Environment seen from infinite geodesics in Liouville quantum gravity

Riddhipratim Basu

International Centre for Theoretical Sciences Tata Institute of Fundamental Research

Bangalore Probability Seminar November 8, 2021

A digression: some other models of random growth

First passage percolation on \mathbb{Z}^d

- IID positive weights on the edges.
- Consider the random metric obtained by considering the minimum path weight between two vertices.

Exponential last passage percolation on \mathbb{Z}^2

- IID exponential weights on the vertices.
- Consider the maximum (oriented) path weight (last passage time between ordered vertices).
- Planar FPP/LPP models are expected to belong to the KPZ universality class, rigorously known only for exactly solvable models such as exponential LPP.
- Directed landscape is believed to be the universal scaling limit.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Hoffman's question

- Consider geodesics in FPP/LPP.
- Geodesics are expected to pass through lower (higher) weight regions.
- It is of interest to understand the environment on/around the geodesics.

э

イロト イヨト イヨト イヨト

Hoffman's question

Question (Chris Hoffman, AIM 2015)

- Consider FPP in \mathbb{Z}^d with a nive passage time distribution.
- Let Γ_n denote the geodesic between **0** and ne_1 .
- Let ω_v denote the environment rooted at v for $v \in \mathbb{Z}^d$.
- Consider the empirical measure on environments

$$\mu_n = \frac{1}{|\Gamma_n|} \sum_{v \in \Gamma_n} \omega_v.$$

• Does μ_n converge almost surely as $n \to \infty$?

Results for "generic" FPP

- A variant of Hoffman's question was considered by Erik Bates.
- Bates (2019) showed that the empirical distribution of the weight on the geodesic almost surely converges for a "dense" class of passage time distributions for various notions of denseness.
- Argument hinges on abstract convex analysis.
- Janjigian, Lam and Shen (2020) showed that the limit law must be absolutely continuous w.r.t. the passage time distribution.

(日) (周) (日) (日)

Results in the integrable set-up: exponential LPP

- Martin, Sly and Zhang (2021) answered Hoffman's question in the context of planar exponential LPP.
- They showed that the empirical environment along the geodesic from (0,0) to (n,n) converges almost surely as $n \to \infty$.
- Using connections to TASEP and and the correspondence between infinite geodesics and second class particles, they could do some explicit computations on the limiting environment.

・ロン ・四と ・ヨン ・ ヨン

Results in the integrable set-up: directed landscape

- Directed landscape is the putative universal scaling limit of planar LPP models under appropriate space time scaling.
- The geodesic from (0,0) to (n,n) after scaling converges to the geodesic from (0,0) to (0,1).
- Dauvergne, Sarkar and Virag (2020) calculated the local limit of the environment around a point on the geodesic.
- The limit is explicitly described as a directed landscape with Brownian-Bessel boundary data.

Formulating the question in the LQG set-up

- Our goal is to formulate and investigate the same question in the LQG set-up.
- Fix the almost surely unique infinite geodesic Γ started at 0 parametrized by the LQG length.
- We want to choose a point randomly on an initial segment of this geodesic and consider its appropriately scaled environment together with induced metric and investigate whether that the environment/metric converges as the endpoint of the segment goes off to ∞ .
- To this end, we shall choose a ball around a point on the geodesic and scale it to the unit ball D. We shall use appropriate scaling to obtain a random distribution and a random induced metric on this ball.

《曰》 《圖》 《臣》 《臣》 三臣

Scale dependent dilation

• The primary distinction between the LQG and the earlier FPP/LPP set-up is that the underlying noise here is "IID modulo rescaling".

$$h(r \cdot) - \mathbf{Av}(h, \mathbb{T}_r) \stackrel{d}{=} h(\cdot).$$
$$D_{h(r \cdot)}(rz, rw) = r^{\xi Q} D_{h(\cdot)}(z, w)$$

• Recall also the scale invariance of the geodesic

$$(h, \Gamma_{\cdot}) = (h(r \cdot) - \mathbf{Av}(h, \mathbb{T}_r), r^{-1} \Gamma_{r \xi Q_e \xi \mathbf{Av}(h, \mathbb{T}_r)})$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Local environment

• This suggests the following definition:

Local environment

Fix $\delta \in (0,1)$. For $x \in \mathbb{C}$, define a field \underline{h}_x on \mathbb{D} by suitably dilating and normalizing/centering the field h in a ball of size $\delta |x|$ around x

$$\underline{h}_x = h \circ \Psi_{x,\delta} - c_x(h),$$

where $\Psi_{x,\delta}$ takes the ball of radius $\delta|x|$ around x to the unit ball and the generalized function $h \circ \Psi_{x,\delta}$ on \mathbb{D} naturally defined by the composition of the field with the map Ψ ; the quantity $c_x(h)$ is chosen so that $\mathbf{Av}(\underline{h}_x, \mathbb{T}) = 0$.

・ロト ・回ト ・ヨト ・ヨト 三日

Metric on the local environment

• Analogously, we define the following metric on \mathbb{D} .

$$\underline{D}_{h,x}(u,v) = |\delta x|^{-\xi Q} e^{-\xi \mathbf{A} \mathbf{v}(h, \mathbb{T}_{\delta|x|}(x))} D_h(x+\delta|x|u, x+\delta|x|v; \mathbb{D}_{\delta|x|}(x)).$$

- This are not the only choices for the definition of local environment and metric, but are natural ones.
- The parameter δ is somewhat artificial and is the artefact of our proof.

Log parametrization of the geodesic

- We also want to ensure that the empirical distribution of the environment gets equal contribution from each scale.
- Thus for t > 0, and $T \sim Unif[0, t]$, we wish to consider the random point on the geodesic whose LQG distance from the origin is e^{T} .
- So we are looking at the random environment

$$Field_t = \underline{h}_{\Gamma_{e^T}}.$$

• Let $Metric_t$ denote the corresponding metric.

The main result

Theorem (B., Bhatia, Ganguly (2021))

Fix $\delta \in (0, 1)$.

• There is a random distribution Field on \mathbb{D} such that such that almost surely,

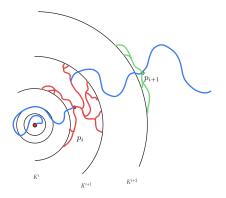
$$Field_t \xrightarrow{d} Field$$

as $t \to \infty$.

• A similar result holds for Metric_t.

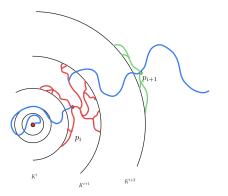
æ

• Fix K > 0 sufficiently large.

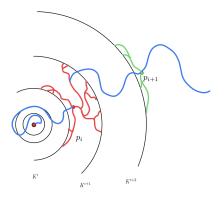


I ∃ ⇒

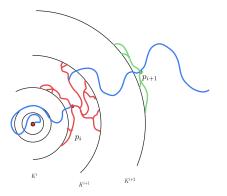
• Using the coalescence result one can show that there exists a sequence $\{p_j\}_{j\in\mathbb{Z}}$ with $p_j \to 0$ as $j \to -\infty$ and $p_j \to \infty$ as $j \to \infty$ of coalescence points as in the figure.



• Partition the geodesic Γ into segments $\Gamma(p_j, p_{j+1})$.



• The key idea is to show that the contributions coming from the segments $\Gamma(p_j, p_{j+1})$ form a stationary sequence with fast decay of correlations and use a SLLN.



Some key tools

- Let \mathcal{H}_i denote the field obtained by considering h restricted to $\mathbb{C}_{>K^i}$, centering it by making its average on the boundary circle 0, and rescaling to $\mathbb{C}_{>1}$.
- Basic invariance of GFF implies \mathcal{H}_i is a stationary sequence.
- Use domain Markov property to show that for $j \gg i$, the Radon-Nikodym derivative of conditional law of \mathcal{H}_j given \mathcal{H}_i w.r.t. its unconditional law is close to 1 except on a set of probability exponentially small in j - i.
- Using this one can show that "local" observables of \mathcal{H}_i have exponential decay of correlation.

Some key tools

- One still needs to control the dependence across scales coming from the log-parametrization of the geodesic.
- For this we set $L_i = D_h(0, p_i)$.
- We show that $G_i = \log L_{i+1} \log L_i$ is also a stationary sequence with exponential decay of correlations.
- This requires some Brownian computations using scale invariance of Γ and the fact that the circle average process is a Brownian motion.

・ロト ・回ト ・ヨト ・ヨト

Properties of the limiting field

• We do not have any explicit description of the limiting field, however some basic properties can be established.

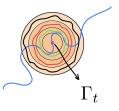
Theorem (B., Bhatia, Ganguly (2021))

- The law of Field is mutually singular with respect to the law of h restricted to D.
- For each δ' ∈ (0,1), the law of Field on the annulus C_(δ',1) is absolutely continuous with respect to the law of h restricted to C_(δ',1).

・ロト ・ 同ト ・ ヨト ・ ヨト

A sketch of the proof for singularity

- At least heuristically, In *Metric*, there should exist a bigeodesic (i.e. a geodesic between two boundary points of D) passing through 0 with probability 1.
- In $D_h(\cdot, \cdot; \mathbb{D})$, this almost surely does not happen.
- This can be shown by the same argument used to show the non-existence of bigeodesics in LQG metric.
- A more robust version pf this argument shows the mutual singularity of the metrics which then can be transferred to the corresponding fields.



Some interesting directions

- Can we find an explicit description of the limiting field and metric?
- What about local limits near the geodesic?
- Is it possible to characterise the singularity near 0?
- What is the thickness of a typical point on the geodesic?

Thank you

Questions?

æ

<ロト <回ト < 回ト < 回ト