y is complete. JD( fu, fm) — 0.
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>t a sub-sequence with do( f, fui1) < 2



Get a sub-sequence with do(f,, fre1) < 27"
Track it with f,, such that do(f,,, fni1) < 2277
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Get a sub-sequence with do(f,, fre1) < 27"
Track it with f,, such that do(f,,, fni1) < 2277

Use the completeness of d
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per Bound.



Upper Bound.

For a small ball, one gets the upper bound, by
Chebychev’s inequality and we get the right rate
function.
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Upper Bound.

For a small ball, one gets the upper bound, by
Chebychev’s inequality and we get the right rate
function.

After all, any cut neighborhood 1s contained 1n a
weak neighborhood, and the upper bound estimate

holds.
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Upper Bound.

For a small ball, one gets the upper bound, by
Chebychev’s inequality and we get the right rate
function.

After all, any cut neighborhood 1s contained 1n a

weak neighborhood, and the upper bound estimate
holds.

But to prove in Y we need to get the same estimate
on the orbit of the disc by the group S.

Random Granhs — n. 10/25



We saw earlier that there 1s a finite number of discs
D such that for any n, any graph with n vertices,

permuted suitably, 1s represented by a function in
K= U; D
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We saw earlier that there 1s a finite number of discs
D such that for any n, any graph with n vertices,

permuted suitably, 1s represented by a function in
K= U; D

The orbit of K¢ by the permutation group of size n/!
covers all of Y.

~ ~

Pn,p[D(fv 77)] < n'Pn,p[D(fv 77) 2 KG]
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We saw earlier that there 1s a finite number of discs
D such that for any n, any graph with n vertices,

permuted suitably, 1s represented by a function in
K= U; D

The orbit of K¢ by the permutation group of size n/!
covers all of Y.

Pn,p[D(fa n)] < n!Pn,p[D(JEa n) N K|

Finite number of discs D?Ej. Take one.
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~

timate P, ,|D(f,n) N D(g, 2¢)]



Estimate P, ,[D(f,n) N D(g, 2¢)]

It they do not intersect there 1s nothing to do.
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Estimate P, ,[D(f,n) N D(g, 2¢)]

It they do not intersect there 1s nothing to do.

If they intersect g € D(f, 3¢)
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Estimate P, ,[D(f,n) N D(g, 2¢)]

It they do not intersect there 1s nothing to do.
If they intersect g € D(f, 3¢)
h(g) > h(f) -0
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Estimate P, ,[D(f,n) N D(g, 2¢)]

It they do not intersect there 1s nothing to do.
If they intersect g € D(f, 3¢)

h(g) = h(f) — 6
LDP bound for D(g, €) is enough.
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We look at the triangle count. Let I’ be the number
of triangles 1in our random graph.
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n3p3

6

Y
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We look at the triangle count. Let I’ be the number
of triangles 1in our random graph.
n3p3

6

Y

1
lim — log P, [T > tn’] = —1,(t)

n—o00 12
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We look at the triangle count. Let I’ be the number
of triangles 1in our random graph.
n3p3

6

Y

1
lim — log P, [T > tn’] = —1,(t)

n—o00 12

(1) = inf[hy(/)
[ @, 9)f(y, 2) f (2, x)dedydz = 6t]
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We look at the triangle count. Let I’ be the number
of triangles 1in our random graph.
n3p3

6

Y

1
lim — log P, ,[T > tn®] = —1I,(t)

n—o00 12
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Needs an argument that

1
lim —log P, [T > tn’] = —1,(t)

n—oo N,

N . : : PP
is strictly increasing for ¢ > %
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Needs an argument that

1
lim —log P, [T > tn’] = —1,(t)

n—oo N,

N . : : PP
is strictly increasing for ¢ > %

If2 <t <s<1,thenwith (1—4)° =1

L < I
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One choice for getting the right number of triangles
is to choose Bernoulli with p = (6t)3
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One choice for getting the right number of triangles
is to choose Bernoulli with p = (6t)3

This gives a function ﬁp(t) = h,((6¢)

W=

)
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One choice for getting the right number of triangles
is to choose Bernoulli with p = (6t)3

This gives a function ﬁp(t) = h,((6%)3)

One compares f with f; = (1 — d) f + dp and gets
bounds on 7" and /,,.

W=
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1o =
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One choice for getting the right number of triangles
is to choose Bernoulli with p = (6t)3

This gives a function ﬁp(t) = h,((6%)3)

One compares f with f; = (1 — d) f + dp and gets
bounds on 7" and /,,.

Pick f so that h,(f) ~ I,(s) and T(f) ~ s
-y =t
T(fs5) =2 (L=0)°T(f) >t

W=
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One choice for getting the right number of triangles
is to choose Bernoulli with p = (6t)3

This gives a function ﬁp(t) = h,((6%)3)

One compares f with f; = (1 — d) f + dp and gets
bounds on 7" and /,,.

Pick f so that h,(f) ~ I,(s) and T'(f) ~
(o)’ =1
T(fs) = (1 —20)°
I(t) < hy(fs) < (1= 0)hy(f) = [£]5 by convexity.

W=

T(f) >t
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W

e function h,((6t)3) need not be convex, although

(t) is.



W[

The function h,((6t)3) need not be convex, although

hy(t) is.

Let h,(t) be its convex minorant of h,,((6t)

W=

).
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W[

The function h,((6t)3) need not be convex, although

hy(t) is.
Let h,(t) be its convex minorant of h,((6t)7) .

If h,(t) = h,(t) i.e they touch at some point ¢ then
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W[

The function h,,((6t)
hy(t) is.

Let h,(t) be its convex minorant of h,((6t)7) .

) need not be convex, although

If h,(t) = h,(t) i.e they touch at some point ¢ then

f(x,y) = (6t)3 is the optimizer for that (p, t) and
the graph looks like an Erdos-Renyi1 graph with a

new p = (6t)3.
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s above h which is above its tangent plane at ¢
ere all three touch.



h is above h which is above its tangent plane at ¢
where all three touch.

Let the tangent line be ax + b

Random Granhs — n. 17/25



h is above h which is above its tangent plane at ¢
where all three touch.

Let the tangent line be ax + b

t = argmax,|axr + b — hy(x)]
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h is above h which is above its tangent plane at ¢
where all three touch.

Let the tangent line be ax + b

t = argmax,|axr + b — hy(x)]

A

= argmaz,;|ax + b — h,(x)]

AN

= argmaz,;|ax — hy(z)]

Wl

Let ¢; be the function identically equal to (6t)
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at — hy(c;) = [[228E 1 (c(z,y))|ddy

> [[HGE — hy(f (2, y))ldedy
because ? 1s the argmax.
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at — hy(c;) = [[228E 1 (c(z,y))|ddy

> [l (f (2, y)]dedy

because ¢ 1s the argmax.

affff (x,y) f(y, 2) f(z, x)dxdydz —
[ h(f(z,y) dxdy

Random Granhs — n. 18/25



at — hy(c) = f[a[Ct(:g’y)]g hy(ce(z, y))|dzdy
> [l (f (2, y)]dedy

because ¢ 1s the argmax.

affff (x,y) f(y, 2) f(z, x)dxdydz —
ffh (2, 1) dxdy
> at — hy(f)
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at — hy(c) = f[a[Ct(:g’y)]g hy(ce(z, y))|dzdy
> [l (f (2, y)]dedy

because ¢ 1s the argmax.

affff (x,y) f(y, 2) f(z, x)dxdydz —
[ h(f(z,y) dxdy
> at — hy(f)

Holder inequality.
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t p be small.
>ed ¢ triangles.



Let p be small.
Need ¢ triangles.

Need I,(t) = c(t) log ]l) if limited to E-R graphs.
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Need ¢ triangles.
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Let p be small.
Need ¢ triangles.

Need I,(t) = c(?) log if limited to E-R graphs.

Need I,(t) = c/(?) log if we form a clique.

c(t) ~ 1(6t)3 log L !

DO | —
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Let p be small.
Need ¢ triangles.

Need I,(t) = c(?) log if limited to E-R graphs.
Need I,(t) = c/(?) log if we form a clique.

) ~ %(675) log 2 !
e(t) = 4(61)" log
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Let p be small.
Need ¢ triangles.

Need I,(t) = c(?) log if limited to E-R graphs.
Need I,(t) = c/(?) log if we form a clique.
) ~ %(675) log 2 !

c(t) ~ %(6t)§ log%
c'(t) < c(t)

Random Granhs — n. 19/25



alysis of the variational problem for triangles.



Analysis of the variational problem for triangles.

The region where constants are the best 1s
determined by
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Analysis of the variational problem for triangles.

The region where constants are the best 1s
determined by

the convex minorant of hp(:p%)
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Analysis of the variational problem for triangles.

The region where constants are the best 1s
determined by

the convex minorant of hp(:p%)

This 1s exact.
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Analysis of the variational problem for triangles.

The region where constants are the best 1s
determined by

the convex minorant of hp(:p%)

This 1s exact.
Eyal Lubetsky
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1angles can be replaced by any regular finite
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Triangles can be replaced by any regular finite graph.
It d 1s the degree of the vertices
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Triangles can be replaced by any regular finite graph.
It d 1s the degree of the vertices

the convex minorant of hp(a:%)
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ponential Families



ponential Families

dQn,p — eXp[HQF(g) — nz%(p, F)]dpn



Exponential Families

dQyp = exp[n”F(G) — n*¢u(p, F)dP,
Y, (p, F) is the normalizer.
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ere 1'(G) is the number of triangles.



Example

1
F(G) = 5T ()
where T'(G) is the number of triangles.

The usual LDP related conclusions.
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Example

1
F(G) = 5T ()
where T'(G) is the number of triangles.

The usual LDP related conclusions.

The measure concentrates on the minimizers of

Sgp[F (9) — hy(9)]
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arse Graphs. p = p,



Sparse Graphs. p = p,

There 1s no Szemeredi’s Lemma 1n the general
context.
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Sparse Graphs. p = p,

There 1s no Szemeredi’s Lemma 1n the general
context.

Partial Results are known.
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p, > n tlogn

e 1Oy < P [T > (146) E[T]] < e 0o,

Finally the correct constant was worked out. (with
additional conditions.)
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