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Recall

• Goal 1: Estimate the total prevalence of COVID-19 in a locality

• Total burden = Past Infection + Current Infection

• Important to do both when the active infection is high

• Different types of tests capture different information, so it’s important to do 
multiple tests.



Model and ideal test outcomes

State Probability State description RAT
𝒋𝒋 = 𝟏𝟏

RT-PCR test
𝒋𝒋 = 𝟐𝟐

IgG Antibody test
𝒋𝒋 = 𝟑𝟑

𝑠𝑠 = 1 𝑝𝑝1 Active infection, but no IgG 1 1 0

𝑠𝑠 = 2 𝑝𝑝2 IgG antibodies only, no active infection 0 0 1

𝑠𝑠 = 3 𝑝𝑝3 Both active infection and IgG antibodies 1 1 1

𝑠𝑠 = 4 𝑝𝑝4 Neither active infection nor IgG antibodies 0 0 0

• Each individual can be in one of four different states

• One model for the ideal test outcomes
• Must do IgG test to assess antibody prevalence
• Must do either RAT or RT-PCR or both for assessing active infection

𝑀𝑀(𝑠𝑠, 𝑗𝑗)



Test outcomes are noisy: tandem channels

RAT

Sensitivity 0.5

Specificity 0.975

RTPCR

Sensitivity 0.95

Specificity 0.97

IgG ELISA kit

Sensitivity 0.921

Specificity 0.977

7

• Sensitivity = 1 – false negative rate = 1 – miss probability
• Specificity = 1 – false positive rate  = 1 – false alarm probability

1

2

3

4

0

1

0

1

1

2

3

4

0

1

0

1

1

2

3

4

0

1

0

1



Protocol nuances, data issues

• Only a subset of individuals were administered the RAT

• Those who are RAT positive are not administered the RT-PCR test

• We didn’t receive RT-PCR on 1000+ samples due to delays

• IgG results from one hospital locality didn’t come

• Couldn’t match some IgG results to participants because of entry errors, 
duplicate SRF id issues …



Test patterns and test outcomes

Individual RAT done RT-PCR 
done

IgG  done RAT 
outcome

RT-PCR 
outcome

IgG 
outcome

1 1 1 1

2 Blank = 0 1 1 NA

3 1 Blank = 0 1 1 NA

4 1 Blank = 0 1 0 NA

5 1 1 Blank = 0 NA

𝑡𝑡 = 𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3 ∈ 0,1 3 𝑦𝑦 = 𝑦𝑦1,𝑦𝑦2, 𝑦𝑦3 ∈ 0,1,𝑁𝑁𝑁𝑁 3

8 possibilities 27 possibilities
If 𝑡𝑡𝑖𝑖 = 0, 𝑦𝑦𝑖𝑖 = 𝑁𝑁𝑁𝑁



Parametric model (contd.)
• Let 𝑝𝑝 = (𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3) with the usual positivity and sum conditions

• The four disease state probabilities are (𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3, 𝑝𝑝4 = 1 − (𝑝𝑝1+𝑝𝑝2 + 𝑝𝑝3))

• Assume that 𝑁𝑁 individuals are sampled, 𝑁𝑁 small enough that we may assume their states are iid ∼ (𝑝𝑝1, … , 𝑝𝑝4)

• For each individual 𝑛𝑛, we know the set of administered tests:
𝑡𝑡 𝑛𝑛 ∈ {0, 1}3 and the test outcomes 𝑦𝑦 𝑛𝑛 ∈ {0, 1,𝑁𝑁𝑁𝑁}3

• Likelihood, from Siva’s slides:

𝑃𝑃𝑝𝑝 𝑦𝑦 𝑛𝑛 𝑡𝑡(𝑛𝑛)) = �
𝑠𝑠=1

4

𝑝𝑝𝑠𝑠 ⋅ 𝑞𝑞 𝑦𝑦 𝑛𝑛 𝑡𝑡 𝑛𝑛 , 𝑠𝑠)

𝑞𝑞 𝑦𝑦 𝑡𝑡, 𝑠𝑠 = �
𝑗𝑗: 𝑡𝑡𝑗𝑗=1

𝜎𝜎 𝑀𝑀 𝑠𝑠, 𝑗𝑗 , 𝑗𝑗 1 𝑀𝑀 𝑠𝑠,𝑗𝑗 = 𝑦𝑦𝑗𝑗 ⋅ 1 − 𝜎𝜎 𝑀𝑀 𝑠𝑠, 𝑗𝑗 , 𝑗𝑗 ) 1−1 𝑀𝑀 𝑠𝑠,𝑗𝑗 = 𝑦𝑦𝑗𝑗
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Maximum likelihood estimation

• Given the test patterns (assumed independent of 𝑝𝑝), the likelihood of the 
tests’ outcomes on 𝑁𝑁 participants is:

𝐿𝐿 𝑝𝑝; 𝑡𝑡 𝑛𝑛 , 𝑦𝑦 𝑛𝑛 𝑛𝑛 = �
𝑛𝑛=1

𝑁𝑁

𝑃𝑃𝑝𝑝(𝑦𝑦(𝑛𝑛)|𝑡𝑡 𝑛𝑛 )

• Find the �̂�𝑝(𝑁𝑁) that best explains the test outcomes:

�̂�𝑝(𝑁𝑁) = arg max
𝑝𝑝

𝐿𝐿(𝑝𝑝; (𝑡𝑡 𝑛𝑛 ,𝑦𝑦 𝑛𝑛 )𝑛𝑛)

• Concave function of 𝑝𝑝, unique maximum, easy to identify the MLE



Consistency of the MLE and asymptotic normality
• Under some regularity conditions on the score function, which our model satisfies, the 

MLE is consistent as 𝑁𝑁 → ∞:

�̂�𝑝 𝑁𝑁 → 𝑝𝑝 in probability

• Under additional conditions, which our model once again satisfies

𝑁𝑁 �̂�𝑝(𝑁𝑁) − 𝑝𝑝 → 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0, 𝑖𝑖 𝑝𝑝 −1) in distribution

• 𝑖𝑖(𝑝𝑝) is the per-sample Fisher information matrix at 𝑝𝑝. 

• This suggests that the following is a good approximation:

�𝑝𝑝(𝑁𝑁) ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝, 𝑁𝑁𝑖𝑖(𝑝𝑝) −1)



Confidence intervals

• Estimates, suppressing 𝑁𝑁,
• Active infection: �̂�𝑝1 + �̂�𝑝3
• IgG prevalence: �̂�𝑝2 + �̂�𝑝3
• Total disease burden: �℘ = �̂�𝑝1 + �̂�𝑝2 + �̂�𝑝3 = 𝑢𝑢𝑇𝑇�̂�𝑝, where 𝑢𝑢 = 1, 1, 1 𝑇𝑇

• Var(�℘) is approximately 𝑢𝑢𝑇𝑇 𝑁𝑁𝑖𝑖(𝑝𝑝) −1𝑢𝑢

• 95% confidence: �℘ ± 1.96 𝑢𝑢𝑇𝑇 𝑁𝑁𝑖𝑖(𝑝𝑝) −1𝑢𝑢

• Design effect of 3 increases the variance by a factor 3 to account for 
sampling biases.



More about the Fisher information matrix

• Variance is approximately: 𝑢𝑢𝑇𝑇 𝑁𝑁𝑖𝑖(𝑝𝑝) −1𝑢𝑢, where 𝑢𝑢 = 1, 1, 1 𝑇𝑇

𝑁𝑁𝑖𝑖(𝑝𝑝) = �
𝑡𝑡∈𝑇𝑇

𝑤𝑤𝑡𝑡 ⋅ 𝑖𝑖𝑡𝑡 𝑝𝑝

• Here 𝑤𝑤𝑡𝑡 is the number of tests of test pattern 𝑡𝑡

and 𝑖𝑖𝑡𝑡(𝑝𝑝) is the Fisher information per sample when test pattern is 𝑡𝑡



So, what’s new?
• An honest-to-goodness assessment: Perhaps the above picture

• Handles multiple tests on a participant naturally
• Enhances evidence for IgG = 0 if either RAT or RTPCR is positive, and vice-versa
• Naturally handles noisy observations, e.g., RAT sensitivity is 50%
• Naturally handles partial data

• Once the model is identified, it’s standard fare all the way

• If only IgG antibody test is done, there’s a closed form expression for the MLE given by the so-
called Rogan-Gladen formula

𝐶𝐶𝑁𝑁𝑢𝑢𝐶𝐶𝐶𝐶 𝐶𝐶𝑠𝑠𝑡𝑡𝑖𝑖𝑁𝑁𝑁𝑁𝑡𝑡𝐶𝐶(𝐼𝐼𝐼𝐼𝐼𝐼) + 𝑆𝑆𝑝𝑝𝐶𝐶𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑡𝑡𝑦𝑦(𝐼𝐼𝐼𝐼𝐼𝐼) − 1
𝑆𝑆𝐶𝐶𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑆𝑆𝑖𝑖𝑡𝑡𝑦𝑦(𝐼𝐼𝐼𝐼𝐼𝐼) + 𝑆𝑆𝑝𝑝𝐶𝐶𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑡𝑡𝑦𝑦(𝐼𝐼𝐼𝐼𝐼𝐼) − 1 0
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Improving the Karnataka survey

• In the serosurvey, we lived with whatever (𝑤𝑤𝑡𝑡, 𝑡𝑡 ∈ 𝑇𝑇) we got

• Could we have done better for the money we spent?

• Test costs (approximate)
• RAT – Rs. 450
• RT-PCR – Rs. 1200
• IgG – Rs. 300

• 11000 RAT + 16500 RT-PCR + 16500 IgG: Cost = Rs. 3 Crores



A design problem

• Given budget 𝐶𝐶, cost 𝑆𝑆𝑡𝑡 for test pattern 𝑡𝑡, how many participants 
should be administered test pattern 𝑡𝑡?

• Relevant question. Why? 
• If test pattern 𝑡𝑡 = (1,0,1), cost is Rs. 750
• If test pattern 𝑡𝑡′ = (0,1,1), cost is Rs. 1500
• For the same cost, I could administer the first pattern to two individuals

• How should the field epidemiologist allocate resources? What’s the 
epidemiologist’s goal?



An instructive look at the simplest case
• Budget 𝐶𝐶. Allow only one test, the IgG test. It’s cost is 𝑆𝑆(𝐼𝐼𝐼𝐼𝐼𝐼)

• If 𝑁𝑁 tests are administered, the standard estimator’s variance is 𝑝𝑝(1−𝑝𝑝)
𝑁𝑁

• Cost of 𝑁𝑁 tests       𝑁𝑁𝑆𝑆 𝐼𝐼𝐼𝐼𝐼𝐼 ≤ 𝐶𝐶, or 𝑁𝑁 ≤ 𝐶𝐶
𝑐𝑐 𝐼𝐼𝐼𝐼𝐼𝐼

• To minimise variance, need 𝑁𝑁 as large as possible, so 𝑁𝑁 = 𝐶𝐶
𝑐𝑐 𝐼𝐼𝐼𝐼𝐼𝐼

• Thus the minimum variance is 𝑝𝑝 1−𝑝𝑝 𝑐𝑐(𝐼𝐼𝐼𝐼𝐼𝐼)
𝐶𝐶

• Worst case design:      𝑐𝑐(𝐼𝐼𝐼𝐼𝐼𝐼)/4
𝐶𝐶

or if you have some side information about 𝑝𝑝, find the worst case within a range



How much accuracy can the budget buy?

C

Variance

p𝑝𝑝 1 − 𝑝𝑝 𝑆𝑆(𝐼𝐼𝐼𝐼𝐼𝐼)
𝐶𝐶



Back to the design problem

• Goal 2: Given budget 𝐶𝐶, cost 𝑆𝑆𝑡𝑡 for test pattern 𝑡𝑡, how many 
participants should be administered test pattern 𝑡𝑡 in order to 
minimise the variance of the total disease burden �℘

• Mathematical formulation:

min
𝑤𝑤

𝑢𝑢𝑇𝑇 �
𝑡𝑡
𝑤𝑤𝑡𝑡 𝑖𝑖𝑡𝑡(𝑝𝑝)

−1

𝑢𝑢

𝑠𝑠𝑢𝑢𝑠𝑠𝑗𝑗𝐶𝐶𝑆𝑆𝑡𝑡 𝑡𝑡𝑁𝑁 �
𝑡𝑡
𝑤𝑤𝑡𝑡𝑆𝑆𝑡𝑡 ≤ 𝐶𝐶 ,𝑤𝑤𝑡𝑡 ≥ 0 ∀𝑡𝑡



The c-optimal design

Theorem: 
Let the vector 𝑆𝑆∗ optimise

min
𝑣𝑣

𝑢𝑢𝑇𝑇 �
𝑡𝑡
𝑆𝑆𝑡𝑡 𝑖𝑖𝑡𝑡(𝑝𝑝)/𝑆𝑆𝑡𝑡

−1

𝑢𝑢

𝑠𝑠𝑢𝑢𝑠𝑠𝑗𝑗𝐶𝐶𝑆𝑆𝑡𝑡 𝑡𝑡𝑁𝑁 �
𝑡𝑡
𝑆𝑆𝑡𝑡 ≤ 1 , 𝑆𝑆𝑡𝑡≥ 0 ∀𝑡𝑡

Then the optimal allocation 𝑤𝑤∗ satisfies 𝑤𝑤𝑡𝑡∗ = (𝑆𝑆𝑡𝑡∗/𝑆𝑆𝑡𝑡) 𝐶𝐶.

The minimum variance is 𝑎𝑎 𝑣𝑣∗

𝐶𝐶
, where 𝑁𝑁(𝑆𝑆∗) is the value of the above optimisation 

problem.



How much accuracy can the budget buy?

C

Variance

p, design 𝑆𝑆𝑁𝑁(𝑆𝑆)/𝐶𝐶



Numerical examples

• Test costs (approximate)
• RAT – Rs. 450
• RT-PCR – Rs. 1200
• IgG – Rs. 300

• If RT-PCR cost is Rs. 1200
(0,0,IgG) : (RAT,0,IgG)  = 1:24

• If RT-PCR cost reduces to Rs. 1000
(0,0,IgG) : (0,RT-PCR,IgG) = 4:3



Extension 1: Worst case design

𝑆𝑆, 𝑝𝑝 ↦ 𝑢𝑢𝑇𝑇 �
𝑡𝑡
𝑆𝑆𝑡𝑡 𝑖𝑖𝑡𝑡(𝑝𝑝)/𝑆𝑆𝑡𝑡

−1

𝑢𝑢

• For a fixed 𝑝𝑝, a convex function of 𝑆𝑆
• For a fixed 𝑆𝑆, a concave function of 𝑝𝑝

Theorem: If the sets for 𝑆𝑆 and 𝑝𝑝 are compact and convex, the “game” 
has a value.



Extension 2: Handling observables

• RAT is 68% sensitive on symptomatics versus 47% on asymptomatics

• If r(0) fraction of the population is asymptomatic and r(1) population is symptomatic, 
what’s the optimal allocation policy knowing symptom presentation?

• min
𝑤𝑤 0 ,𝑤𝑤(1)

∑𝑥𝑥 𝑁𝑁 𝑥𝑥 𝑢𝑢𝑇𝑇 ∑𝑡𝑡 𝑤𝑤𝑡𝑡 𝑥𝑥 𝑖𝑖𝑡𝑡(𝑝𝑝, 𝑥𝑥) −1𝑢𝑢, subject to budget constraints

• Can solve this also quite easily.
• Increase use of RAT on symptomatics
• Consider budget subhead 𝐶𝐶0 and 𝐶𝐶1 for asymptomatics and symptomatics. 
• For each of these, 𝑆𝑆𝑡𝑡∗(0) and 𝑆𝑆𝑡𝑡∗(1) are independent of 𝐶𝐶0 and 𝐶𝐶1.
• Then optimise optimise over 𝐶𝐶0 and 𝐶𝐶1.



Summary

• We demonstrated how to optimally allocate test patterns to minimise the 
variance: c-optimal design

• We found the accuracy that your budget can buy. The test proportions don’t 
change

• Chernoff 1953, Trace (Inverse Fisher Information)

• Note the goal – minimise the variance disease burden.

• In practice, there may be additional goals that may warrant the use of RAT on 
account of its PoC usability
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