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Liouville quantum gravity (LQG)

• Model for a random two-dimensional Riemannian manifold.

• A γ-LQG surface parametrized by C informally is a random
Riemannian manifold with area measure eγhd2z and the
Riemannian metric tensor e2ξh(dx2 + dy2) for some parameter γ
and some ξ = ξ(γ) where h is the Gaussian free field on C.

• Considering the scaling exponent relating the the length and area
suggests ξ and γ should be related by ξ = γ/dγ is the ”dimension”
of the surface.

• Because of the roughness of h, LQG surfaces cannot be
Riemannian manifolds in the usual sense, defining these rigorously
has been a major challenge.
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Ranges of γ and ξ

• Usual parameter range: γ ∈ (0, 2) (subcritical).

• ξ is an increasing function of γ on (0, 2] and ξ(2) ≈ 0.41.

• ξ = ξ(2) (critical) and ξ > ξ(2) (supercritical) corresponds to
γ = 2 and γ ∈ C with |γ| = 2 respectively.

• We shall only discuss the subcritical case.
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Motivation and history-some physics buzzwords

• LQG surfaces were first considered by Polyakov in 1981-motivation
came from string theory.

• Also connected to quantum field theory.

• LQG surface parametrized by a domain is ”uniform sample from
the space of Riemannian metric tensors weighted by
(det ∆g)

−cM/2” where ∆g is the Laplace-Beltrami operator and cM
is the matter central charge.

• cM = 25− 6Q2 where

Q =

(
2

γ
+
γ

2

)
• cM ∈ (−∞, 1] corresponds to subcritical and critical cases, whereas
cM ∈ (1, 25) corresponds to the supercritical regime.
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Motivation-random planar maps

• Uniform planar maps, i.e., uniform planar triangulation are
believed converge to LQG with cM = 0, i.e., γ =

√
8/3.

• For other values of γ ∈ (0, 2), γ-LQG is believed to be the scaling
limit of planar maps decorated with statistical physics models.

• For example, a planar map decorated with spanning tree is
believed to converge to γ-LQG for γ =

√
2.
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Gaussian free fields (GFF)

• For a bounded open set U , and a compactly supported smooth
function f ∈ C∞c (U) consider the Dirichlet norm of f given by

||f ||2∇ =

∫
U
|∇f |2d2z.

• Let H1
0 (U) denote the Hilbert space closure of C∞c (U) with

respect to the Dirichlet norm.

• For an orthonormal basis f1, f2, . . . , of H1
0 (U), zero boundary GFF

is formally defined as

h =
∑
i

Xifi

where Xi are i.i.d. N(0, 1).
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Gaussian free fields (GFF)

• Does not make sense as a random function.

• We can make sense of this as a random generalised function
(distribution) on U .

• We set

(h, φ)∇ =

∞∑
i=1

Xi(fi, φ)∇

which is distributed as N(0, ‖φ‖2∇).
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Zero boundary GFF

• One can then define the action of h on φ ∈ C∞c (U) by setting

(h, φ) = −2π(h,∆−1φ)∇

where ∆−1 is the inverse Laplacian with zero boundary conditions.

• h is thus defined as a random element of the continuous dual of
C∞c (U).

• Zero boundary GFF is conformally invariant: if Φ : U → V is a
conformal map, and h is a zero boundary GFF on V , then h ◦ Φ is
a zero boundary GFF on U .
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Whole plane GFF

• On C, constant functions have zero Dirichlet energy, it does not
induce a norm on H1

0 (C).

• One defines the whole plane GFF h similarly as before as a
random element of (C∞c (C))′ modulo constants.

• To make sense of h as an element of the dual itself we shall fix the
normalization

Av(h,T) = 0

where Av(h,T) denotes the GFF integrated against the uniform
measure on the unit circle (one can show that this can be defined).

• With this normalization h is no longer conformally invariant.
However, using conformal invariance at the level of a generalized
function modulo constants, we get

h(r·)−Av(h,Tr)
d
= h(·).
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Key properties of GFF

Domain Markov property

Roughly speaking, on a domain U , one can write

h = h1 + h2

where h1 is the harmonic extension of of the boundary condition on ∂U
and h2 is an independent GFF on U with zero boundary condition.

Circle average process

B(t) = Av(h,Tet)

is distributed as a standard two-sided Brownian motion.
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Mollification of GFF

• To define LQG measure and metric rigorously, one considers a
mollification of GFF which is a random function and then takes an
appropriate limit for the mollification parameter.

• One particular convenient choice of mollification is to take
convolution with the heat kernel.

hε(z) =

∫
C
h(w)

( 1

πε2
e−|z−w|

2/ε2
)
d2w.

• It is possible to consider other mollification schemes.
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Renormalisation and LQG area measure

• Consider the family of random measures on C:

µh,ε = εγ
2/2eγhε(z)d2z.

• For γ ∈ (0, 2), one can show that µh,ε converges to a random
measure µh on C almost surely in the randomness of h.

• This limit is the LQG area measure.

• Duplantier-Sheffield (2011), Rhodes-Vargas (2014).
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Renormalisation and LQG metric

• For ξ > 0, define the following metric induced by hε:

Dh,ε(z, w) = inf
π

∫ 1

0
eξhε(π(t))|π′(t)|dt

where the infimum is taken over all sufficiently nice and properly
parametrized paths between z and w.

• It is shown that there exists a family of constants aε such that

aε = ε1−ξQ+o(1)

as ε→ 0 such that for ξ < ξ(2) = 2
d2

the metrics

D̃h,ε = a−1ε Dh,ε

converges in probability to a metric Dh.
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Renormalisation and LQG metric

• Ding-Gwynne (2018): showed the existence of dγ via discrete
approximation schemes.

• Ding-Dubedat-Dunlop-Falconet (2020): showed the tightness of
the renormalised metrics.

• Gwynne-Miller (2021): established uniqueness.
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Basic properties of LQG metric

• C, equipped with Dh is a length space.

• dγ is the Hausdorff dimension of C equipped with the metric Dh.

• Dh is local, i.e., for any open set U , the internal metric Dh(·, ·;U)
is determined by the restriction of h to U .

• Induces the Euclidean topology on C and is bi-Hölder with respect
to the Euclidean metric (quantitative estimates available).
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Basic properties of LQG metric

• One can similarly define the LQG metric Dh where h = h+ f ,
GFF plus a continuous function.

• Weyl Scaling: Dh+f = eξf ·Dh almost surely.

• Translation invariance: for each z ∈ C, Dh(·+z) = Dh(·+ z, ·+ z)
almost surely.

• Coordinate change formula: almost surely for any fixed r > 0 and
all z, w ∈ C,

Dh(r·)(rz, rw) = rξQDh(·)(z, w).
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Geodesics in LQG

• Almost surely, for any two z, w ∈ C there exists a Dh geodesic
between z and w. For fixed z and w the geodesic is almost surely
unique, we shall denote it by Γ(z, w). Geodesics will always be
parametrized by the LQG distance.

• For each z ∈ C, almost surely there exists a unique infinite
geodesic started from z.

• Scale invariance of the geodesic: For the infinite geodesic Γ started
from the origin we have

(h,Γ·) = (h(r·)−Av(h,Tr), r−1ΓrξQeξAv(h,Tr)·)

in distribution.

• Almost surely there are no bigeodesics.

• Gwynne-Pfeffer-Sheffield (2020).
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Coalescence of geodesics

• Fix z ∈ C. For any s > 0, there is t > 0 such that all geodesics
from z to points at LQG distance larger than s coincide within the
LQG metric ball centred at z with radius t.

0

Bt

Bs

z

w
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Coalescence of geodesics

• Let Coalr,K denote the event

Coalr,K =

{
∩z∈Tr,w∈TKrΓ(z, w) 6= ∅

}
.

• For K sufficiently large, P(Coalr,K) is bounded away from 0
uniformly in r.

r

Kr

0
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Critical and supercritical LQG metrics

• Many similar results have very recently been proved for critical
and supercritical LQG metrics as well.

• The critical LQG metric still induces the Euclidean topology but
is no longer bi-Holder with respect to the Euclidean metric.

• Supercritical LQG metric has Hausdorff dimension ∞.
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Thank you

Questions?
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