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A digression: some other models of random growth

First passage percolation on Zd

• IID positive weights on the edges.

• Consider the random metric obtained by considering the minimum
path weight between two vertices.

Exponential last passage percolation on Z2

• IID exponential weights on the vertices.

• Consider the maximum (oriented) path weight (last passage time
between ordered vertices).

• Planar FPP/LPP models are expected to belong to the KPZ
universality class, rigorously known only for exactly solvable
models such as exponential LPP.

• Directed landscape is believed to be the universal scaling limit.
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Hoffman’s question

• Consider geodesics in FPP/LPP.

• Geodesics are expected to pass through lower (higher) weight
regions.

• It is of interest to understand the environment on/around the
geodesics.
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Hoffman’s question

Question (Chris Hoffman, AIM 2015)

• Consider FPP in Zd with a nive passage time distribution.

• Let Γn denote the geodesic between 0 and ne1.

• Let ωv denote the environment rooted at v for v ∈ Zd.
• Consider the empirical measure on environments

µn =
1

|Γn|
∑
v∈Γn

ωv.

• Does µn converge almost surely as n→∞?
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Results for “generic” FPP

• A variant of Hoffman’s question was considered by Erik Bates.

• Bates (2019) showed that the empirical distribution of the weight
on the geodesic almost surely converges for a “dense” class of
passage time distributions for various notions of denseness.

• Argument hinges on abstract convex analysis.

• Janjigian, Lam and Shen (2020) showed that the limit law must be
absolutely continuous w.r.t. the passage time distribution.
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Results in the integrable set-up: exponential LPP

• Martin, Sly and Zhang (2021) answered Hoffman’s question in the
context of planar exponential LPP.

• They showed that the empirical environment along the geodesic
from (0, 0) to (n, n) converges almost surely as n→∞.

• Using connections to TASEP and and the correspondence between
infinite geodesics and second class particles, they could do some
explicit computations on the limiting environment.
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Results in the integrable set-up: directed landscape

• Directed landscape is the putative universal scaling limit of planar
LPP models under appropriate space time scaling.

• The geodesic from (0, 0) to (n, n) after scaling converges to the
geodesic from (0, 0) to (0, 1).

• Dauvergne, Sarkar and Virag (2020) calculated the local limit of
the environment around a point on the geodesic.

• The limit is explicitly described as a directed landscape with
Brownian-Bessel boundary data.
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Formulating the question in the LQG set-up

• Our goal is to formulate and investigate the same question in the
LQG set-up.

• Fix the almost surely unique infinite geodesic Γ started at 0
parametrized by the LQG length.

• We want to choose a point randomly on an initial segment of this
geodesic and consider its appropriately scaled environment
together with induced metric and investigate whether that the
environment/metric converges as the endpoint of the segment goes
off to ∞.

• To this end, we shall choose a ball around a point on the geodesic
and scale it to the unit ball D. We shall use appropriate scaling to
obtain a random distribution and a random induced metric on this
ball.
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Scale dependent dilation

• The primary distinction between the LQG and the earlier
FPP/LPP set-up is that the underlying noise here is ”IID modulo
rescaling”.

h(r·)−Av(h,Tr)
d
= h(·).

Dh(r·)(rz, rw) = rξQDh(·)(z, w)

• Recall also the scale invariance of the geodesic

(h,Γ·) = (h(r·)−Av(h,Tr), r−1ΓrξQeξAv(h,Tr)·)
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Local environment

• This suggests the following definition:

Local environment

Fix δ ∈ (0, 1). For x ∈ C, define a field hx on D by suitably dilating
and normalizing/centering the field h in a ball of size δ|x| around x

hx = h ◦Ψx,δ − cx(h),

where Ψx,δ takes the ball of radius δ|x| around x to the unit ball and
the generalized function h ◦Ψx,δ on D naturally defined by the
composition of the field with the map Ψ; the quantity cx(h) is chosen
so that Av(hx,T) = 0.
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Metric on the local environment

• Analogously, we define the following metric on D.

Dh,x(u, v) = |δx|−ξQe−ξAv(h,Tδ|x|(x))Dh(x+ δ|x|u, x+ δ|x|v;Dδ|x|(x)).

• This are not the only choices for the definition of local
environment and metric, but are natural ones.

• The parameter δ is somewhat artificial and is the artefact of our
proof.
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Log parametrization of the geodesic

• We also want to ensure that the empirical distribution of the
environment gets equal contribution from each scale.
• Thus for t > 0, and T ∼ Unif [0, t], we wish to consider the random

point on the geodesic whose LQG distance from the origin is eT .
• So we are looking at the random environment

Fieldt = hΓ
eT
.

• Let Metrict denote the corresponding metric.
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The main result

Theorem (B., Bhatia, Ganguly (2021))

Fix δ ∈ (0, 1).

• There is a random distribution Field on D such that such that
almost surely,

Fieldt
d→ Field

as t→∞.

• A similar result holds for Metrict.
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Partitioning the geodesic using coalescence points

• Fix K > 0 sufficiently large.
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Partitioning the geodesic using coalescence points

• Using the coalescence result one can show that there exists a
sequence {pj}j∈Z with pj → 0 as j → −∞ and pj →∞ as j →∞
of coalescence points as in the figure.
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Partitioning the geodesic using coalescence points

• Partition the geodesic Γ into segments Γ(pj , pj+1).
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Partitioning the geodesic using coalescence points

• The key idea is to show that the contributions coming from the
segments Γ(pj , pj+1) form a stationary sequence with fast decay of
correlations and use a SLLN.
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Some key tools

• Let Hi denote the field obtained by considering h restricted to
C>Ki , centering it by making its average on the boundary circle 0,
and rescaling to C>1.

• Basic invariance of GFF implies Hi is a stationary sequence.

• Use domain Markov property to show that for j � i, the
Radon-Nikodym derivative of conditional law of Hj given Hi w.r.t.
its unconditional law is close to 1 except on a set of probability
exponentially small in j − i.
• Using this one can show that ”local” observables of Hi have

exponential decay of correlation.
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Some key tools

• One still needs to control the dependence across scales coming
from the log-parametrization of the geodesic.

• For this we set Li = Dh(0, pi).

• We show that Gi = logLi+1 − logLi is also a stationary sequence
with exponential decay of correlations.

• This requires some Brownian computations using scale invariance
of Γ and the fact that the circle average process is a Brownian
motion.
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Properties of the limiting field

• We do not have any explicit description of the limiting field,
however some basic properties can be established.

Theorem (B., Bhatia, Ganguly (2021))

• The law of Field is mutually singular with respect to the law of h
restricted to D.
• For each δ′ ∈ (0, 1), the law of Field on the annulus C(δ′,1) is
absolutely continuous with respect to the law of h restricted to
C(δ′,1).
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A sketch of the proof for singularity

• At least heuristically, In Metric, there should exist a bigeodesic
(i.e. a geodesic between two boundary points of D) passing
through 0 with probability 1.
• In Dh(·, ·;D), this almost surely does not happen.
• This can be shown by the same argument used to show the

non-existence of bigeodesics in LQG metric.
• A more robust version pf this argument shows the mutual

singularity of the metrics which then can be transferred to the
corresponding fields.
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Some interesting directions

• Can we find an explicit description of the limiting field and metric?

• What about local limits near the geodesic?

• Is it possible to characterise the singularity near 0?

• What is the thickness of a typical point on the geodesic?
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Thank you

Questions?
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