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Gaussian concentration inequality

Theorem (Borell, Sudakov-Tsirelson, 1975)

If G is a standard Gaussian vector in Rn and f : Rn → R is
L-Lipschitz, then for all t > 0,

P(|f(G)− EF (G)| ­ t) ¬ 2 exp
(
− t2

2L2

)
.

Remarks:
� Original formulation in terms of median, different

constants.
� Very useful in analysis of Gaussian processes, asymptotic

convex geometry, etc.
� Linear functions show optimality.
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Gaussian concentration from log-Sobolev inequalities

Definition
A probability measure µ on Rn satisfies the log-Sobolev
inequality with constant K if for all smooth f : Rn → R,

(LSI) Entµ f2 ¬ 2KEµ|∇f |2,

where for g ­ 0, Entµ g = Eµg log(g)− Eµg log(Eµg).

� Equivalently for X ∼ µ

Ent f2(X) ¬ 2KE|∇f(X)|2.

� By Jensen’s ineq. Entµ g ­ 0 for all nonnegative functions
g.

� (tensorization) If µ, ν satisfy LSI(K), then so does µ⊗ ν.
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Theorem (Gross 1975)

If G is the standard Gaussian vector in Rn, then G satisfies
the log-Sobolev inequality with K = 1.

� The original proof
� Establishes a discrete inequality on {−1, 1}
� Tensorizes it to {−1, 1}n
� Uses CLT to pass to the Gaussian measure.

� Now many different proofs: analytic, semigroup methods,
stochastic calculus...

� Bakry-Émery: if µ(dx) = e−V dx with ∇2V ­ K−1Id,
K > 0, then µ satisfies LSI(K)



Theorem (Gross 1975)

If G is the standard Gaussian vector in Rn, then G satisfies
the log-Sobolev inequality with K = 1.

� The original proof
� Establishes a discrete inequality on {−1, 1}
� Tensorizes it to {−1, 1}n
� Uses CLT to pass to the Gaussian measure.

� Now many different proofs: analytic, semigroup methods,
stochastic calculus...
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� Bakry-Émery: if µ(dx) = e−V dx with ∇2V ­ K−1Id,
K > 0, then µ satisfies LSI(K)



Herbst’s argument: from LSI to concentration

Theorem
If a random vector X satisfies the LSI(K) then for all
L-Lipschitz f : Rn → R, and t ­ 0,

P(f(X)− Ef(X) ­ t) ¬ exp
(
− t2

2KL2

)
.



Proof: Applying LSI to eλf/2

λEf(X)eλf(X) − Eeλf(X) logEeλf(X) ¬ 1
2
Kλ2E|∇f(X)|2eλf(X)

λEf(X)eλf(X) − Eeλf(X) logEeλf(X)

λ2Eeλf(X) ¬ 1
2
KL2

d

dλ

logEeλf(X)

λ
¬ 1

2
KL2

Integrating

logEeλ(f(X)−Ef(X)) ¬ 1
2
KL2λ2.

Now, by Chebyshev’s inequality

P(f(X)− Ef(X) ­ t) ¬ inf
λ>0

e−λtEeλ(f(X)−Ef(X))

= inf
λ>0

e−λt+KL
2λ2/2 = e−

t2

2KL2
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Non-lipschitz functions
A typical example – Gaussian quadratic form:
A = AT = (aij)i,j¬n, G = (g1, . . . , gn),

Z = 〈AG,G〉 =
n∑

i,j=1

aijgigj .

We can diagonalize A in an orthonormal basis and use
rotational invariance of G to get

Z =
n∑
i=1

λig̃
2
i ,

where g̃i – i.i.d. standard Gaussian. Thus, by Bernstein’s
inequality

P(|Z − EZ| ­ t) ¬ 2 exp
(
− cmin

( t2∑n
i=1 λ

2
i

,
t

maxi |λi|

))
= 2 exp

(
− cmin

( t2

|A|2HS
,

t

|A|op

))
.
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Theorem (Hanson-Wright,Borell,Ledoux-Talagrand,
Arcones-Giné, Latała)

If A is a symmetric matrix, then for all t ­ 0,

C−1 exp
(
− C min

( t2

|A|2HS
,

t

|A|op

))
¬ P(|Z − EZ| ­ t)

¬ 2 exp
(
− cmin

( t2

|A|2HS
,

t

|A|op

))
.

Remarks: there are counterparts for quadratic forms in
� X1, . . . , Xn, where Xi – independent, with subgaussian

tails,
� random vectors with concentration property for convex

Lipschitz functions.
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Non-lipschitz functions via functional inequalities

Theorem (Aida-Stroock 1994)

If X satisfies LSI(K), then for all smooth f : Rn → R and
r ­ 2

‖f(X)− Ef(X)‖r ¬
√

2Kr‖∇f(X)‖r.

� In the Gaussian case the result was obtained earlier by
Maurey-Pisier

� The proof is a version of Herbst’s argument, one
differentiates r 7→ ‖f(X)− Ef(X)‖2r .

� It is a part of folklore that the Poincaré inequality
Var(f(X)) ¬ KE|∇f(X)|2 implies

‖f(X)− Ef(X)‖r ¬ C
√
Kr‖∇f(X)‖r

for r ­ 2.
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Var(f(X)) ¬ KE|∇f(X)|2 implies

‖f(X)− Ef(X)‖r ¬ C
√
Kr‖∇f(X)‖r

for r ­ 2.



Non-lipschitz functions via functional inequalities

Theorem (Aida-Stroock 1994)

If X satisfies LSI(K), then for all smooth f : Rn → R and
r ­ 2

‖f(X)− Ef(X)‖r ¬
√

2Kr‖∇f(X)‖r.

� In the Gaussian case the result was obtained earlier by
Maurey-Pisier

� The proof is a version of Herbst’s argument, one
differentiates r 7→ ‖f(X)− Ef(X)‖2r .

� It is a part of folklore that the Poincaré inequality
Var(f(X)) ¬ KE|∇f(X)|2 implies

‖f(X)− Ef(X)‖r ¬ C
√
Kr‖∇f(X)‖r

for r ­ 2.



Non-lipschitz functions via functional inequalities

Theorem (Aida-Stroock 1994)

If X satisfies LSI(K), then for all smooth f : Rn → R and
r ­ 2

‖f(X)− Ef(X)‖r ¬
√

2Kr‖∇f(X)‖r.

� In the Gaussian case the result was obtained earlier by
Maurey-Pisier

� The proof is a version of Herbst’s argument, one
differentiates r 7→ ‖f(X)− Ef(X)‖2r .

� It is a part of folklore that the Poincaré inequality
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If X satisfies LSI(K), then for all smooth f : Rn → R and
r ­ 2

‖f(X)− Ef(X)‖r ¬
√

2Kr‖∇f(X)‖r.

By Chebyshev’s ineq. P(Z ­ e‖Z‖r) ¬ e−r, so if, e.g.,
‖∇f(X)‖r ¬ Lrα, then

P(|f(X)− Ef(X)| ­ t) ¬ 2 exp
(
− c
( t
L

) 2
1+2α

)
.

General rule:
� moments . arβ, ⇔ tails . exp(−c(t/a)1/β).
� moments . arα + brβ ⇔ tails

. exp
(
− cmin

(( t
a

)1/α
,
( t
b

)1/β)
.
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Proposition (Bednorz–Wolff–A. 2017)

If X satisfies

‖f(X)− Ef(X)‖r ¬ K
√
r‖∇f(X)‖r, r ­ 2,

for all f : Rn → R of class C1, then for every f : Rn → R of
class C2 and r ­ 2,

‖f(X)− Ef(X)‖p ¬ K
√
rE|∇f(X)|2 +K2r

∥∥∥|∇2f(X)|op
∥∥∥
r

¬
√

2rK2
∥∥∥|∇2f(X)|HS

∥∥∥
2
+K
√
r|Eµ∇f(X)|2+K2r

∥∥∥|∇2f(X)|op
∥∥∥
r
.

As a consequence, if |∇2f |op ¬ L, then

P(|f(X)− Ef(X)| ­ t)

¬ 2 exp
(
−cmin

( t2

K4E|∇2f(X)|2HS +K2|E∇f(X)|2
,

t

K2L

))
.
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t
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For f(x) = 〈Ax, x〉 and EX = 0, Cov(X) = Id we have

E∇f(X) = E(2AX) = 0, ∇2f(X) = 2A,

so we get

P(|f(X)−Ef(X)| ­ t) ¬ 2 exp
(
− c′min

( t2

K4|A|2HS
,

t

K2|A|op

))
,

recovering the Hanson-Wright estimate.
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Higher degree Gaussian polynomials – Latała’s theorem
Notation:

� A = (ai1,...,id)i1,...,id¬n

� G1 = (g(i)
1 , . . . , g

(i)
n ) – i.i.d. standard Gaussians in Rn

� x(1) ⊗ · · · ⊗ x(d) = (x(1)
i1
· · ·x(d)

id
)i1,...,id¬n for x(j) ∈ Rn

�

〈A,G⊗d〉 =
n∑

i1,...,id=1

ai1,...,idgi1 · · · gid ,

〈A,G1 ⊗ · · · ⊗Gd〉 =
n∑

i1,...,id=1

ai1,...,idg
(1)
i1
· · · g(d)

id
.

� Let Pd be the family of partitions of {1, . . . , d} into
nonempty, pairwise disjoint sets

� For I = {I1, . . . , Ik} ∈ Pd define

|A|I = sup
{ ∑
i1,...,id

ai1,...,id

k∏
j=1

x
(j)
iIj

: |(xiJ )|2 ¬ 1, j ¬ k
}
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Theorem (Latała 2005)

For every r ­ 2,

C−1
d

∑
I∈Pd

r|I|/2|A|I

¬ ‖〈A,G1 ⊗ · · · ⊗Gd〉‖r
¬ Cd

∑
I∈Pd

r|I|/2|A|I ,

As a consequence for all t ­ 0,

C−1
d exp

(
− Cd min

I∈Pd

( t

|A|I

) 2
|I|
)

¬ P(|〈A,G1 ⊗ · · · ⊗Gd〉| ­ t)

¬ Cd exp
(
− C−1

d min
I∈Pd

( t

|A|I

) 2
|I|
)

The same for 〈A,G⊗d〉 if A symmetric with zeros on diagonals.
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Example
� A = (aijk)ijk¬n – symmetric, aiik = 0
�

Z =
∑
ijk

aijkgigjgk

Then

‖Z‖r '
√
r‖A‖{1,2,3} + r‖A‖{1,2}{3} + r3/2‖A‖{1}{2}{3}.

Equivalently

P(|Z| ­ t)

¬ 2 exp
(
−cmin

(( t

‖A‖{1,2,3}

)2
,

t

‖A‖{1,2}{3}
,
( t

‖A‖{1}{2}{3}

)2/3))
and

P(|Z| ­ t)

­ 1
C

exp
(
−C min

(( t
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)2
,

t
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,
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Latała type ineq.’s for general functions & measures

Proposition (Wolff–A. 2016)

Assume that X satisfies ‖f(X)− Ef(X)‖r ¬ Krγ‖∇f(X)‖r
for r ­ 2. Let G1, . . . , Gd be i.i.d. standard Gaussian vectors
independent of X. If f : Rn → R is of class CD, then for all
r ­ 2,

‖f(X)− Ef(X)‖r
¬CDKDrγD−D/2‖〈∇Df(X), G1 ⊗ · · · ⊗GD〉‖r

+
∑

1¬d¬D−1

CdKdrγd−d/2‖〈EX∇df(X), G1 ⊗ · · · ⊗Gd〉‖r.



Proof for D = 1 and D = 2

Main observation ‖〈G, x〉‖r '
√
r|x|.

‖f(X)−Ef(X)‖rr ¬ KrrrγE|∇f(X)|r ¬ CrKrrγr−r/2E|〈∇f(X), G〉|r.

This gives the case D = 1. Now D = 2

‖f(X)− Ef(X)‖r ¬ CKrγ−1/2‖〈∇f(X), G1〉‖r
¬CKrγ−1/2‖〈∇f(X), G1〉 − EX〈∇f(X), G1〉‖r

+ CKrγ−1/2‖〈EX∇f(X), G1〉‖r
¬C2K2r2γ−1‖〈∇2f(X), G1 ⊗G2〉‖r + CKrγ−1/2‖〈EX∇f(X), G1〉‖r,

where we applied the case D = 1 conditionally on G1 to the
function g(x) := 〈∇f(x), G1〉 and used the identity

〈∇g(x), G2〉 = 〈∇2f(x), G1 ⊗G2〉.
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Corollary (Wolff-A., 2015)

Assume that X satisfies LSI(K). Let f : Rn → R be a CD
function. For all r ­ 2

‖f(X)− Ef(X)‖r ¬ CD
(
KD

∑
J∈PD

r
#J
2

∥∥∥‖∇Df(X)‖J
∥∥∥
r

+
∑

1¬d¬D−1

Kd
∑
J∈Pd

r
#J
2 ‖E∇df(X)‖J

)
.

In particular if ∇Df(x) is uniformly bounded then for t > 0,

P(|f(X)− Ef(X)| ­ t)

¬ 2 exp
(
− 1
CD

min
(

min
J∈PD

( t

KD supx∈Rn ‖∇Df(x)‖J

) 2
#J
,

min
1¬d¬D−1

min
J∈Pd

( t

Kd‖E∇df(X)‖J

) 2
#J
))
.



� If f is a polynomial of degree D, then ∇Df is constant, so
the inequality can be written as

P(|f(X)− Ef(X)| ­ t)

¬ 2 exp
(
− 1
CD

min
1¬d¬D

min
J∈Pd

( t

Kd‖E∇df(X)‖J

) 2
#J
)
.

� In the Gaussian setting the inequality for polynomials can
be reversed (up to constants).

� The inequality for polynomials generalizes to independent
subgaussian variables (Wolff–A., 2015)

� There are generalizations to Gaussian polynomials with
coefficients in certain classes of Banach spaces
(Latała–Meller–A. 2020).
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Definition
Let Ψ: [0,∞)→ [0,∞] be a Young function. We will say that
µ on Rn satisfies a Ψ-modified log-Sobolev inequality if for
every f : Rn → (0,∞)

Entµ f2 ¬ KEµ
n∑
i=1

Ψ
( |∂if |

f

)
f2

Remarks
� Reduces to LSI for Ψ(x) = x2,
� introduced by Bobkov-Ledoux for Ψ(x) = x2 if |x| < 1,
f(x) =∞ otherwise,

� in full generality introduced by Gentil-Guillin-Miclo,
studied e.g, by Barthe-Roberto, Barthe-Kolesnikov,
Barthe-Strzelecki,

� shares many properties of LSI, e.g., tensorization,
� implies concentration with various profiles, expressed in

terms of various norms of gradients of f .
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For a Young function Ψ define a norm | · |Ψr on Rn as

|x|Ψr = inf
{
a > 0:

n∑
i=1

Ψ
(r|xi|

a

)
¬ r

}

Examples
� if Ψ(x) = x2, then |x|Ψr =

√
r|x|2

� if Ψ(x) ' max(x2, xα) for α > 2, then

|x|Ψr '
√
r|x|2 + r1/α∗ |x|α . r1/α∗ |x|2
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r|x|2

� if Ψ(x) ' max(x2, xα) for α > 2, then

|x|Ψr '
√
r|x|2 + r1/α∗ |x|α . r1/α∗ |x|2



Theorem (Bednorz-Wolff-A. 2017)

Assume that there are 1 < α ¬ 2 ¬ β <∞ and R ­ 1 such
that for x > 0, t > 1,

R−1tα ¬ Ψ(tx)
Ψ(x)

¬ Rtβ.

If X satisfies the Ψ-modified LSI with constant K, then for
every smooth f : Rn → R and r ­ 2,

‖f(X)− Ef(X)‖r ¬ CK,R,α,β
∥∥∥|∇f(X)|Ψr

∥∥∥
r



Example: X = (X1, . . . , Xn) where Xi–i.i.d. with density
1
Z e
−|x|α , α ∈ (1, 2]. Then

‖f(X)− Ef(X)‖r ¬ Cα
(√

r
∥∥∥|∇f(X)|2

∥∥∥
r

+ r1/α
∥∥∥|∇f(X)|α∗

∥∥∥
r

)

As a consequence if a = supx |∇f(x)|2, b = supx |∇f(x)|α∗ , then

P(|f(X)− Ef(X)| ­ t) ¬ 2 exp
(
− cα min

( t2
a2 ,

tα

bα

))
Other tail decays if one assumes growth conditions on gradients.
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Question

Assume X = (X1, . . . , Xn), where Xi – i.i.d. with density
1
2e
−|x|. Do we have moment estimates of the form

‖f(X)− Ef(X)‖r ¬ C
(√

p
∥∥∥|∇f(X)|2

∥∥∥
r

+ r
∥∥∥|∇f(X)|∞

∥∥∥
r

)
?

Positive answer would allow for a transference principle from
polynomials as in the Gaussian case.



Question

Assume X = (X1, . . . , Xn), where Xi – i.i.d. with density
1
2e
−|x|. Do we have moment estimates of the form

‖f(X)− Ef(X)‖r ¬ C
(√

p
∥∥∥|∇f(X)|2

∥∥∥
r

+ r
∥∥∥|∇f(X)|∞

∥∥∥
r

)
?

Positive answer would allow for a transference principle from
polynomials as in the Gaussian case.



A more abstract setting

� (X ,F , µ) – a probability space
� (Xt)t­0 – a revers. Markov process with inv. measure µ
� L – the generator of the corresponding semigroup (Pt)t­0

of operators on L2(µ)
� E(f, g) = −Eµ(fLg) – the Dirichlet form
� Γ(f, g) = 1

2(L(fg)− fLg− gLf) – carré du champ operator
� E(f, g) = EµΓ(f, g)

Warning: For this talk I will disregard the question of domains.
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Examples:
� µ(dx) = 1

Z e
−V (x)dx for some V : Rn → R. Then

Lf(x) = ∆f(x)− 〈∇V (x),∇f(x)〉,
Γ(f, g) = 〈∇f,∇g〉, E(f, g) = Eµ〈∇f,∇g〉.

� Qx(·) – a kernel on X satisfying the detailed balance
condition

Qx(dy)µ(dx) = Qy(dx)µ(dy)

One can define

Lf(x) =
∫
X

(f(y)− f(x))Qx(dy)

Then

Γ(f, g)(x) =
1
2

∫
X

(f(y)− f(x))(g(y)− g(x))Qx(dy),

E(f, g) =
1
2

∫
X

∫
X

(f(y)− f(x))(g(y)− g(x))Qx(dy)µ(dx).
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Definition
Let us introduce a family of inequalities

� the log-Sobolev inequality:

(LSI) Entµ f2 ¬ K E(f, f)

� modified log-Sobolev inequality:

(mLSI) Entµ f ¬ K E(f, log f)

for positive f .

� LSI is responsible for hypercontractivity of the semigroup,
� mLSI is responsible for exponential decay of Ent(Ptf)

(convergence to equilibrium in relative entropy).
� For diffusions (under chain rule) they are equivalent
� In general LSI is strictly stronger
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Theorem (Aida-Stroock – abstract version)

If µ satisfies LSI(K), then for all smooth f : Rn → R and
r ­ 2

‖f − Eµf‖r ¬
√

2Kr
∥∥∥√Γ(f, f)

∥∥∥
r
.

Natural question: Can one obtain a similar inequality under
mLSI?
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BBLM inequalities

Theorem (Boucheron-Bousquet-Lugosi-Massart, 2005)

Let X = (X1, . . . , Xn), where Xi are independent random
variables. For any function f and r ­ 2,

‖f(X)− Ef(X)‖r

¬ C
√
r
∥∥∥( n∑

i=1

E
(
(f(X)− f(X(i)))2

∣∣∣X))1/2∥∥∥
r
,

where X(i) = (X1, . . . , Xi−1, X̃i, Xi+1, . . . , Xn) and X̃i’s are
independent copies of Xi’s.

� This generalizes (up to constant) the Efron-Stein ineq.
(r = 2)

� Many applications in geometry, statistics, combinatorics.
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Definition
Let p ∈ (1, 2]. We say that Beckner inequality is satisfied if for
f : X → [0,∞),

Eµfp − (Eµf)p ¬ Bp
p

2
E(f, fp−1).

� for each individual p, Becp is equivalent (up to constants
depending on p) to the Poincaré inequality
Varµ(f) ¬ K E(f, f).

� If suppBp <∞ then we can infer mLSI (divide by p− 1
and pass with p to 1).
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Proposition (Polaczyk-Strzelecki-A. 2020)

Assume that for all p ∈ (1, 2] the inequality Becp holds with
Bp ¬ K

(p−1)s for some s,K ­ 0. Then for all r ­ 2,

‖f − Eµf‖r ¬ CK1/2r
s+1
2

∥∥∥√Γ(f)
∥∥∥
r

The proof follows closely the argument by Boucheron et al.,
rewritten in an abstract form.

Theorem (Polaczyk-Strzelecki-A. 2020)

If mLSI(K) is satisfied then for all p ∈ (1, 2] the inequality
Becp holds with Bp ¬ 6K.

In fact the optimal constants satisfy 2Kopt = limp→1+ B
opt
p and

Bopt
2 = 2Kopt but we don’t know if one can replace 6 by 2 in

general.
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Corollary

If mLSI(K) holds then for every r ­ 2,

‖f − Eµf‖r ¬ C
√
Kr
∥∥∥√Γ(f)

∥∥∥
r

Remark In the kernel case we can also obtain estimates of the
form

‖(f − Eµf)+‖r ¬ C
√
Kr
∥∥∥√Γ+(f)

∥∥∥
r
,

where
Γ+(f) =

∫
X

(f(x)− f(y)))2
+Qx(dy).

(BBLM also had bounds of this type in the product case).
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Applications

� Moment inequalities for Cauchy-type measures, for
measures of the form e−|x|

α
α , and on manifolds (based on

Beckner-type inequalities due to Bakry, Gentil, and
Scheffer, Latała-Oleszkiewicz and Wang)

� Inequalities for Glauber dynamics: Ising model,
Exponential Random Graphs (mLSI by Marton,
Götze-Sambale-Sinulis)

� Symmetric group (mLSI by Gao-Quastel, mLSI, Beckner
by Bobkov-Tetali): Hoeffding statistics and their suprema

� Measures with Stochastic covering property (mLSI by
Hermon-Salez)

� Zero range processes (mLSI by Hermon-Salez)
� the Poisson space (mLSI by Wu)



Examples: Glauber dynamics.

� X = EI , where I is a finite set

� X -valued X with law µ

� for i ∈ I,

µi(·|x) := P(Xi ∈ · |X{i}c = x{i}c)

� The Glauber dynamic is given by generator

Lf(x) =
∑
i∈I

∫
E

(f(x1, . . . , xi−1, y, xi+1, . . . , xn)−f(x))µi(dy|x),

� in words, after an exponential time we pick up a coordinate
at random and replace it by its conditionally independent
copy given the value of the other coordinates.
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Corollary

Let X ′i, i ∈ I be a r.v. such that

P(X ′i ∈ · |X = x) = µi(·|x)

and Xi = (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn). If the Glauber

dynamics satisfies mLSI(K) then for any f : X → R and p ­ 2,

‖f(X)− Ef(X)‖r

¬ C
√
Kr
∥∥∥(∑

i∈I
E((f(X)− f(Xi))2|X)

)1/2∥∥∥
r

¬ C
√
Kr
∥∥∥(∑

i∈I
(f(X)− f(Xi))2

)1/2∥∥∥
r
,

Remark: Recovers (up to constants) the BBLM result since
mLSI holds for all product measures.
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Tetrahedral polynomials

Recall: A multivariate polynomial is tetrahedral if it is affine in
each variable.

Corollary (Kotowski-Polaczyk-Strzelecki-A. 2019, 2020)

Let X be a random vector with values in [−1, 1]n satisfying
mlSI(K). Let f : Rn → R be a tetrahedral polynomial of
degree d. Then for any t > 0,

P
(∣∣∣f(X)− Ef(X)

∣∣∣ ­ t)
¬ 2 exp

(
− 1
Cd

min
1¬k¬d

min
J∈Pk

( t

Kk/2‖E∇kf(X)‖J

)2/|J |)
.

Remark If X ⊆ {−1, 0, 1}n then every polynomial can be
written in a tetrahedral form.
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degree d. Then for any t > 0,

P
(∣∣∣f(X)− Ef(X)

∣∣∣ ­ t)
¬ 2 exp

(
− 1
Cd

min
1¬k¬d

min
J∈Pk

( t

Kk/2‖E∇kf(X)‖J

)2/|J |)
.

Remark If X ⊆ {−1, 0, 1}n then every polynomial can be
written in a tetrahedral form.
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Theorem (Marton, Götze-Sambale-Sinulis)

Assume that X is finite and µ has full support. Define

Aij

= sup
x{j}c=y{j}c

‖L(Xi|X{i}c = x{i}c)− L(Xi|X{i}c = y{i}c)‖TV

and α = 1− |A|op. Define also

β = inf
i∈I

min
x∈X

µi(yi|y{i}c).

Then the mLSI(K) holds with K ¬ α−2β−1.



Ising model on finite graphs

� X = {+1,−1}n (spins)

� J = (Jij)ni,j=1 – a symmetric matrix Jii = 0 (interactions)
� h ∈ Rn (external field)

�

µ({ε}) =
1
Z

exp
(1

2

n∑
i,j=1

Jijεiεj −
n∑
i=1

hiεi
)
,

� Götze-Sambale-Sinulis:

α ­ 1−max
i¬n

∑
j¬n
|Jij |, β ­ ce−‖h‖∞ .

� thus we get inequalities for polynomials: applications to
testing Ising models.



Ising model on finite graphs

� X = {+1,−1}n (spins)
� J = (Jij)ni,j=1 – a symmetric matrix Jii = 0 (interactions)

� h ∈ Rn (external field)

�

µ({ε}) =
1
Z

exp
(1

2

n∑
i,j=1

Jijεiεj −
n∑
i=1

hiεi
)
,

� Götze-Sambale-Sinulis:

α ­ 1−max
i¬n

∑
j¬n
|Jij |, β ­ ce−‖h‖∞ .

� thus we get inequalities for polynomials: applications to
testing Ising models.



Ising model on finite graphs

� X = {+1,−1}n (spins)
� J = (Jij)ni,j=1 – a symmetric matrix Jii = 0 (interactions)
� h ∈ Rn (external field)

�

µ({ε}) =
1
Z

exp
(1

2

n∑
i,j=1

Jijεiεj −
n∑
i=1

hiεi
)
,

� Götze-Sambale-Sinulis:

α ­ 1−max
i¬n

∑
j¬n
|Jij |, β ­ ce−‖h‖∞ .

� thus we get inequalities for polynomials: applications to
testing Ising models.



Ising model on finite graphs

� X = {+1,−1}n (spins)
� J = (Jij)ni,j=1 – a symmetric matrix Jii = 0 (interactions)
� h ∈ Rn (external field)

�

µ({ε}) =
1
Z

exp
(1

2

n∑
i,j=1

Jijεiεj −
n∑
i=1

hiεi
)
,

� Götze-Sambale-Sinulis:

α ­ 1−max
i¬n

∑
j¬n
|Jij |, β ­ ce−‖h‖∞ .

� thus we get inequalities for polynomials: applications to
testing Ising models.



Ising model on finite graphs

� X = {+1,−1}n (spins)
� J = (Jij)ni,j=1 – a symmetric matrix Jii = 0 (interactions)
� h ∈ Rn (external field)

�

µ({ε}) =
1
Z

exp
(1

2

n∑
i,j=1

Jijεiεj −
n∑
i=1

hiεi
)
,

� Götze-Sambale-Sinulis:

α ­ 1−max
i¬n

∑
j¬n
|Jij |, β ­ ce−‖h‖∞ .

� thus we get inequalities for polynomials: applications to
testing Ising models.



Ising model on finite graphs

� X = {+1,−1}n (spins)
� J = (Jij)ni,j=1 – a symmetric matrix Jii = 0 (interactions)
� h ∈ Rn (external field)

�

µ({ε}) =
1
Z

exp
(1

2

n∑
i,j=1

Jijεiεj −
n∑
i=1

hiεi
)
,

� Götze-Sambale-Sinulis:

α ­ 1−max
i¬n

∑
j¬n
|Jij |, β ­ ce−‖h‖∞ .

� thus we get inequalities for polynomials: applications to
testing Ising models.



Triangle counts in exponential random graphs
� In = {(i, j) ∈ [n]2 : i < j}

� Xn = {0, 1}In – simple graphs on n-vertices
� γ = (γ1, . . . , γs) ∈ Rs

� Gi = (Vi, Ei), i = 1, . . . , s – simple connected graphs
(convention G1 = K2)

� µ ∼ e−Hγ with

Hγ(x) = n2
s∑
i=1

γi
NGi(x)
n|Vi|

,

where NH(G) is the number of copies of H in G.
� Sambale-Sinulis: if

δ :=
1
2

s∑
i=2

|γi||Ei|(|Ei| − 1) < 1,

then α ­ 1− δ and β ­ ce−2|γ1|.
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Corollary (Sambale–Sinulis, Polaczyk–Strzelecki–A.)

Let T be the number of triangles in an exponential random
graph with δ < 1. Set K = (1− δ)−2e2|γ1|. Then for t > 0,

P(|T − ET | ­ t) ¬

2 exp
(
− 1
C

t2

n3(K3 +K2A2) + n4KB2∧
t√

nK3/2 + nKA
∧ t

2/3

K

))
,

where A is a probability of finding an edge and B is a
probability of finding a cherry at a fixed place in a graph.

Remark: The subgraph-count problem in the Erdős–Rényi
case has long history: Kim–Vu, Janson–Ruciński–Oleszkiewicz,
Chatterjee, Wolff-A., DeMarco–Kahn, Chatterjee–Dembo,
Lubetzky–Zhao, Šileikis–Warnke



Corollary (Sambale–Sinulis, Polaczyk–Strzelecki–A.)

Let T be the number of triangles in an exponential random
graph with δ < 1. Set K = (1− δ)−2e2|γ1|. Then for t > 0,

P(|T − ET | ­ t) ¬

2 exp
(
− 1
C

t2

n3(K3 +K2A2) + n4KB2∧
t√

nK3/2 + nKA
∧ t

2/3

K

))
,

where A is a probability of finding an edge and B is a
probability of finding a cherry at a fixed place in a graph.

Remark: The subgraph-count problem in the Erdős–Rényi
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The Poisson space

� η – a Poisson process on X with a σ-finite intensity λ.
� Add-one and remove-one gradients

D+
x f(η) = f(η+δx)−f(η), D−x f(η) = (f(η)−f(η−δx))1{x∈η}

� The Dirichlet form is related to the add-one gradient, i.e.,

E(f, g) = E
∫
X

(D+
x f)(D+

x g)λ(dx)

� Wu proved mLSI(1)



Translation into our setting by Mecke’s formula:

Γ(f) =
1
2

∫
X

(D−x f(η))2η(dx) +
1
2

∫
X

(D+
x f(η))2λ(dx)

and

Γ+(f) =
1
2

∫
X

(D−x f(η))2
+η(dx) +

1
2

∫
X

(D+
x f(η))2

−λ(dx)

Corollary (Polaczyk-Strzelecki-A., 2020)

For r ­ 2,

‖f − Ef‖r ¬ C
√
r
∥∥∥√Γ(f)

∥∥∥
r

and

‖(f − EF )+‖r ¬ C
√
r
∥∥∥√Γ+(f)

∥∥∥
r
.



� Obtained independently by Sambale–Sinulis–Thäle

� Applies, e.g., to Poisson U -statistics (e.g., subgraph counts
in geometric random graphs) or suprema of Poisson
integrals,

� Many concentration inequalities for the Poisson space were
obtained by Bachmann–Peccati–Reitzner, Reynaud-Bouret,
and other authors.

� For geometric examples we have, inequalities of similar
strength follow from their approach, based directly on
mLSI and some self-bounding properties.

� Question: can one find natural geometric examples with
heavier tails in which one is forced to work with moments?
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Thank you


