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Structure of the talk

The first part of the talk is an introduction to some mathematical
models on the evolution of species.

In the second part we present our contribution.

“Those who are horrified at Mr. Darwin’s theory, may comfort
themselves with the assurance that, if we are descended from the ape,
we have not descended so far as to preclude all hope of return.”
Ambrose Bierce 1874, The Fiend’s delight.



The Bak-Sneppen model

Consider a population consisting of N species located on a circle.
Also let {fi(0) : 1 ≤ i ≤ N} be i.i.d. Uniform[0, 1] random variables.
fi(0) represents the fitness of the i th species initially.

A simple evolutionary mechanism

Let {fi(n) : 1 ≤ i ≤ N} be the fitness values at time n,
the fitness values at time n + 1 is given by

fi(n + 1) :=

fi(n) if fi(n) ̸= min{fl(n) : 1 ≤ l ≤ N}

gi(n) if fi(n) = min{fl(n) : 1 ≤ l ≤ N}

where {gi(n) : 1 ≤ i ≤ N, n ≥ 0} is another collection of i.i.d.
Uniform[0, 1] random variables, independent of the previous
collection.



This is really a trivial model and it can be easily shown that
fNi (n) → 1 in distribution as n,N → ∞.

So we need to add a twist to it.

We do an i.i.d. Uniform[0, 1] sampling not only at the site of the
minimum fitness, but also its two neighbours, i.e.

fi(n + 1) :=


gi(n) if f(n)

i = min{fl(n) : 1 ≤ l ≤ N}

gj(n) if j = i ± 1 and fi(n) = min{fl(n) : 1 ≤ l ≤ N}

fi(n) for all other sites.
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Bak and Sneppen (1993)1 observed that for large N that the
1-dimensional marginals are uniform on (fc, 1) for some fc ∼ 2/3.
Power law behaviour
Assuming the existence of fc, physicists study avalanches.
Fix 0 < q < 1 and let

τ1 = inf{n : fNi (n) > q for all 1 ≤ i ≤ N}

and
τ2 = inf{n > τ1 : fNi (n) > q for all 1 ≤ i ≤ N}.

The time τ2 − τ1 is the length of an avalanche of fitnesses below q.
For q = fc, its distribution is supposed to have a power law behaviour.

1Bak, P. and Sneppen, K. (1993). Punctuated equilibrium and criticality in a
simple model of evolution. Phys. Rev. Lett., 74, 4083–4086.



Bak-Sneppen Liggett-Schinazi B&D Chain M/M/1 Description Cutoff Avalanche

The avalanche phenomena
An avalanche from threshold q with origin at x and duration d
occurs at time n if at this time x is the vertex with the minimal
fitness above q and n + d is the first time after n with all fitness
above q. Its range is the number of sites re-initiated during the
avalanche.

Taken from

http://membres-timc.imag.fr/Herve.Guiol/activites/ParisSlidessimple.pdf



Rigorous results

Let FN be the distribution function of the 1-dimensional marginal in
the stationary regime with N sites

Theorem
(Meester and Znamenski, 2003)
There exists 0<q<1 and cq > 0 such that, uniformly in N, we have

FN(q) > cq.

This establishes the non-triviality of the Bak-Sneppen model.



Avalanches

First a triviality – let N = 3.
Let Xk := min{fi(k) : i = 1, 2, 3}. Since the system is flushed at
every time point, X0,X1, . . . is a sequence of i.i.d. random variables.
So, by symmetry,

P(X0 > max{X1, . . . ,Xn}) = 1/n.

So, if L is the length of an avalanche of fitness X0, then

P(L > n) = 1/n, and so, E(L) = ∞.



In case N > 3 the above argument fails because we do not flush the
system at every time point.
However, for any N if X0 := min{fi(0) : i = 1, . . . ,N}, then

Theorem
(Gillett, Meester and van der Wal, 2006)
Let L be the length of an avalanche of fitness X0, then E(L) = ∞.

This lends validity to the ‘power law’ belief of the physicists.

Before we end this discussion on the Bak-Sneppen model we mention
a curious result from this same paper.



Let n > N and Y0 := min{f1(0), . . . , fN(0),U1, . . .Un−N}, where
{U1,U2, . . .} is another collection of i.i.d. Uniform[0, 1] random
variables. Then, for the model with N sites, we have

E(L) < ∞, where L is the length of an avalanche of fitness Y0;

which again lends credence to the hypothesis of physicists that the
power law phenomenon holds only for avalanches of fitness f > fc.



Meester and Sarkar (2012)

Meester and Sarkar (2012) considered a modified Bak-Sneppen model,
which retained the imprimatur of the original Bak-Sneppen model..

Instead of replacing the least fit and its two neighbours, they
considered a model where, besides the least fit, a random one is
chosen uniformly from the remaining N − 1.

They show that, if the initial configuration has an individual of fitness
0 and the rest have a fitness > f, then the length LN

f of an avalanche
at level f satisfies



Theorem
1. For f < 1/2 and all N,

P(LN
f > n) ≤ exp(−c1(f)n) for some positive constant c1(f),

2. For f > 1/2,

lim
N→∞

P(LN
f > n) ≥ c2(f) for some positive constant c2(f),

3. For f = 1/2,

lim
n→∞

lim
N→∞

√
nP(LN

f > n) = 2/
√
π.



Liggett and Schinazi (2009)

Liggett and Schinazi (2009) wanted to study the following question
(which is very topical)

“Korber, et al.2 noted that the influenza virus is less diverse
worldwide than the HIV virus is in Amsterdam alone. How-
ever, both types of (phylogenetic) tree are supposed to be
produced by the same mechanism: mutations. Can the same
mathematical model produce two trees that are so different?”

2Evolutionary and immunological implications of contemporary HIV-1
variation. British Med. Bull. 58, 19–42.



Their model is a continuous time birth and death chain, with every
birth having a fitness component which is an i.i.d. random variable
and each death is of the individual which has the smallest fitness.

The birth rate is

n → n + 1 at rate λn

and the death rate

n → n − 1 at rate n provided n ≥ 1.



Since only the ordering of the fitness is needed, w.l.o.g assume that
the fitness is Uniform[0, 1] distributed.
Let M(t) := maximal fitness at time t.
They show

Theorem
(Liggett and Schinazi (2009))
For α ∈ (0, 1), we have

lim
t→∞

P
(
M(αt) = M(t)

)
=

α if λ ≤ 1
0 if λ < 1.



So for λ < 1, the dominating type (i.e. the fittest type) at time t has
likely been present for a time of order t and at any given time there
will not be many types. This is consistent with the observed structure
of an influenza tree.

While, for λ > 1 the dominating type at time t has likely been
present for a time of order smaller than t and at any given time there
will be many types. This is consistent with an HIV tree.



Guiol, Machado and Schinazi (2010)

The Bak-Sneppen model suffers from two major shortcomings:–

1. The number of species is fixed, although we study the asymptotics
as N → ∞.
2. It could be the case that along with the least fit species, we also
remove the most fit, because it happened to be the neighbour of the
least fit species.

Guiol, Machado and Schinazi (2010) proposed a model where

1. The number of species present at any instant of time is random.
2. Only the least fit species die.



The GMS model is a ‘birth and death’ model defined as follows:

(i) At time 0 there is a particle at 0.
(ii) With probability p there is a birth and the individual is born

with a fitness f ∼ Unif[0, 1], independent of other births.
(iii) With probability 1 − p a death takes place and the individual

with the smallest fitness is removed.

So if

Lf
n := #{individuals with fitness ≤ f at time n}

Rf
n := #{individuals with fitness > f at time n}

Nn := Lf
n + Rf

n = population size at time n



then, for k, ℓ ≥ 1,

P
(
(Lf

n+1,Rf
n+1) = (k, ℓ)

)

=


pf if (Lf

n,Rf
n) = (k − 1, ℓ)

1 − p if (Lf
n,Rf

n) = (k + 1, ℓ)
p(1 − f) if (Lf

n,Rf
n) = (k, ℓ − 1)

Similarly we may write the transition probabilities when either k or ℓ

equals 0.

So for f = fc := 1−p
p (with p > 1/2), we have



Lf
n+1 − Lf

n =


+1 w.p. 1 − p
−1 w.p. 1 − p
0 w.p. 2p − 1.

So Lf
n is a symmetric random walk with reflecting boundary at 0 and

hence
P(Lf

n = 0 infinitely often) = 1 for f ≤ fc.

Also, a simple SLLN argument shows,

for fc < a < b ≤ 1, we have
Ra

n − Rb
n

n
→ p(b − a) almost surely.

This is from Guiol, Machado and Schinazi (2010), building on the
work of Liggett and Schinazi (2006).



GMS– continuous version

Guiol, Machado and Schinazi (2013) has a continuous version of the
previous model.

Here a new species is born at a rate λ and an existing species dies at
rate µ.

At birth, a new species has a random (positive) fitness determined by
a distribution F.

And the death is of the species with the least fitness.



Assume that the distribution function F admits a density.
Suppose at time 0 there are k species with fitnesses
0 < f1 < · · · < fk = f.
Let τ k

f := time of survival of the species with fitness f.

Theorem
τ k

f has a Bessel distribution given by

P(τ k
f ≤ t) =

( µ

λf

)k/2 ∫ t

0
e−s(µ+λf))

k
s

Ik(2
√

sµλf)ds,

where λf = λF(f) and Ik is the modified Bessel function of the first
kind with index k defined by

Ik(x) =

∞∑
l=0

1
(l + k)! l!

(x/2)2l+k.



From the theorem we observe the following asymptotic behaviour

1. If λf < µ then

P(τ k
f > t) ∼ Ck

e−γt

t3/2

where γ = (
√
µ −

√
λf)

2 and Ck depends on k, λf and µ.
2. If λf > µ then

P(τ k
f = ∞) = 1 −

( µ

λf

)k
,

P(t < τ k
f < ∞) ∼ Ck

e−γt

t3/2 .

3. If λf = µ

P(τ k
f > t) ∼ k

1
√tπµ

.



Thus there is a phase transition:

If λ > µ then taking fc = F−1(µ/λ), then species with fitness larger
than fc have a positive probability of eternal survival.

Also as in the discrete model:

The number of species at time t with fitnesses less that fc is a null
recurrent birth and death process,

while the number of species at time t with fitnesses in (a, b) with
fc < a < b behaves like tλ(F(b)−F(a))

λ+µ
asymptotically almost surely.



Ben-Ari and Schinazi (2016):

Returning to the discrete GMS model, suppose at birth (an event
which occurs with probability p), either

a) with probability r a mutant is born with a fitness f ∼ Unif[0, 1],
independent of other births.

b) with probability 1 − r the individual born has a fitness chosen
uniformly at random among the fitnesses of the existing
individuals at that time.

A ‘death’ removes all the individuals with the smallest fitness.

Here again we have a similar phase transition at fc = 1−p
pr (we assume

pr > 1 − p).



Also, for a given n, k, f, let

Uk
n(f) := #{s ∈ [f, 1] : there are exactly k individuals with fitness s}.

i.e., number of sites in [f, 1] with a population of exactly k at time n.
For A ⊂ N∗ × [0, 1] Borel, consider the empirical distribution

Hn(A) :=


∑

(k,f)∈A
[
Uk

n(f) − Uk
n(f+)

]
if Nn(0) > 0

δ(0,0)(A) if Nn(0) = 0

Ben-Ari and Schinazi (2016) showed that

Hn converges weakly to a product measure of Geom
(

pr−(1−p)
p−(1−p)

)
and

Unif [fc, 1]



Michael and Volkov (2012)

Our work is on the GMS model, however before we talk about our
work, we discuss a variant of the GMS model introduced by Michael
and Volkov (2012).

Let X1,X2, . . . and Z1, Z2, . . . be two independent collections of i.i.d.
positive integer valued random variables.
Let 0 < p < 1 and T0 = 0. At time n, the state of the system Tn is a
finite subset of [0, 1].. The Markov process is as follows:

At time n + 1, with probability p, we have #Tn+1 = #Tn + Zn,
with each of the new Zn individuals being assigned Unif[0, 1] fitnesses,
independent of other individuals and independent of other random
variables;
with probability 1 − p, we have #Tn+1 = max{#Tn − Xn, 0}, and
we remove all species with the smallest Xn fitness.



Let µZ = EZ and µX = EX, then we have

1. Suppose µZ = ∞ and µX < ∞ then, as n → ∞, we have that Tn

approaches a random sample from Unif[0, 1], in the sense that if Bn is
the set of all species born until time n and Dn the set of all species
removed until time n, then Tn = Bn \ Dn and

lim sup
n

#(Tn∆Bn)

Bn
= 0 almost surely .

2. Suppose µZ < ∞ and µX < ∞ and let p > pc := µX
µX+µZ

. Then
Tn approaches a random sample from Unif[f, 1], where
f = (1−p)µX

pµZ
∈ (0, 1).

3. Suppose µZ < ∞ and (i) µX < ∞ with p < pc or (ii) µX = ∞,
then Tn = ∅ for infinitely many n.



The preferential attachment model

At time 0 there is one individual of fitness 0. At time n, there is
either a birth or a death of an individual from the existing population
with probability p or 1 − p respectively, and independent of any other
random mechanism considered earlier.

(P1) In case of a birth, there are two possibilities.
(i) with probability r, a mutant is born and has a fitness parameter f

uniformly at random in [0, 1], or
(ii) with probability 1 − r the individual born has a fitness f with a

probability proportional to the number of individuals with fitness
f among the entire population present at that time. Here we have
a caveat that, if there is no individual present at the time of birth,
then the fitness of the individual is sampled uniformly in [0, 1].

(P2) In case of a death, an individual from the population at the site
closest to 0 is eliminated.



The formal structure

Let Xn = {(ki, xi) : ki ≥ 1, xi ∈ [0, 1], i = 1, . . . , ℓ}, where the total
population at time n is divided in exactly ℓ sites x1, . . . , xℓ, with the
size of the population at site xi being exactly ki. In case there is no
individual present at time n we take Xn = ∅.

The process Xn is Markovian on the state space

S := {∅} ∪ {{(k, x)}x∈Λ : (k, x) ∈ N × [0, 1], #Λ < ∞, }.



For a given f ∈ (0, 1), let Lf
n denote the size of the population at time

n at sites in [0,f],

Lf
n :=

∑
ks : sum over s ∈ [0, f] and (ks, s) ∈ Xn,

Rf
n denote the size of the population at time n at sites in (f, 1],

Rf
n :=

∑
ks : sum over s ∈ (f, 1] and (ks, s) ∈ Xn,

and Nn denote the size of the population at time n,

Nn := Lf
n + Rf

n.



The pair (Lf
n,Rf

n) is Markovian:

(1-1) If (Lf
n,Rf

n) = (0, 0)

(Lf
n+1,Rf

n+1) =


(1, 0) w. p. fp
(0, 1) w. p. (1 − f)p
(0, 0) w. p. 1 − p

(1)

(1-2) If (Lf
n,Rf

n) ∈ {0} × N

(Lf
n+1,Rf

n+1) =


(1,Rf

n) w. p. fpr
(0,Rf

n + 1) w. p. (1 − f)pr + p(1 − r)
(0,Rf

n − 1) w. p. 1 − p

(2)



(1-3) If (Lf
n,Rf

n) ∈ N × {0}

(Lf
n+1,Rf

n+1) =


(Lf

n + 1, 0) w. p. fpr + p(1 − r)
(Lf

n, 1) w. p. (1 − f)pr
(Lf

n − 1, 0) w. p. 1 − p

(3)

(1-4) If (Lf
n,Rf

n) ∈ N × N

(Lf
n+1,Rf

n+1) =


(Lf

n + 1,Rf
n) w. p. fpr + p(1 − r)

Lf
n

Nn

(Lf
n,Rf

n + 1) w. p. (1 − f)pr + p(1 − r)
Rf

n
Nn

(Lf
n − 1,Rf

n) w. p. 1 − p.
(4)

Unlike in other cases, the transition probabilities here are not
spatially homogeneous.



The model exhibits a phase transition at a critical position fc defined
as

fc :=
1 − p

pr
as given in the following theorem:

Theorem
(1) In case p ≤ 1 − p, the population dies out infinitely often a.s., in the sense

that

P(Nn = 0 for infinitely many n) = 1

(2) In case 1 − p < rp, the size of the population goes to infinity as n → ∞,
and most of the population is distributed at sites in the interval [fc, 1], in the
sense that

P( lim
n→∞

Rfcn
Nn

= 1) = 1 and P(lim inf
n→∞

Rfcn − Rf
n

Nn
> 0) = 1 for any f > fc.

(3) In case rp ≤ 1− p < p, the size of the population goes to infinity as n → ∞,
and most of the population is concentrated at sites near 1, in the sense that

P( lim
n→∞

Nn = ∞) = 1 and, for any ε > 0, P( lim
n→∞

R1−ε
n
Nn

= 1) = 1.



Let Fn(f) denote the empirical distribution of sites at time n, i.e.

Fn(f) :=
♯{s ∈ [0, f] : (k, s) ∈ Xn for some k ≥ 1}
♯{s ∈ [0, 1] : (k, s) ∈ Xn for some k ≥ 1}

,

we have a Glivenko-Cantelli type result
Corollary:
If 1 − p < rp (i.e., fc < 1), then

Fn(f) →
max{f − fc, 0}

1 − fc
uniformly a.s.



For a given n, k, f let Uk
n(f) := ♯{s ∈ [f, 1] : (k, s) ∈ Xn} denote the

number of sites in [f, 1] at time n which has a population of size
exactly k.
Clearly the total number of sites is Sn =

∑
k Uk

n(0).
Taking Uk

n(f+) = lims↓f Uk
n(s), for A ⊆ X, define the empirical

distribution of size and fitness on N × [0, 1] by

Hn(A) :=


∑

(k,f)∈A Uk
n(f)−Uk

n(f+)

Sn
if Sn > 0,

δ(0,0)(A) if Sn = 0.



Theorem
For pr > 1 − p, as n → ∞, Hn converges weakly to a product
measure on N × [0, 1] whose density is given by

pk
1[fc,1](x)

1 − fc
dx, for (k, x) ∈ N × [0, 1]

with pk =
2p − 1

p(1 − r)
B
(

1 +
2p − 1

p(1 − r)
, k
)

for k ∈ N,

where B(a, b) :=
∫ 1

0 ta−1(1 − t)b−1dt is the Beta function with
parameters a, b > 0.



For k large and s fixed, B(s, k) ∼ Γ(s)k−s as k → ∞.
So the probability density

pk ∼ k−(1+ 2p−1
p(1+r) ), i.e.

∑
k≥j

pk ∼ j−
2p−1

p(1+r) .

Since p(1 + r) > p + (1 − p) = 2p − 1, we have a power law
behaviour as is to be expected from preferential attachment models.



Number of individuals of a fixed fitness

Fix f ∈ [0, 1] and let Nf
n denote the number of individuals with fitness

f at time n. When rp > 1 − p, i.e. fc < 1, from the first Theorem we
know that, P(Lf

n = 0 infinitely often) = 0 for f ∈ (fc, 1). Thus, if a
mutant with fitness f ∈ (fc, 1) is born at some large time ℓ, then the
chances of the mutant dying is small, and so a natural question is ‘for
some n > ℓ, how many individuals did this mutant attract by time n’,
i.e., what is the value of Nf

n?

Theorem
Fix f ∈ (fc, 1), we have, for ℓ < n, as ℓ, n → ∞

E[Nf
n|a mutant with fitness f is born at time ℓ]

∼
Γ((2p − 1)ℓ + 1)Γ((2p − 1)n + 1 + p(1 − r))
Γ((2p − 1)ℓ + 1 + p(1 − r))Γ((2p − 1)n + 1)

∼
(n
ℓ

)p(1−r)
.



A crucial result used in the proofs is

Lemma
(1) Let fc = 1−p

rp < 1.
(i) For f < fc and for any η ∈ (0, 1) we have

P
(
∃ T > 0 such that ρf

n ≡
Lf

n
Nn

≤ η ∀ n ≥ T
)

= 1, (5)

and P(Lf
n = 0 infinitely often) = 1. (6)

(ii) Let f > fc. Then

P(Lf
n = 0 infinitely often) = 0. (7)

(2) Let 1 ≤ fc = 1−p
rp < 1

r .
(i) For f < 1 and for any η ∈ (0, 1) we have (9) and (10).
(ii) Let f = 1. Then we have (11).



First we prove the following theorem:

Theorem
For pr > 1 − p, as n → ∞, Hn converges weakly to a product
measure on N × [0, 1] whose density is given by

pk
1[fc,1](x)

1 − fc
dx, for (k, x) ∈ N × [0, 1]

with pk =
2p − 1

p(1 − r)
B
(

1 +
2p − 1

p(1 − r)
, k
)

for k ∈ N,

where B(a, b) :=
∫ 1

0 ta−1(1 − t)b−1dt is the Beta function with
parameters a, b > 0.



To prove the above theorem, for k, t1, n ∈ N let
Ak(t1, n), be the event that a mutant born at time t1 gets k − 1
attachments until time n, and let

qk(t1, n) := P(Ak(t1, n)).

First we show that
Lemma
For the preferential attachment model with p = 1, i.e., no deaths, we
have

E

{1
n

n∑
t1=1

(1Ak(t1,n) − qk(t1, n))
}2
→ 0 as n → ∞.



The left hand side above is

1
n2

n∑
t1=1

n∑
s1=1

[P(Ak(s1, n) ∩ Ak(t1, n)) − P(Ak(s1, n))P(Ak(t1, n))]

=
1
n2

n∑
t1=1

n∑
s1=1

P(Ak(s1, n))
[
P(Ak(t1, n)

∣∣Ak(s1, n)) − P(Ak(t1, n))
]
.

We show that for any x1, y1 ∈ (0, 1) with x1 < y1

P(Ak(y1n, n)
∣∣Ak(x1n, n)) − P(Ak(y1n, n)) → 0, n → ∞,

which suffices to prove the lemma.
This is done by breaking up Ak(t1, n) according to the arrival times
of the k − 1 mutants.



Lemma Let p = 1. For each k ∈ N

lim
n→∞

1
n

n∑
t1=1

qk(t1, n) =
1

1 − r
B
(2 − r

1 − r
, k
)

= pk.

To prove the above lemma observe that,
for k = 1, we have

q1(t1, n) = r
n∏

j=t1+1

(
1 −

1 − r
j

)
,

since the number of individuals till time j − 1 is j and the probability
that the mutant who arrived at time t1 gets an attachment at time j
is 1−r

j .



For k = 2

q2(t1, n)

= r
n∑

t2=t1+1


t2−1∏

j=t1+1

(
1 −

1 − r
j

) 1 − r
t2


n∏

j=t2+1

(
1 −

2(1 − r)
j

) ,

where t2 is the time of the second attachment.



Similarly for each k ∈ N

qk(t1, n)

= r
∑

t1<t2<···<tk≤n

k∏
ℓ=1

tℓ+1∏
j=tℓ+1

(
1 −

ℓ(1 − r)
j

) k−1∏
ℓ=1

ℓ(1 − r)
tℓ+1 − ℓ(1 − r)

.

By using Stirling’s formula we see that

tℓ+1∏
j=tℓ+1

(
1 −

ℓ(1 − r)
j

)
∼
( tℓ

tℓ+1

)ℓ(1−r)
, tℓ, tℓ+1 → ∞.



Now letting n → ∞ and taking tℓ = nxℓ we have

1
n

n∑
t1=1

qk(t1, n)

∼ r
∫

0<x1<···<xk<1
dx1 · · · dxk

k∏
ℓ=1

( xℓ

xℓ+1

)ℓ(1−r) k−1∏
ℓ=1

ℓ(1 − r)
xℓ+1

= r(1 − r)k−1
∫ 1

0
dx1x1−r

1

k∏
ℓ=2

∫ 1

x1

dxℓ x−r
ℓ = r

∫ 1

0
dx1x1−r

1 (1 − x1−r
1 )k−1

=
r

1 − r

∫ 1

0
dy y

1
1−r (1 − y)k−1 =

r
1 − r

B
(2 − r

1 − r
, k
)
.



When p = 1 we have

1
n

n∑
t1=1

1Ak(t1,n) →
r

1 − r
B
(2 − r

1 − r
, k
)

as n → ∞, in probability.

Noting that

lim
n→∞

Sn

n
= r, a.s. (Recall Sn is the number of sites till time n)

we have

lim
n→∞

∑
f∈(0,1) Uk

n(f) − Uk
n(f+)

Sn
=

1
1 − r

B
(2 − r

1 − r
, k
)

= pk in probability.

(8)

Noting that the sites are uniformly distributed on [0, 1]
independently, and preferential attachment does not depend on the
position of sites, we obtain the Theorem for p = 1.



Next we consider the case where p ∈ (0, 1). We introduce another
Markov process X̂n, n ∈ N ∪ {0}, which is a pure birth process, as
follows:

1. At time 0 there exists one individual at a site uniformly
distributed on (fc, 1).

2. with probability r̂ := pr(1 − fc) a mutant is born with a fitness
uniformly distributed in [fc, 1],

3. with probability p(1 − r)(1 − fc) the individual born has a
fitness f with a probability proportional to the number of
individuals of fitness f and we increase the corresponding
population of fitness f individuals by 1.

3. With probability 1 − p(1 − fc) nothing happens, i.e. neither a
birth nor a death occurs.



For the Markov process X̂n, n ∈ N ∪ {0}, we define q̂k, Ŝn and Ûn in
the same manner as qk, Sn and Un for Xn, n ∈ N ∪ {0}. Then by the
same argument as above we see that

1
n

n∑
t1=1

q̃k(t1, n) ∼ p(1 − rfc)
r̂

1 − r̂
B
(2 − r̂

1 − r̂
, k
)

and and

lim
n→∞

Ŝn

n
= pr(1 − fc).

Hence

lim
n→∞

∑
f∈(0,1) Ûk

n(f) − Ûk
n(f+)

Ŝn
=

1
1 − r̂

B
(2 − r̂

1 − r̂
, k
)

= pk,



From the main Lemma, we know that deletions of individuals in
(fc, 1) occur finitely often and Rf

n
Lf

n+Rf
n
→ 1 almost surely as n → ∞.

Thus we have

lim
n→∞

∑
f∈(0,1) Uk

n(f) − Uk
n(f+)

Sn

= lim
n→∞

∑
f∈(0,1) Ûk

n(f) − Ûk
n(f+)

Ŝn
a.s.

=
1

1 − r̂
B
(2 − r̂

1 − r̂
, k
)

=
2p − 1

p(1 − r)
B
(

1 +
2p − 1

p(1 − r)
, k
)

and so (8) for p ∈ (0, 1]. Noting that the sites are uniformly
distributed on [0, 1] independently, and preferential attachment does
not depend on the position of sites, we obtain the theorem.



Now we prove

Theorem
Fix f ∈ (fc, 1), we have, for ℓ < n, as ℓ, n → ∞

E[Nf
n|a mutant with fitness f is born at time ℓ]

∼
Γ((2p − 1)ℓ + 1)Γ((2p − 1)n + 1 + p(1 − r))
Γ((2p − 1)ℓ + 1 + p(1 − r))Γ((2p − 1)n + 1)

∼
(n
ℓ

)p(1−r)
,

where Nf
n denotes the number of individuals with fitness f at time n.



Proof. Since we are interested in the region f > fc and also, for the
calculation of the expectation, we just need to factor out the death
rate (1 − p), so we modify the Markov process X̂n introduced earlier,
by removing the times when ‘nothing happens’ , i.e. the process does
not move. This is done as follows: let N̂n be the number of
individuals of the process X̂n at time n, we define a new Markov
process X̌n, for n ≥ 0, by

X̂n = X̌N̂n−1.

Since N̂0 = 1, we see that Ňℓ = ℓ + 1, where Ňℓ is the number of
individuals of the process X̌ at time ℓ.



Let Ňf
m be the number of individuals of X̌ of fitness f at time m.

We have

E[Ňf
m|Ňf

m−1] = {1 − p(1 − r)}Ňf
m−1

+ p(1 − r)
{
(Ňf

m−1 + 1)
Ňf

m−1

m
+ Ňf

m−1

(
1 −

Ňf
m−1

m

)}

=

(
1 +

p(1 − r)
m

)
Ňf

m−1.



If Ňf
0 = Ň0 = 1 then we have

E[Ňf
m|Ňf

0 = 1] =
m∏

k=1
(

k + p(1 − r)
k

) =
Γ(m + 1 + p(1 − r))

Γ(1 + p(1 − r))Γ(m + 1)
,

while, if Ňf
ℓ = 1 then we have

E[Ňf
m|Ňf

ℓ = 1] =
m∏

k=ℓ+1
(

k + p(1 − r)
k

) =
Γ(ℓ + 1)Γ(m + 1 + p(1 − r))
Γ(ℓ + 1 + p(1 − r))Γ(m + 1)

.



Since N̂n
n → pr(1 − fc) + p(1 − r) = 2p − 1, if N̂f

0 = 1 then we have

E[N̂f
n|N̂

f
0 = 1]

∼
(2p−1)n∏

k=1
(

k + p(1 − r)
k

) =
Γ((2p − 1)n + 1 + p(1 − r))

Γ(1 + p(1 − r))Γ((2p − 1)n + 1)
.

E[N̂f
n|N̂

f
ℓ = 1] =

(2p−1)n∏
k=(2p−1)ℓ+1

(
k + p(1 − r)

k
)

=
Γ((2p − 1)ℓ + 1)Γ((2p − 1)n + 1 + p(1 − r))
Γ((2p − 1)ℓ + 1 + p(1 − r))Γ((2p − 1)n + 1)

.

From the main Lemma we have E[Nf
n|Nf

ℓ = 1] ∼ E[N̂f
n|N̂f

ℓ = 1], we
have the theorem.



Now we prove the main lemma

Lemma
(1) Let fc = 1−p

rp < 1.
(i) For f < fc and for any η ∈ (0, 1) we have

P
(
∃ T > 0 such that ρf

n ≡
Lf

n
Nn

≤ η ∀ n ≥ T
)

= 1, (9)

and P(Lf
n = 0 infinitely often) = 1. (10)

(ii) Let f > fc. Then

P(Lf
n = 0 infinitely often) = 0. (11)

(2) Let 1 ≤ fc = 1−p
rp < 1

r .
(i) For f < 1 and for any η ∈ (0, 1) we have (9) and (10).
(ii) Let f = 1. Then we have (11).



The idea of the proof is that, since for f < fc ∧ 1, Rf
n will be much

larger than Lf
n, we stochastically bound the non-spatially

homogeneous Markov chain by a spatially homogeneous Markov
chain, and study the modified Markov chain. As such, for ε ∈ [0, 1],
we introduce a Markov chain (Lf

n(ε),Rf
n(ε)) as follows:

If (Lf
n(ε),Rf

n(ε)) ∈ N × N

(Lf
n+1(ε),Rf

n+1(ε))

=


(Lf

n(ε) + 1,Rf
n(ε)) w. p. fpr + p(1 − r)ε

(Lf
n(ε),Rf

n(ε) + 1) w. p. (1 − f)pr + p(1 − r)(1 − ε)

(Lf
n(ε) − 1,Rf

n(ε)) w. p. 1 − p.

Similarly for other cases.



Recall the original transition probabilities were

(Lf
n+1,Rf

n+1) =


(Lf

n + 1,Rf
n) w. p. fpr + p(1 − r)

Lf
n

Nn

(Lf
n,Rf

n + 1) w. p. (1 − f)pr + p(1 − r)
Rf

n
Nn

(Lf
n − 1,Rf

n) w. p. 1 − p.



For ε ∈ [0, 1], we couple the processes {(Lf
n(ε),Rf

n(ε)) : n ≥ 1} such
that

Lf
n(ε) ≤ Lf

n(ε
′), Rf

n(ε) ≥ Rf
n(ε

′) for ε ≤ ε′ and all n ≥ 1.

For ρf
n :=

Lf
n

Nn
,

Lf
n+1 = Lf

n+1
(
ρf

n
)
, Rf

n+1 = Rf
n+1

(
ρf

n
)
,

Lf
n(0) ≤ Lf

n ≤ Lf
n(1), Rf

n(1) ≤ Rf
n ≤ Rf

n(0).

Also, death rates don’t change, so

Nn(ε) := Lf
n(ε) + Rf

n(ε) = Nn.



By the law of large numbers we have

lim
n→∞

Lf
n(ε)

n
= [fpr + p(1 − r)ε − 1 + p]+ , almost surely.

lim
n→∞

Nn

n
= 2p − 1, almost surely,

and so, for ρf
n(ε) :=

Lf
n(ε)
Nn

, we have

lim
n→∞

ρf
n(ε) =

[ fpr + p(1 − r)ε − 1 + p
2p − 1

]
+

=

[ fpr − 1 + p
2p − 1

+
p(1 − r)ε

2p − 1

]
+

.



To study Lf
n(ε)
Nn

we introduce the linear function defined by

h(x) =
fpr − 1 + p

2p − 1
+

p(1 − r)
2p − 1

x.

Note that p(1−r)
2p−1 > 0. By a simple calculation we see that if f ≤ 1

h(0) ≤
pr − 1 + p

2p − 1
< 0 if pr < 1 − p and h(1) ≤ 1−

pr(1 − f)
2p − 1

< 1.



Then we see that
lim

n→∞
hn(1) < 0,

where h2(x) = h(h(x)) and hn+1(x) = h(hn(x)). Hence, for any
η > 0

P
(
∃T > 0 s.t. αf

n ≡
Lf

n
Nn

≤ η ∀n ≥ T
)

= 1,

which will give the 2nd part of the theorem.



Mean field heuristics

We now present some mean field heuristics about the location of the
leftmost site xt at time t in the case when pr < 1− p < p, i.e. fc > 1.
Let yt = 1 − xt. The number of individuals to enter the interval
(xt, 1] is approximately

prytdt + p(1 − r)dt,

where the first term counts the births which are mutants and the
second term counts the births which are not mutants. While the
number of individuals deleted in the interval (xt, 1] is approximately

−
dyt

yt
{p − (1 − p)}t,

this being the absolute value of the deletions since dyt
dt < 0.



Thus we consider the following differential equation:

prytdt + p(1 − r)dt +
dyt

yt
{2p − 1}t = (2p − 1)dt,

Solving we have, for γ := pr(fc−1)
2p−1 = 1−p−pr

2p−1

yt =
fc − 1

Ctγ − r
∼ C′t−γ , t → ∞.

and the number of sites is

rptyt ∼ C′rpt1−γ .



For fc > 1 we have γ = γ(p, r) > 0, and γ(p, r) is a decreasing
function of p. Also

(i) when p = 1 − p, i.e., p = 1
2 , then γ = ∞; this corresponds to

the case when the process dies out repeatedly,
(ii) when pr = 1 − p, i.e., fc = 1, then γ = 0; this corresponds to the

case when there are only a bounded number of sites surviving,
(iii) when p = 2

3+r ∈
(

1
2 ,

1
1+r

)
, then γ = 1; this too corresponds to

the case when there are only a bounded number of sites surviving.



From the above, we see that there are three critical values

p(0)
c :=

1
2
< p(1)

c :=
2

3 + r
< p(2)

c :=
1

r + 1
< 1

and four phases:
1. For p ∈ (p(2)

c , 1), γ = −∞ and individuals exist in the interval
(fc, 1].

2. For p ∈ (p(1)
c , p(2)

c ], γ ∈ (0, 1) and the number of sites are
increasing with the order t1−γ and the average number of
individuals per site is of order tγ .

3. For p ∈ (p(0)
c , p(1)

c ], γ ∈ (1,∞), that is, 1 − γ is negative, and
the number of sites is finite, with the average number of
individuals being of order t.

4. For p ∈ (0, p(0)
c ] the process dies out infinitely often.



Fitness level
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Figure: Population (in log2 scale) at various fitness levels.

p = 3/4, r = 1/2, so that fc = 2/3. The simulation has been
conducted with n = 100, 000.
Source: Deepayan Sarkar
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Figure: Population (in log2 scale) at various fitness levels.

Source: Deepayan Sarkar



“TALK, v.t. To commit an indiscretion without temptation, from an
impulse without purpose.”
Ambrose Bierce (1906) The Devil’s Dictionary.


