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In order to introduce a sigma-martingale, let us recall some

notations and definitions.

Let (Ω,F ,P) be a complete probability space and let (Ft)t≥0 be a

filtration such that F0 contains all null sets in F . All notions -

martingales, adapted, stop times, predictable,... are with respect to

this filtration.

Let X be a semimartingale. The class L(X ) of integrands f for

which the stochastic integral
∫

f dX can be described as follows.
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L(X ) consists of all predictable processes f such that X admits a

decomposition X = M + A, where M is a locally square integrable

martingale and A is a process with finite variation paths with

∫ t

0
|fs |d |A|s < ∞ ∀t < ∞ a.s. (1)

and there exist stop times σk ↑ ∞ such that

E[

∫

σk

0
|fs |

2d [M,M]s ] < ∞ ∀t < ∞. (2)
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Then
∫

f dM and
∫

f dA are defined and then

∫

f dX =

∫

f dM +

∫

f dA.

One needs to show that this is well defined.
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Alternate description of a semimartingale X and the class L(X )

without bringing in the decomposition :

Let X be an r.c.l.l. adapted process. Then
∫

f dX can be defined

for all simple predictable processes f directly:

f (s) =
m
∑

j=0

aj1(sj ,sj+1](s) (3)

where 0 = s0 < s1 < s2 < . . . < sm+1 < ∞, aj is bounded Fsj

measurable random variable, 0 ≤ j ≤ m, and

∫ t

0
f dX =

m
∑

j=0

aj(Xsj+1∧t − Xsj∧t). (4)
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Let X be an r.c.l.l. adapted process. X is a semimartingale if

whenever f n simple predictable, |f n| ≤ K and f n → 0 pointwise

implies

sup
0≤t≤T

|

∫ t

0
f ndX |

converges to zero in probability for all T < ∞.

Under this condition,
∫

f dX can be defined for all bounded

predictable processes essentially following steps of Caratheodary

extension theorem.
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Let X be a semimartingale.

L(X ) consists of predictable process g such that if f n is a

sequence of bounded predictable processes dominated by |g | such

that f n converges to 0 pointwise, then

sup
0≤t≤T

|

∫ t

0
f ndX |

converges to zero in probability for all T < ∞.
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Note that if µ is a finite measure on a measuable space, then

L
1(µ) can be defined as the class of measurable functions g such

that if f n is a sequence of bounded measurable functions

dominated by |g | such that f n converges to 0 pointwise, then
∫

f ndµ converges to zero.
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Let M be a martingale. Is X =
∫

f dM a local martingale

whenever f ∈ L(M)?

Answer is No.

Such a process X has been called a sigma-martingale. These were

called Seimimartingales of class Σm by Chou and Emery. The term

sigma-martingale is perhaps introduced by Delbaen-Schachermayer.

Sigma martingales can also be described as follows:

A semimartingale X is a sigma-martingale if there exists (0,∞)

valued predictable process φ such that N =
∫

φdX is a martingale.
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Let M be a martingale and f ∈ L(M). When is X =
∫

f dM a

local martingale ?

Recall: Burkholder-Davis-Gundy inequality (p = 1) : There exist

universal constants c1, c2 such that for all martingales M with

M0 = 0 and for all t > 0 one has

c1E[([M,M]T )
1
2 ] ≤ E[ sup

0≤t≤T

|Mt | ] ≤ c2E[([M,M]T )
1
2 ]. (5)

As a consequence we have: Let M be a local martingale. Then

there exist stop times σn increasing to ∞ such that

E[
√

[M,M]σn ] < ∞ ∀n ≥ 1 (6)
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Let M be a local martingale, f ∈ L(X ) and N =
∫

f dM. Since

[N,N] =
∫

f 2d [M,M].

Using Burkholder-Davis-Gundy inequality, it follows that

X =
∫

f dM is a local martingale if and only if there exist stop

times σk ↑ ∞ such that

E[(

∫

σk

0
|fs |

2d [M,M]s)
1
2 ] < ∞ ∀t < ∞.

As a consequence, every continuous sigma-martingale is a local

martingale.
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Also every local martingale N is a sigma-martingale:

let σn be bounded stop times increasing to ∞ such that

an = E[
√

[N,N]σn ] < ∞.

Let φ be the predictable process defined by

φs =
1

1 + |N0|
1{0}(s) +

∞
∑

n=1

2−n 1

1 + an
1(σn−1,σn](s).

Then φ is (0, 1) valued and using Burkholder-Davis-Gundy

inequality we can show that M =
∫

φdN is indeed a martingale.

Thus N is a sigma-martingale.
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Example: A sigma-martingale that is NOT a local martingale:

Let τ be a random variable with exponential distribution (assumed

to be (0,∞)-valued without loss of generality) and ξ be a r.v.

independent of τ with P(ξ = 1) = P(ξ = −1) = 0.5. Let

Mt = ξ1[τ,∞)(t)

and

Ft = σ(Ms : s ≤ t).

For any stop time σ w.r.t. this filtration, it can be checked that

either σ is identically equal to 0 or σ ≥ (τ ∧ a) for some a > 0.
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Easy to see that M defined by Mt = ξ1[τ,∞)(t) is a martingale.

Let ft =
1
t
1(0,∞)(t) and Xt =

∫ t

0 f dM.

Then X is a sigma-martingale and

[X ,X ]t =
1

τ2
1[τ,∞)(t).

Thus, for any stop time σ with P(σ > 0) > 0, there exists a > 0

such that σ ≥ (τ ∧ a) and hence

√

[X ,X ]σ ≥
1

τ
1{τ<a}.

It follows that for any stop time σ, not identically zero,

E[
√

[X ,X ]σ] = ∞ and so X is not a local martingale.
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Why is it called sigma-martingale?

What does it have in common with martingales?

The connection has to do with mathematical finance- the

connection between No Arbitrage and martingales.
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Let (Mk ,Fk){0≤k≤n} be a martingale and let {Uk : 1 ≤ k ≤ n} be

a bounded predictable process, i.e. Uk is Fk−1 measurable for

1 ≤ k ≤ n. Then

Nk =

k
∑

i=1

Ui(Mi −Mi−1)

is a martingale with N0 = 0 and thus

P(Nn ≥ 0) = 1 ⇒ P(Nn = 0) = 1.
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Indeed, even when (Mk ,Fk){0≤k≤n} is not a martingale under P

but there exists a equivalent probability measure Q such that

(Mk ,Fk){0≤k≤n} is a Q-martingale, it follows that for a bounded

predictable process {Uk : 1 ≤ k ≤ n},

Nk =

k
∑

i=1

Ui(Mi −Mi−1)

satisfies

P(Nn ≥ 0) = 1 ⇒ P(Nn = 0) = 1.

We can deduce the same conclusion even if we remove the

condition that {Uk : 1 ≤ k ≤ n} are bounded.
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The converse to this is also true: if (Mk ,Fk){0≤k≤n satisfies for all

predictable process for {Uk : 1 ≤ k ≤ n},

Nk =
k

∑

i=1

Ui(Mi −Mi−1)

satisfies

P(Nn ≥ 0) = 1 ⇒ P(Nn = 0) = 1

then there exists there exists a equivalent probability measure Q

such that (Mk ,Fk){0≤k≤n is a Q-martingale. This result was

proven only in 1990 by Dalang-Morton-Willinger though this

connection was actively pursued since late ’70s.
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If Mk denotes the discounted stock price on day k , {Uj : j ≥ 1}

represents a trading strategy and

Nk =
k

∑

i=1

Ui(Mi −Mi−1)

represents gain from the strategy. If P(Nn ≥ 0) = 1 and

P(Nn > 0) > 0, then {Uj : j ≥ 1} is called an arbitrage

opportunity.

The DMZ theorem can be recast as No Arbitrage (NA) if and only

if Equivalent Martingale Measure (EMM) exists.
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When one considers infinite time horizon or trading in continuous

time, one not only has to rule out arbitrage opportunities, but also

approximate arbitrage opportunities.

We consider some examples that illustrate these points.

Let {Sn : n ≥ 1} be a process (model for price of a stock). Let

C = {V : ∃n, predictable U1,U2, . . . ,Un s.t. V ≤
n

∑

j=1

Uj(Sj−Sj−1)}.

The NA condition can be equivalently written as:

C ∩ L
∞
+ = {0}.
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Let {Zn : n ≥ 1} be independent random variables on (Ω,F ,P)

with

P(Zn =
1

2
) = p, P(Zn = −

1

2
) = q

where 0 < q < p < 1 and p + q = 1. Let Sn =
∏n

j=1(1 + Zj).

There is exactly one probability measure Q on σ(Sn : n ≥ 1) such

that {Sn} is a martingale, namely the one under which

{Zn : n ≥ 1} are i.i.d. with P(Zn = 1
2 ) =

1
2 and P(Zn = −1

2) =
1
2 .

By Kakutani’s theorem, Q and P are orthogonal. Thus there is no

EMM. However, for every finite horizon there is such a measure

and as a result, NA holds.

Rajeeva L. Karandikar Director, Chennai Mathematical Institute

On sigma-martingales - 21



For infinite horizon or in continuous time, we need to rule out

approximate arbitrage i.e. a sequence Zn ∈ C such that Zn

converges to Z ∈ L
∞
+ implies Z = 0.

But this needs to be defined carefully. The classic strategy of

betting on a sequence of fair coin tosses that doubles the

investment needs to be ruled out as it is clearly an arbitrage

opportunity though the underlying process is a martingale.
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An admissible trading strategy is a predictable sequence {Uk} such

that ∃K < ∞ with

P(
m
∑

j=1

Uj(Sj − Sj−1) ≥ −K ) = 1 ∀m ≥ 1.

Here K is to be interpreted as credit limit of the investor using the

trading strategy.

Let A denote class of admissible strategies.
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Now the class of attainable positions K is defined as

K = {W : ∃n ≥ 1, {Uk} ∈ A s.t. W =

n
∑

j=1

Uj(Sj − Sj−1)}.

Let

C = {V ∈∈ L
∞ : ∃W ∈ K with V ≤ W }.

The No Approximate Arbitrage (NAA) condition is:

C̄ ∩ L
∞
+ = {0}

where C̄ is the closure in L
∞. Now it can be shown that NAA

holds for {Sk} if and only if there exists a equivalent local

martingale measure (ELMM).
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Another interesting observation: Every bounded mean zero random

variable is attainable (called completeness of market) if and only if

ELMM is unique.

Thus we have : NAA if and only if ELMM exists and market is

complete if and only if ELMM is unique.
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Let us move to continuous time. Let {St : 0 ≤ t ≤ T} denote the

stock price. Let Ft be the σ field generated by all observables up

to time t. A simple trading strategy is a predictable process f

given by

f (s) =

m
∑

j=0

aj1(sj ,sj+1](s) (7)

where 0 = s0 < s1 < s2 < . . . < sm+1 < ∞, aj is bounded Fsj

measurable random variable, 0 ≤ j ≤ m. For such a trading

strategy f , the value of the holding is given by

V (f )t =

m
∑

j=0

aj(Xsj+1∧t − Xsj∧t). (8)
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Such a simple trading strategy is said to be admissible if for some

constant K

P(V (f )t ≥ −K ) = 1.

K represents the credit limit of the investor. Let As represent class

of admissible simple strategies.
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Let

Cs = {Y ∈ L
∞ : ∃f ∈ As s.t. Y ≤ V (f )T}.

We will say that NAA holds in the class of simple trading

strategies if

C̄s ∩ L
∞
+ = {0}

where C̄ is the closure in L
∞.

Delbaen-Schachermayer have shown that if NAA holds in the class

of simple trading strategies for an r.c.l.l. process {St : 0 ≤ t ≤ T}

then S is a semimartingale.
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Suppose the model for stock price S is a semimartingale. An

admissible trading strategy is a predictable process f ∈ L(S) such

that for some constant K P(
∫ t

0 f dS ≥ −K ) = 1. Let A denote the

class of admissible trading strategies.

Let the class of attainable claims be defined by

K = {W : ∃f ∈ A, a ≥ 0 s.t. W =

∫ T

0
f dS}

and

C = {Y ∈ L
∞ : ∃W ∈ K s.t.Y ≤ W }.
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Delbaen-Schachermayer showed in 1994 that if S is locally

bounded, then

C̄ ∩ L
∞
+ = {0}

if and only if ELMM exists.

The property C̄ ∩ L
∞
+ = {0} has been called No Free Lunch with

Vanishing Risk (NFLVR) by them.
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In this case too one has the result that market is complete if and

only if ELMM is unique. The completeness of martingale here is

same as all bounded mean zero random variables admit stochastic

integral representation w.r.t. S.
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Delbaen-Schachermayer showed in 1998 that more generally

NFLVR holds i.e.

C̄ ∩ L
∞
+ = {0}

if and only if there exists an equivalent probability measure Q

under which S is a sigma-martingale (ESMM exists).
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Here again we have that market is complete if and only if ESMM is

unique.

For simplicity of notations, we have only described results in the

1-dimensional case. But equivalence of NFLVR and existence of

ELMM / ESMM as well as completeness of markets and

uniqueness of ELMM / ESMM holds when we have a d -stocks.
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