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Model

! (S := (Sn)n≥0,Px): SRW on Zd starting at x ∈ Zd (d ≥ 2);

! (ω = (ωx)x∈Zd ,P): Independent Ber(p) random variables.

Let O = {x ∈ Zd : ωx = 0}. The random walk is killed upon
hitting O:

τO := inf{n ≥ 0 : Sn ∈ O}.

The question is how S (and O) behaves conditioned on
{τO > N}, i.e., under the measure

µN ((S,O) ∈ ·) := P⊗P((S,O) ∈ · | τO > N).

This is called the annealed law since the average is taken over the
environment. (Called quenched if environment is fixed.)
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In other contexts

1. The killed random walk is generated by the random
Schrödinger operator − 1

2d∆+∞ · 1O. Asmyptotics of
P⊗P(τO > N) is related to the Anderson localization
through the so-called Lifshiz tail. The localization for 2D/3D
discrete Bernoulli Anderson model (with finite coupling
strength) has very recently proved by Ding–Smart/Li–Zhang.

2. One can integrate out the O-marginal since τO > N is
equivalent to O ∩ S[0,N ] = ∅. Then S-marginal is

µN (S ∈ ·) =
E
[
p|S[0,N ]| : S ∈ ·

]

E
[
p|S[0,N ]|

] .

This can be regarded as a self-attractive polymer model.
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Part 1: Geometry of the range
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Earlier works 1: partition function

µN ((S,O) ∈ ·) :=P⊗P((S,O) ∈ · | τO > N)Recall:

=
P⊗P((S,O) ∈ ·, τO > N)

P⊗P(τO > N)
.

Theorem (Donsker–Varadhan (1979))

For d ≥ 2,

P⊗P(τO > N) = exp
{
−cDVN

d
d+2 (1 + o(1))

}
,

with cDV = inf
U
{|U | log(1/p) + λ(U)},

where λ(U) is the principal Dirichlet eigenvalue of − 1
2d∆ in U .

Remark
Due to the Faber–Krahn isoperimetric inequality, the above
infimum is achieved by a ball B(x; $1) for some $1(d, p) > 0.
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Earlier works 1: partition function

The proof roughly goes as follows:

P⊗P(τO > N) =
∑

U

P(O ∩ U = ∅)P(S[0,N ] = U)

≈ max
U

p|U | exp{−Nλ(U)}

= exp

{
−N

d
d+2 inf

U
{|U | log(1/p) + λ(U)}

}
.

The second line is a kind of Laplace principle.

! Donsker–Varadhan proved it by the large deviation principle,

! Antal (1995) gave another proof by Sznitman’s “method of
enlargement of obstacles”.

Anyway, this “indicates” that the best strategy —to stay in a ball

of radius $N = $1N
1

d+2— dominates others.

6 / 37



Earlier works 1: partition function

•0

•

!

"

$N = $1N
1

d+2

xN

SN

This picture is a bit misleading since almost all the sites should be

visited N/N
d

d+2 = N
2

d+2 times.
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Earlier works 2: confinement property
This “indication” has been made rigorous by Sznitman (1991,
d = 2), Bolthausen (1994, d = 2) and Povel (1999, d ≥ 3) in the
following stronger form:

Theorem (Confinement property)

For any d ≥ 2, there exists xN = xN (O) ∈ B(0; $N ) such that for
any ε > 0,

lim
N→∞

µN
(
S[0,N ] ⊂ B(xN ; (1 + ε)$N )

)
= 1.

Remark
Why “stronger”? Because the large deviation principle only tells us
that the random walk spends most of the time in a ball B(x; $N ).
See Bolthausen’s LNM 1781 for more detail, where he wrote “it is
not clear if one really should believe in this confinement (and had
in fact been doubted by experts in the beginning).”
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Earlier works 2.5: clearing/covering ball for d = 2

In dimension two, a bit more have been known.

Proposition (Ball clearing: Sznitman (1991))

Let d = 2. Then for any ε > 0,

lim
N→∞

µN (O ∩B(xN ; (1− ε)$N ) = ∅) = 1.

Proposition (Ball covering: Bolthausen (1994))

Let d = 2. Then for any ε > 0,

lim
N→∞

µN
(
B(xN ; (1− ε)$N ) ⊂ S[0,N ]

)
= 1.

Bolthausen used this in his proof of the confinement property and
he conjectured that this remains true for d ≥ 3.
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Main result 1: ball covering in d ≥ 3

Theorem (Ball covering: Ding–F.–Sun–Xu (2020))

Let d ≥ 2. Then for any ε > 0,

lim
N→∞

µN
(
B(xN ; (1− ε)$N ) ⊂ S[0,N ]

)
= 1.

Remark
This confirms Bolthausen’s conjecture in 1994. However, our proof
relies on the confinement property and hence does not give a way
to extend Bolthausen’s proof of confinement to d ≥ 3. Recently,
Berestycki–Cerf announced a proof of the ball covering without
assuming the confinement.
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Main result 2: boundary size

The confinement property and the ball covering theorem together
imply

∂S[0,N ] ⊂ B(xN ; (1 + ε)$N ) \B(xN ; (1− ε)$N ).

The following theorem is a step toward understanding the surface
fluctuation:

Theorem (Boundary size: Ding–F.–Sun–Xu (2020))

Let d ≥ 2. Then there exists α > 0 such that

lim
N→∞

µN
(
|∂S[0,N ]| ≤ $d−1

N (log $N )α
)
= 1.
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Part 2: A model with bias
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Earlier works 3: Ballisticity transition

Consider a model with bias h ∈ Rd:

µh
N ((S,O) ∈ ·) :=

E⊗E
[
e〈h,SN 〉 : τO > N, (S,O) ∈ ·

]

E⊗E
[
e〈h,SN 〉 : τO > N

] .

Grassberger–Procaccia (1982) predicted that this model undergoes
a ballisticity transition. Later Eisele–Lang (1987) proved a phase
transition at the level of partition function.

Theorem (Sznitman (1995))

Let d ≥ 2. There exists a compact set K such that

lim
N→∞

µh
N (|SN | = o(N)) =

{
1 if h ∈ K◦,

0 if h +∈ K.

When h ∈ K◦, in fact o(N) can be improved to o(N
d

d+2 ).
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Earlier works 3: Ballisticity transition

To describe the criticality, we need the so-called Lyapunov
exponent:

β(x) := − lim
n→∞

logP⊗P(τO > τnx).

(Existence follows from an easy sub-additivity argument.)
This measures a cost for the RW to make a long crossing among
the obstacles.

On the other hand, for the biased model, there is a gain of e〈h,nx〉

from the above long crossing. Therefore

! 〈h, x〉 < β(x) for all x (cost beats gain) ⇒ sub-ballistic,

! 〈h, x〉 > β(x) for some x (gain beats cost) ⇒ ballistic.
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Earlier works 4: Ballistic phase

Recently, the understanding of the ballistic phase has been
improved a lot.

Theorem (Ioffe–Velenik (2013))

The random walk is ballistic under µh
N for h ∈ ∂K. Moreover, in

the whole ballistic phase,

1. the random walk has an asymptorics speed,

2. the transversal fluctuation converges to a Gaussian law.

These are based on an intricate renormalization analysis in the
spirit of “regeneration time” technique for RWRE. But it is harder
here since at criticality (cost=gain), there is no a priori condition
that create an effective bias.

Sad news: On October 1st, 2020, Dmitry Ioffe passed away...
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Main result 3: Sub-ballistic phase

The last result is about the sub-ballistic phase.

Theorem (Ding–F.–Sun–Xu (2020))

Let h ∈ K◦. Then for any ε > 0, with µh
N -high probability:

B($Neh; (1− ε)$N ) ⊂ S[0,N ] ⊂ B($Neh; (1 + ε)$N ),

SN ∈ B(2$Neh; ε$N ),

where eh := h/|h|.
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Schematic figure in the sub-ballistic phase

Theorem (Ding–F.–Sun–Xu (2020))

Let h ∈ K◦. Then, with µh
N -high probability:

• #
h-direction

0 •

!

"

$N = $1N
1

d+2

$Neh
SN

The center xN and the endpoint SN are shifted toward h to
maximize the gain e〈h,SN 〉, but otherwise the same as unbiased.

This improves Sznitman’s o(N
d

d+2 ) result to O(N
1

d+2 ). In the
proof, a “geometry of the range” result plays a key role.
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The end of first talk
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Contents of second talk

In this second talk, I explain some of the proof elements. There are
three contents:

1. Confinement: Explain a common difficulty.

2. Ball covering: Focus on the “comparison” techniques.

3. Confinement with bias: how to use ball covering.

I will not tell you the proof outline of the “boundary size” result.
It requires a bit complicated notation and good familiarity with the
“comparison” techniques.
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Proof Outline for Confinement
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Difficulty

Recall the “confinement property” ($N / N
1

d+2 ):

lim
N→∞

µN
(
S[0,N ] ⊂ B(xN ; (1 + ε)$N )

)
= 1.

According to Bolthausen, “it is not clear if one really should
believe in this confinement...”. Why?

The problem is that there are two notions of “system size”.

1. Volume: the partition function asymptotics is

P⊗P(τO > N) = exp
{
−cDVN

d
d+2 + o(N

d
d+2 )

}
.

2. Length: RW can make an excursion of length N
1

d+2 with

probability ≈ e−N
1

d+2 . (Make an obstacle free corridor and
follow it.)
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Difficulty

It is certainly clear that

but it is not clear if one really should believe in

The error o(N
d

d+2 ) in Donsker–Varadhan’s result is not small in
the “length scale” (d += 1). Need a new idea for the confinement.
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Idea of Sznitman and Povel’s proof

Roughly speaking, Sznitman and Povel’s proof relies on analytical
properties of Schrödinger semigroup and strong Markov.

Key elements are

1. find a sharp but non-explicit (spectral-probabilistic) lower
bound for P⊗P(τO > N),

2. use “method of enlargement of obstacles” to show that one
cannot expect more than a single vacant ball of size $N .
−→ Outside the ball is dangerous (in a spec. th. sense).

3. use strong Markov to extract the cost of the first excursion
away from the ball.

The special probabilistic form of the lower bound in 1 allows them
to compare it with the upper bound in 3 for the probability of
having an excursion.
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Idea of Bolthausen’s proof

He obeyed self-attractive polymer µN (S ∈ ·) = E[e−ν|S[0, N ]| : S∈·]
E[e−ν|S[0, N ]|]

interpretation. The argument roughly goes as follows:

1. first prove the ball covering:

lim
N→∞

µN
(
B(xN ; (1− ε)$N ) ⊂ S[0,N ]

)
= 1.

2. starting from a path with many outgoing excursions, perform
a “folding” operation that maps the path to another
“confined” one. This reduces the energy ν|S[0,N ]| a lot.

Of course there is a problem of “entropy loss” but he managed to
prove that the gain beats the loss.
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Proof Idea for Ball Covering
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Proof idea for weak version of ball covering
Our proof heavily relies on comparison arguments. The following
lemma gives an illustrative example:

Lemma (clearing implies covering)

Suppose µN (O ∩B(xN ; (1− ε)$N ) = ∅) = 1− o($−d
N ).

Then, lim
N→∞

µN
(
B(xN ; (1− ε)$N ) ⊂ S[0,N ]

)
= 1.

Proof.
Suppose µN (∃x ∈ B(xN ; (1− ε)$N ) \ S[0,N ]) ≥ c > 0. Then there
is a point x such that

µN (x ∈ B(xN ; (1− ε)$N ) \ S[0,N ]) ≥ c$−d
N .

But the left-hand side is bounded by

1

1− p
µN (x ∈ B(xN ; (1− ε)$N ) \ S[0,N ] and x ∈ O)

and this contradicts the assumption.
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Proof idea for ball clearing

To show: lim
N→∞

µN (O ∩B(xN ; (1− ε)$N ) = ∅) = 1.

Suppose x ∈ O ∩B(xN ; (1− ε)$N ). Then, either

1. B(x; ε$N/2) contains a large density of obstacles or

2. B(x; ε$N/2) contains a small density of obstacles.

! Case 1 is easy to exclude since it makes too hard for the
random walk to survive.

! Case 2 is more complicated and split into two sub-cases...
2.1 random walk comes close to x many times;
2.2 random walk comes close to x few times.

We deal with them by using comparison arguments.
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Proof idea for ball clearing

Case 2.1: B(x; ε$N/2) contains a small density of obstacles and
random walk comes close to x many times.

We remove all the obstacles in B(x; ε$N/2). This operation

! imposes a cost in the environment probability;

! brings a gain in the random walk probability.

It turns out that the gain beats the cost:

P⊗P(Case 2.1) 2 P⊗P(τO > N,O ∩B(x; ε$N/2) = ∅).

However, it is not straightforward because

! the cost increases linearly in the number of obstacles in
B(x; ε$N/2), while

! the gain does NOT increase linearly in the number of
obstacles in B(x; ε$N/2).
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Proof idea for ball clearing
Case 2.2: B(x; ε$N/2) contains a small density of obstacles and
random walk comes close to x few times.

We remove all the obstacles in B(x; ε$N/2) \B(x; ε$N/4), let the
random walk avoid B(x; ε$N/4), and then change the obstacles
configuration in B(x; ε$N/4) to typical ones. This operation

! imposes a cost in the random walk probability;
! brings a gain in the environment probability.
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! imposes a cost in the random walk probability;

! brings a gain in the environment probability.

It turns out that the gain beats the cost:

P⊗P(Case 2.2)

2 P⊗P(τO∪B(x;ε$N/4) > N,O ∩B(x; ε$N/4) is typical).

Remark
This argument looks wasteful since we are comparing the LHS to a
tiny fraction of the partition function. But it is more effective than

comparing with exp{−cDVN
d

d+2 + o(N
d

d+2 )}.
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Proof Idea for Confinement with Bias

Recall: µh
N (A) =

E⊗E
[
e〈h,SN 〉 : A ∩ {τO > N}

]

E⊗E
[
e〈h,SN 〉 : τO > N

]
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Partition function

Sznitman (1995) proved that under the annealed measure with a
subcritical bias,

µh
N

(
SN = o(N

d
d+2 )

)
→ 1.

This (morally) means that the extra e〈h,SN 〉 term is eo(N
d

d+2 ).
As a result, the partition function behaves as

E⊗E
[
e〈h,SN 〉 : τO > N

]
= exp

{
−cDVN

d
d+2 (1 + o(1))

}
,

exactly like the unbiased case.

So the global picture (in the volume scale) is the same as the
unbiased case.
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From volume to length scale

What we can read from the partition function asymptotics is

1. there is a ball of radius $N almost free of obstacles,

2. RW spends most of the time in that ball.

分配関数から分かること
劣臨界相では分配関数は h = 0と同じ振る舞いをすることが分
かったので，次が従う：
1. 半径 !N の（ほとんどOを含まない）球が存在して，
2. ランダムウォークはほとんどの時間をそこで過ごす．

ここから次の 2ステップで進む．
i) First visitから last visitまでの間は B(x ; !N)に留まる．
ii) 最初と最後の pieceも B(x ; !N)に留まる．

17 / 21

From this picture, we proceed in two steps:

i) RW is confined in the ball from the first visit to last visit,

ii) the first and last pieces also must be in the ball.
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The reason for 2 steps

Technically, the excursions starting and ending in the ball are
relatively easy to exclude because they don’t contribute to e〈h,SN 〉.

On the other hand, this is a necessary input to exclude the first
and last pieces. It is the subcriticality that makes these two pieces
stay in the ball but β was an “averaged” crossing cost.

なぜ 2ステップに分けるのか？
第 2ステップの
ii) 最初と最後の pieceも B(x ; !N)に留まる．
が重要かつ難しい方である．基本的には劣臨界性から出す：

ところが β(·)は“平均化された”横断コストであったから，
B(x ; !N)の外側が“平均化された”媒質であることを示さない
と，上の描像は正当化されない．

このために第 1ステップ
i) First visitから last visitまでの間は B(x ; !N)に留まる．
が必要なのである．

18 / 21

It is not clear whether the environment between y and SN should
behave in an “averaged” manner.
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Flow of the argument
So the overall argument goes as follows:

主結果の証明の要約
分配関数の挙動からランダムウォークはほとんどの時間をある
B(x ; !N)で過ごすことを思い出す：

µh
N

( )

! µh
N

( )
(Bolthausenの議論)

! µh
N

( )
(劣臨界性).

xN と SN の位置は，半径 !N の球への局在という制約のもとで
〈h, SN〉を最大化するものとして決まる．

21 / 21

For the proof of first step, we (roughly) follow Bolthausen’s proof
of the confinement property.
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Confinement of the middle part

Recall Bolthausen’s strategy:

1. prove the ball covering first,

2. starting from a path with many outgoing excursions, perform
a “folding” operation that maps the path to another
“confined” one.

We need to prove the ball covering but now under the biased
measure.

Lemma
Let d ≥ 2 and B(xN ; $N ). For any ε > 0,

lim
N→∞

µh
N

(
B(xN ; (1− ε)$N ) ⊂ S[τB ,τ←B ]

)
= 1.
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Final remark

The proof of the previous lemma is EXACTLY the same as h = 0
case. The reason is that our proof for h = 0 was essentially
combinatorial. I don’t know if the large deviation arguments of
Bolthausen and Beresticky–Cerf works for µh

N or not.

After having the lemma, we can (roughly) follow Bolthausen’s
argument to prove the confinement of the middle part.

This completes our program.
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Thank you!
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