Serosurvey in Karnataka State: Summary, Design and Statistical Methodology II

Rajesh Sundaresan IISc, on sabbatical leave at Strand Life Sciences

(Joint work with a large team – the Karnataka Serosurvey team and the IISc/ISI team)

Acknowledgements

- Strand Life Sciences
- Serosurvey project funded by NHM
- Google, Hitachi, Cisco CSR (Centre for Networked Intelligence), DST that have funded our miscellaneous COVID-19 response efforts
- Comrades-in-arms: Siva, Giri & others in the serosurvey team, Aniruddha, Minhaas, Nidhin, Nihesh, Sarath, Sharad.

- Goal 1: Estimate the total prevalence of COVID-19 in a locality
- Total burden = Past Infection + Current Infection
 - Important to do both when the active infection is high
 - Different types of tests capture different information, so it's important to do multiple tests.

Model and ideal test outcomes

• Each individual can be in one of four different states

State	Probability	State description	$\begin{array}{c} RAT \\ j = 1 \end{array}$	$\begin{array}{l} RT\operatorname{-}PCR \text{ test} \\ j=2 \end{array}$	IgG Antibody test $j = 3$
s = 1	p_1	Active infection, but no IgG	1	1	0
<i>s</i> = 2	p_2	IgG antibodies only, no active infection	0	0	1
<i>s</i> = 3	p_3	Both active infection and IgG antibodies	1	1	1
s = 4	p_4	Neither active infection nor IgG antibodies	0	0	0

M(s,j)

- One model for the ideal test outcomes
- Must do IgG test to assess antibody prevalence
- Must do either RAT or RT-PCR or both for assessing active infection

Test outcomes are noisy: tandem channels

RAT		RTPCR		lgG ELISA kit	
Sensitivity	0.5	Sensitivity	0.95	Sensitivity	0.921
Specificity	0.975	Specificity	0.97	Specificity	0.977

- Sensitivity = 1 false negative rate = 1 miss probability
- Specificity = 1 false positive rate = 1 false alarm probability

Protocol nuances, data issues

- Only a subset of individuals were administered the RAT
- Those who are RAT positive are not administered the RT-PCR test
- We didn't receive RT-PCR on 1000+ samples due to delays
- IgG results from one hospital locality didn't come
- Couldn't match some IgG results to participants because of entry errors, duplicate SRF id issues ...

Test patterns and test outcomes

Parametric model (contd.)

- Let $p = (p_1, p_2, p_3)$ with the usual positivity and sum conditions
- The four disease state probabilities are $(p_1, p_2, p_3, p_4 = 1 (p_1 + p_2 + p_3))$
- Assume that N individuals are sampled, N small enough that we may assume their states are iid $\sim (p_1, ..., p_4)$
- For each individual n, we know the set of administered tests: $t(n) \in \{0, 1\}^3$ and the test outcomes $y(n) \in \{0, 1, NA\}^3$
- Likelihood, from Siva's slides:

$$P_p(y(n)|t(n)) = \sum_{s=1}^{4} p_s \cdot q(y(n)|t(n), s)$$

$$q(y|t,s) = \prod_{j:t_j=1} [\sigma(M(s,j),j)]^{1\{M(s,j)=y_j\}} \cdot [1 - \sigma(M(s,j),j))]^{1-1\{M(s,j)=y_j\}}$$

Maximum likelihood estimation

• Given the test patterns (assumed independent of *p*), the likelihood of the tests' outcomes on *N* participants is:

$$L\left(p;\left(t(n),y(n)\right)_{n}\right) = \prod_{n=1}^{N} P_{p}(y(n)|t(n))$$

• Find the $\hat{p}(N)$ that best explains the test outcomes:

$$\hat{p}(N) = \arg\max_{p} L(p; (t(n), y(n))_{n})$$

• Concave function of p, unique maximum, easy to identify the MLE

Consistency of the MLE and asymptotic normality

• Under some regularity conditions on the score function, which our model satisfies, the MLE is consistent as $N \to \infty$:

 $\hat{p}(N) \rightarrow p$ in probability

• Under additional conditions, which our model once again satisfies

 $\sqrt{N}(\hat{p}(N) - p) \rightarrow Normal(0, i(p)^{-1})$ in distribution

- i(p) is the per-sample Fisher information matrix at p.
- This suggests that the following is a good approximation:

 $\hat{p}(N) \sim Normal(p, (Ni(p))^{-1})$

Confidence intervals

- Estimates, suppressing N,
 - Active infection: $\hat{p}_1 + \hat{p}_3$
 - IgG prevalence: $\hat{p}_2 + \hat{p}_3$
 - Total disease burden: $\hat{\wp} = \hat{p}_1 + \hat{p}_2 + \hat{p}_3 = u^T \hat{p}$, where $u = [1, 1, 1]^T$
- Var($\widehat{\wp}$) is approximately $u^T(Ni(p))^{-1}u$
- 95% confidence: $\widehat{\wp} \pm 1.96\sqrt{u^T(Ni(p))^{-1}u}$
- Design effect of 3 increases the variance by a factor 3 to account for sampling biases.

More about the Fisher information matrix

• Variance is approximately: $u^T(Ni(p))^{-1}u$, where $u = [1, 1, 1]^T$

$$Ni(p) = \sum_{t \in T} w_t \cdot i_t (p)$$

• Here w_t is the number of tests of test pattern t

and $i_t(p)$ is the Fisher information per sample when test pattern is t

So, what's new?

- An honest-to-goodness assessment: Perhaps the above picture
 - Handles multiple tests on a participant naturally
 - Enhances evidence for IgG = 0 if either RAT or RTPCR is positive, and vice-versa
 - Naturally handles noisy observations, e.g., RAT sensitivity is 50%
 - Naturally handles partial data
- Once the model is identified, it's standard fare all the way
- If only IgG antibody test is done, there's a closed form expression for the MLE given by the socalled Rogan-Gladen formula

$$\frac{Crude\ estimate(IgG)\ +\ Specificity(IgG)\ -1}{Sensitivity(IgG)\ +\ Specificity(IgG)\ -1}\Big]_{0}^{1}$$

Improving the Karnataka survey

- In the serosurvey, we lived with whatever $(w_t, t \in T)$ we got
- Could we have done better for the money we spent?
- Test costs (approximate)
 - RAT Rs. 450
 - RT-PCR Rs. 1200
 - IgG Rs. 300
- 11000 RAT + 16500 RT-PCR + 16500 lgG: Cost = Rs. 3 Crores

A design problem

- Given budget *C*, cost *c*_t for test pattern *t*, how many participants should be administered test pattern *t*?
- Relevant question. Why?
 - If test pattern t = (1,0,1), cost is Rs. 750
 - If test pattern t' = (0,1,1), cost is Rs. 1500
 - For the same cost, I could administer the first pattern to two individuals
- How should the field epidemiologist allocate resources? What's the epidemiologist's goal?

An instructive look at the simplest case

- Budget C. Allow only one test, the IgG test. It's cost is c(IgG)
- If N tests are administered, the standard estimator's variance is

$$\frac{p(1-p)}{N}$$

- Cost of *N* tests $Nc(IgG) \le C$, or $N \le \frac{C}{c(IgG)}$
- To minimise variance, need N as large as possible,

so
$$N = \frac{C}{c(IgG)}$$

- Thus the minimum variance is
- $\frac{p(1-p)c(IgG)}{C}$
- Worst case design: $\frac{c(IgG)/4}{c}$ or if you have some side information about p, find the worst case within a range

How much accuracy can the budget buy?

Back to the design problem

- Goal 2: Given budget C, cost c_t for test pattern t, how many participants should be administered test pattern t in order to minimise the variance of the total disease burden $\hat{\wp}$
- Mathematical formulation:

$$\min_{w} \quad u^{T} \left(\sum_{t} w_{t} i_{t}(p) \right)^{-1} u$$

subject to
$$\sum_t w_t c_t \leq C$$
 , $w_t \geq 0 \; \forall t$

The c-optimal design

Theorem:

Let the vector v^* optimise

$$\begin{split} \min_{v} & u^{T} \left(\sum_{t} v_{t} i_{t}(p) / c_{t} \right)^{-1} u \\ subject to & \sum_{t} v_{t} \leq 1, \quad v_{t} \geq 0 \ \forall t \end{split}$$

Then the optimal allocation w^* satisfies $w_t^* = (v_t^*/c_t) C$.

The minimum variance is $\frac{a(v^*)}{c}$, where $a(v^*)$ is the value of the above optimisation problem.

How much accuracy can the budget buy?

Numerical examples

- Test costs (approximate)
 - RAT Rs. 450
 - RT-PCR Rs. 1200
 - lgG Rs. 300
- If RT-PCR cost is Rs. 1200

(0,0,IgG): (RAT,0,IgG) = 1:24

• If RT-PCR cost reduces to Rs. 1000

(0,0,IgG): (0,RT-PCR,IgG) = 4:3

Extension 1: Worst case design

$$(v,p) \mapsto u^T \left(\sum_t v_t i_t(p)/c_t \right)^{-1} u$$

- For a fixed p, a convex function of v
- For a fixed v, a concave function of p

Theorem: If the sets for v and p are compact and convex, the "game" has a value.

Extension 2: Handling observables

- RAT is 68% sensitive on symptomatics versus 47% on asymptomatics
- If r(0) fraction of the population is asymptomatic and r(1) population is symptomatic, what's the optimal allocation policy knowing symptom presentation?
- $\min_{w(0),w(1)} \sum_{x} r(x) u^T (\sum_{t} w_t(x) i_t(p,x))^{-1} u$, subject to budget constraints
- Can solve this also quite easily.
 - Increase use of RAT on symptomatics
 - Consider budget subhead C_0 and C_1 for asymptomatics and symptomatics.
 - For each of these, $v_t^*(0)$ and $v_t^*(1)$ are independent of C_0 and C_1 .
 - Then optimise optimise over C_0 and C_1 .

Summary

- We demonstrated how to optimally allocate test patterns to minimise the variance: c-optimal design
- We found the accuracy that your budget can buy. The test proportions don't change
- Chernoff 1953, Trace (Inverse Fisher Information)
- Note the goal minimise the variance disease burden.
- In practice, there may be additional goals that may warrant the use of RAT on account of its PoC usability