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Gaussian concentration inequality

Theorem (Borell, Sudakov-Tsirelson, 1975)

If G is a standard Gaussian vector in R™ and f: R” — R is
L-Lipschitz, then for all ¢t > 0,

t2
P(|f(G) — EF(G)] > t) < 2exp ( — ﬁ)



Gaussian concentration inequality

Theorem (Borell, Sudakov-Tsirelson, 1975)

If G is a standard Gaussian vector in R™ and f: R” — R is
L-Lipschitz, then for all ¢t > 0,

t2
P(|f(G) — EF(G)] > t) < 2exp ( — ﬁ)

Remarks:

e Original formulation in terms of median, different
constants.



Gaussian concentration inequality

Theorem (Borell, Sudakov-Tsirelson, 1975)

If G is a standard Gaussian vector in R™ and f: R” — R is
L-Lipschitz, then for all ¢t > 0,

2
P(|f(G) — EF(G)] > t) < 2exp ( — ! ).

212
Remarks:
e Original formulation in terms of median, different
constants.

* Very useful in analysis of Gaussian processes, asymptotic
convex geometry, etc.



Gaussian concentration inequality

Theorem (Borell, Sudakov-Tsirelson, 1975)

If G is a standard Gaussian vector in R™ and f: R” — R is
L-Lipschitz, then for all ¢t > 0,

t2
P(|f(G) — EF(G)] > t) < 2exp ( — ﬁ)

Remarks:
e Original formulation in terms of median, different
constants.

* Very useful in analysis of Gaussian processes, asymptotic
convex geometry, etc.

* Linear functions show optimality.



Gaussian concentration from log-Sobolev inequalities

Definition

A probability measure ;1 on R™ satisfies the log-Sobolev
inequality with constant K if for all smooth f: R"™ — R,

(LSI) Ent, f? < 2KE,|Vf|?,
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Gaussian concentration from log-Sobolev inequalities

Definition

A probability measure ;1 on R™ satisfies the log-Sobolev
inequality with constant K if for all smooth f: R"™ — R,

(LSI) Ent, f> < 2KE,|Vf|?,
where for g > 0, Ent, g = E,glog(g) — E,glog(E.g).
* Equivalently for X ~ p

Ent f2(X) < 2KE|V£(X)|2.

* By Jensen’s ineq. Ent,, g > 0 for all nonnegative functions
g.
e (tensorization) If p, v satisfy LSI(K), then so does p ® v.
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Theorem (Gross 1975)

If G is the standard Gaussian vector in R™, then G satisfies
the log-Sobolev inequality with K = 1.

* The original proof
* Establishes a discrete inequality on {—1,1}
* Tensorizes it to {—1,1}"
* Uses CLT to pass to the Gaussian measure.
e Now many different proofs: analytic, semigroup methods,
stochastic calculus...
o Bakry-Emery: if p(dr) = e”Vdr with V2V > K~'d,
K > 0, then p satisfies LSI(K)



Herbst’s argument: from LSI to concentration

Theorem

If a random vector X satisfies the LSI(K) then for all
L-Lipschitz f: R — R, and t > 0,

t2
P(f(X) — Ef(X) > t) < exp ( = 5775 )-
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Proof: Applying LSI to e*/2

AEf(X)eMNX) — EeM X) 1og EeM(K) < >\2IE]Vf( X)|2eM )

AEf(X)eMX) — EeM(X) Jog EeM(X) PR
AQ]EeAf( ) S 2

AF(X)
d logEe > 1KL2

d\ A S 2
Integrating
log B/ (O-Ef(X) ¢ Lpep2ye
2

Now, by Chebyshev’s inequality

P(f(X) —Ef(X) >t) < inf e M A (X)-Ef(X))
>
f2

2)\2
~NAKLN2 _ 5

= infe
A>0
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Non-lipschitz functions

A typical example — Gaussian quadratic form:
A= A" = (aiy)ij<ns G = (915, 9n);

= (AG, G) Z GE

1,7=1

We can diagonalize A in an orthonormal basis and use
rotational invariance of G to get

Z Z )‘Zgz )

where g; — i.i.d. standard Gaussmn. Thus, by Bernstein’s
inequality

. t? t
P(|Z_EZ‘>t)<26Xp(_Cmm( n )\2’maX~|)\'|>)
i=1 ] i 1A

2
= 2exp<— cmin (’;‘%S,ML?))



Theorem (Hanson-Wright,Borell,Ledoux-Talagrand,
Arcones-Giné, Latala)

If A is a symmetric matrix, then for all £ > 0,
C~texp ( — C'min (t2 L))
|[AlZrs” [Alop
<P(Z-EZ| >1)

2
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Theorem (Hanson-Wright,Borell,Ledoux-Talagrand,
Arcones-Giné, Latala)

If A is a symmetric matrix, then for all £ > 0,

2
Clexp ( — C'min (|j|2HS, ’At‘op>)

<P(Z -EZ| > 1)

2
< 2exp<— cmin (’;PEQ,ML;»

Remarks: there are counterparts for quadratic forms in
e X1,...,X,, where X; — independent, with subgaussian
tails,
e random vectors with concentration property for convex
Lipschitz functions.
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Non-lipschitz functions via functional inequalities

Theorem (Aida-Stroock 1994)

If X satisfies LSI(K), then for all smooth f: R”™ — R and
r>2

1£(X) = Ef(X)llr < V2Er|V (X,

¢ In the Gaussian case the result was obtained earlier by
Maurey-Pisier

e The proof is a version of Herbst’s argument, one
differentiates 7 — || f(X) — Ef(X)|2.

o [t is a part of folklore that the Poincaré inequality
Var(f(X)) < KE|Vf(X)|? implies

I£(X) —Ef(X)|l» < CVET|VF(X)]|r

for r > 2.
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Theorem (Aida-Stroock)

If X satisfies LSI(K), then for all smooth f: R”™ — R and
r>2

1£(X) = Ef(X)]lr < V2Er|Vf(X)]:-

By Chebyshev’s ineq. P(Z > ¢||Z||,) < e™", so if, e.g.,
IVf(X)|r < Lr*, then

P(f(X) - Ef(X)| > t) < 2exp (- () ™).

General rule:
e moments < ar?, & tails < exp(—c(t/a)'/P).

e moments < ar® + br’ < tails

e (—emin (4", ()"").



Proposition (Bednorz—Wolff-A. 2017)
If X satisfies

1f(X) —Ef(X)|r < EVTIVAX)r, 7> 2,

for all f: R® — R of class C', then for every f: R® — R of
class C? and r > 2,

|F(X) = EF(X)Ilp < KVTE[VF(X)|2 + K| |V2£(X)lop

r

< VarE? ||V (X)las |+ VALY £(X)]at K[|V (X))l

T



Proposition (Bednorz—Wolff-A. 2017)
If X satisfies

1f(X) —Ef(X)|r < EVTIVAX)r, 7> 2,

for all f: R® — R of class C', then for every f: R® — R of
class C? and r > 2,

1£(X) = EfCOlly < KVTEIVA(X)]2 + K|V (0)lop]|
< VErE| |V (X0 s+ K VAIELY £+ K71V (0)lop||

As a consequence, if |V2fl|,, < L, then

P(f(X) —Ef(X)[ > 1)

t? t
<2 —cmi , .
exp (~emin ( FTEe (R + PRV R K7L

Vv




P(|f(X) —Ef(X)| > 1)

t? t
< —cmi , .
2exp( len(K4E|V2f(X)|%IS+K2|Evf(X)|2 K2L))




P(|f(X) —Ef(X)| > 1)

t? t
< —cmi , .
2exp( len(K4E|V2f(X)|%IS+K2|Evf(X)|2 K2L))

For f(x) = (Az,z) and EX = 0, Cov(X) = Id we have
EVf(X) =E(24X) =0, V2f(X) = 24,

so we get

2
B(|f(X) ~Ef(X)| > 1) < 2exp (¢ min (K4!tAlqu’ KQ!tA\op))’

recovering the Hanson-Wright estimate.
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Higher degree Gaussian polynomials — Latata’s theorem
Notation:

e A= (ai1,:~-7id)i17---7_id<n
e G = (g%z), e ,gﬁf)) — i.i.d. standard Gaussians in R™
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Higher degree Gaussian polynomials — Latata’s theorem
Notation:
s A= (au, 7id)i17 7d<n
s G = (g%z), ..., gn’) —ii.d. standard Gaussians in R™
e 20 g @@ =@V gDy, . for 20 € R®

i1 iq

(A, G®d> = Z iy . iq9iy " Gigo
01 5eeey8g=1
S 1 @
(A,Gi® - ®Ga)= > ai, .0 " 9y -
1yensig=1

* Let P; be the family of partitions of {1,...,d} into
nonempty, pairwise disjoint sets
o For T ={I,...,I;} € Py define

\A|I:sup{ Z ai,.. MH&;”: (xi,)| <1,j<k}

L15ensld
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2 <
:L‘Z-]
Y

'SL‘ij.
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sup{ Z

=
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n

i3)ig<

|(aij
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i,jg
<n
‘.7\
1,

S
H
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|(a1j) ,]<n|{1 2} = SUP{ Z QijLig - Z ZL‘%]‘ <1

Z}]gn Z,j§n
= . azz] |(a1]) »]<TL’HSv

‘(aij)@jén‘{l}{Q}:SUP{‘Z gy Y et <1,Y < 1}

3,J<n i<n j<n

= (@37 gl les



|(aij)i,j§n|{1,2} = SUP{ Z QijLig - Z xz?j S 1}

L,j<n Ljsn

= a?; = |(aij)ij<nlms,
ij<n

(@ip)igenlyy = s { 3 ez D2 <1,Yyf <1}

1,J<n i<n j<n

[(@as ) m e

[(@ijn)i g e<nl{1,2}3) = Sup{ > apgrmigyr: Y v <L Yy

i,5,k<n Ljsn k<n



|(aij)i ,_]<n|{1 i = SUP{ Z QijLig - Z ngj < 1}

Z}]gn (L’jgn
= CL?J |(CL1]) ,]<TL’HS?
ij<n
‘(aij)i,jgn‘{l}&} = SUP{ Z AijTiYj: Zx Z < 1}
i,j<n isn jsn

= |(aij)i,j<nlop;

[(@ijk)ijksnl {1,243} = SUP{ Z QijkTijYk - Z xz?j <L Z y;% =

i,j,k<n i,j<n k<n

!(az’jk)z’,j,k<n\{1,2,3}:SUP{ D GigkTiki Y m?ﬂfgl}

i k<n i k<n

_ 2
=/ 2.
i.j.k<n



Theorem (Latata 2005)

For every r > 2,

Cd—l Z TII\/2|A|I
TeP,

<A, G ®

"'®Gd>Hr

<Cy Yy rH24,
IeP,
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Theorem (Latata 2005)
For every r > 2,

Cd—l Z TII\/2|A|I
TeP,

<IHA,GL® - @ Gy)l»
<Cy Y rHV214,

As a consequence for all ¢t > 0, IePy

cyt exp( Cd?é}% (‘;’)%)

P({A,G1 ® - ® Gg)| > t)

<C’dexp( C; Z%B%(’j‘z)é)

The same for (A, G®?) if A symmetric with zeros on diagonals.
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Example

* A = (aijk)ijk<n — symmetric, a;, =0

4 = Z Q;5k9i95 9k
ijk

Then
1Zllr = VPl Allzsy + rllAll 2y + 722 1Al 236
Equivalently
P(|Z| > t)

' ¢ 2 t t 2/3
S A& (_Cmm <(HAH{1,2,3}) ANl 233 (HAH{I}{2}{3}) ))

_ ¢ 2 t t 2/3
- aexp ~Cmin (<||A||{1,2,3}) 7 HA||{1,2}{3}’ (||A||{1}{2}{3}) ))



Latata type ineq.’s for general functions & measures

Proposition (Wolff-A. 2016)
Assume that X satisfies ||f(X) —Ef(X)|, < Kr||Vf(X)]-

for r > 2. Let G1,...,Gq4 be i.i.d. standard Gaussian vectors
independent of X. If f: R® — R is of class CP, then for all
r>2,

1£(X) —Ef(X)-
SCPKPrP-DPR|(VPf(X),G1® -+ ® Gp)||r

+ Y G EXVI(X),G1® - ® Gl
1<d<D—1



Proof for D =1 and D =2
Main observation ||(G, x)||,» ~ /r|z|.

IF(CO-Ef(X); < KrE[VF(X)|" < C"Kr " PE|V f(X), G)"-
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Proof for D =1 and D = 2
Main observation ||(G, x)||,» ~ /r|z|.
IF(X)—EF(X)I; < K" EIVF(X)|" < CTK™ " 2E|(V£(X), Q).
This gives the case D = 1. Now D = 2

I1£(X) = Ef(X)|l, < CKr7 Y2 (V£(X), G|
SCKr V2V F(X),G1) — Ex(VF(X),G1)llr
+ CKr 2 [(Ex VF(X), G)llr
SC’K*r (V2 £(X),G1 ® Go)llr + CEr V2| (Ex V £(X), G1) i,

where we applied the case D = 1 conditionally on GG; to the
function g(z) := (V f(x),G1) and used the identity

(Vg(x),G2) = (V2 f(2),G1 ® Go).



Corollary (Wolff-A., 2015)

Assume that X satisfies LSI(K). Let f: R — R be a CP
function. For all r > 2

1£CO ~EfX)ll- < Cp(KP 32+ 5 ||IVPF X))

JEePp

+ Y KCY ST EVYONs).

1<d<D—1 JEP,

In particular if V¥ f(z) is uniformly bounded then for ¢ > 0,

P(|f(X) —Ef(X)[ > ¢)

1 ==

<2exp(—C—Dm1n(}r€1g§3 (K ST ]V i ) ,
t 2

<525 1ﬁlpd(Kd|yEvdf( X7 )



o If f is a polynomial of degree D, then VP f is constant, so
the inequality can be written as

P(f(X) —Ef(X)[ > ?)

1 ) ) t #%
< 2e e ’
XP( Cp 194D 7ok, <KdHEVdf(X)IIJ) )
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< 2e e ’
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e In the Gaussian setting the inequality for polynomials can
be reversed (up to constants).

e The inequality for polynomials generalizes to independent
subgaussian variables (Wolff-A., 2015)



If f is a polynomial of degree D, then VP f is constant, so
the inequality can be written as

P(f(X) —Ef(X)[ > ?)

1 ) ) t #%
< 2e e ’
XP( Cp 194D 7ok, <KdHEVdf(X)IIJ) )

In the Gaussian setting the inequality for polynomials can
be reversed (up to constants).

The inequality for polynomials generalizes to independent
subgaussian variables (Wolff-A., 2015)

There are generalizations to Gaussian polynomials with
coefficients in certain classes of Banach spaces
(Latala—Meller—A. 2020).
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Definition

Let ¥: [0,00) — [0, 00] be a Young function. We will say that
1 on R™ satisfies a W-modified log-Sobolev inequality if for
every f: R" — (0,00)

Ent, f> < KE, i w('a}ﬂ)f?
i=1

Remarks

* Reduces to LSI for ¥(z) = 22,

* introduced by Bobkov-Ledoux for ¥(z) = 22 if |z| < 1,
f(x) = oo otherwise,

e in full generality introduced by Gentil-Guillin-Miclo,
studied e.g, by Barthe-Roberto, Barthe-Kolesnikov,
Barthe-Strzelecki,

e shares many properties of LSI, e.g., tensorization,

¢ implies concentration with various profiles, expressed in
terms of various norms of gradients of f.
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For a Young function ¥ define a norm |- |y, on R™ as

T

|z|w, = inf {a > 0: Zn:\ll(r‘xz‘) < 7“}
i=1

a

Examples
o if U(x) = 22, then |z|y, = \/7|z|2
o if U(z) ~ max(z?, 2%) for a > 2, then

[y, ~vrlzlz + 7 |zlo S PVl



Theorem (Bednorz-Wolff-A. 2017)

Assume that there are 1 < a <2< [ < oo and R > 1 such
that for z > 0,¢ > 1,

U(tx)

< RtP.
V) SN

Rt K

If X satisfies the W-modified LSI with constant K, then for
every smooth f: R” — R and r > 2,

1£(X) ~Ef ()l < Crras] |V Els,

T



Example: X = (X;,..., X,,) where X;—i.i.d. with density
%e"“”‘a, a € (1,2]. Then
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Example: X = (X,...,X,,) where X;—i.i.d. with density
%e"“”‘a, a € (1,2]. Then

1£(X) = EfX)lr < Ca(v7]|IVF ()12

IR (21C ]

)

As a consequence if a = sup, |V f(z)|2, b = sup, |V f(x)|a*, then

B(f(X) ~Ef(X)| > t) < 2exp ( — camin (t )
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%e"“”‘a, a € (1,2]. Then
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As a consequence if a = sup, |V f(z)|2, b = sup, |V f(x)|a*, then

B(f(X) ~Ef(X)| > t) < 2exp ( — camin (t )

Other tail decays if one assumes growth conditions on gradients.
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Question

Assume X = (X1,...,X,), where X; —i.i.d. with density
%e"x'. Do we have moment estimates of the form

1£(X) = ES(X)ll- < C(vB| VAL + 71Vl

)7

Positive answer would allow for a transference principle from
polynomials as in the Gaussian case.



A more abstract setting

e (X,F,un) — a probability space
* (X¢)t=0 — a revers. Markov process with inv. measure p

* L — the generator of the corresponding semigroup (P;):>0
of operators on Lo (u)

E(f,9) = —Eu(fLg) — the Dirichlet form
I'(f,g9) = %(L(fg) — fLg— gLf) — carré du champ operator
E(f,9) =EL(f,9)



A more abstract setting

e (X,F,un) — a probability space
* (X¢)t=0 — a revers. Markov process with inv. measure p

* L — the generator of the corresponding semigroup (P;):>0
of operators on Lo (u)

E(f,9) = —Eu(fLg) — the Dirichlet form
I'(f,g9) = %(L(fg) — fLg— gLf) — carré du champ operator
E(f,9) =EL(f,9)

Warning: For this talk I will disregard the question of domains.
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Examples:
p(dz) = %e‘v(x)dm for some V: R” — R. Then

Lf(z) = Af(z) —(VV(2),Vf(2)),
L(f,9) =(Vf,Vg), E(f,9) =EVf, Vg).

* Q.(-) — a kernel on X satisfying the detailed balance
condition

Qq(dy)p(dx) = Qy(dz)u(dy)

One can define
LI@) = [ (/) ~ £()Qx(dy)
Then

N9 = 3 [ () = 1@ 60) - 9(a))Quldy),
fo=3 [ |0 — () Qu(dy)p(d).
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Definition
Let us introduce a family of inequalities

¢ the log-Sobolev inequality:

(LSI) Ent, f> < KE(f, f)

» modified log-Sobolev inequality:
(mLST) Ent,, f < K £(f,log f)

for positive f.

e LSI is responsible for hypercontractivity of the semigroup,

e mLSI is responsible for exponential decay of Ent (P, f)
(convergence to equilibrium in relative entropy).

e For diffusions (under chain rule) they are equivalent

e In general LSI is strictly stronger
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Theorem (Aida-Stroock — abstract version)
If p satisfies LST(K), then for all smooth f: R" — R and

r>2
I = Eufllr < V2E7||[\/T(£, )] -

Natural question: Can one obtain a similar inequality under
mLSI?



BBLM inequalities

Theorem (Boucheron-Bousquet-Lugosi-Massart, 2005)

Let X = (X4,...,X,), where X, are independent random
variables. For any function f and r > 2,

1£(X) = Ef(X)]lr
< ovAl|(oE(Ue0) - £x )2 x)
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BBLM inequalities

Theorem (Boucheron-Bousquet-Lugosi-Massart, 2005)

Let X = (X4,...,X,), where X, are independent random
variables. For any function f and r > 2,

1£(X) = Ef(X)]lr
< ovAl|(oE(Ue0) - £x )2 x)
i=1

1/2

r

where X = (Xq,...  Xic1, Xi, Xig1y- - , Xp) and X;’s are
independent copies of X;’s.

 This generalizes (up to constant) the Efron-Stein ineq.
(r=2)

» Many applications in geometry, statistics, combinatorics.
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Definition

Let p € (1,2]. We say that Beckner inequality is satisfied if for
f: X —10,00),

E,f” - (Buf)” < Bys £(5, 7).

* for each individual p, Bec), is equivalent (up to constants
depending on p) to the Poincaré inequality
Var, (f) < KE(f, f).

e If sup, B, < oo then we can infer mLSI (divide by p — 1
and pass with p to 1).



Proposition (Polaczyk-Strzelecki-A. 2020)

Assume that for all p € (1, 2] the inequality Bec, holds with
B, < -1F 1)5 for some s, K > 0. Then for all r > 2,
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rewritten in an abstract form.
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rewritten in an abstract form.
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Proposition (Polaczyk-Strzelecki-A. 2020)

Assume that for all p € (1, 2] the inequality Bec, holds with
B, < =17 1)5 for some s, K > 0. Then for all r > 2,

s+1

If —Eufll, < CKY?r™

I'(f)

r

The proof follows closely the argument by Boucheron et al.,
rewritten in an abstract form.

Theorem (Polaczyk-Strzelecki-A. 2020)

If mLSI(K) is satisfied then for all p € (1, 2] the inequality
Bec), holds with B, < 6K.

In fact the optimal constants satisfy 2/K°P* = lim,,_,;+ BpP* and

BSP' = 2K°Pt hut we don’t know if one can replace 6 by 2 in
general.



If mLSI(K) holds then for every r > 2,

If = Bufll, < CVET||y/T()

r




Corollary
If mLSI(K) holds then for every r > 2,

If = Bufll, < CVET||y/T()

r

Remark In the kernel case we can also obtain estimates of the

form
I = Bwf) s llr < CVET||y/T4(f)

b
T
where

Li(f) = [ (@) = @)} Qulay).

(BBLM also had bounds of this type in the product case).



Applications

e Moment inequalities for Cauchy-type measures, for
measures of the form e~1*la, and on manifolds (based on
Beckner-type inequalities due to Bakry, Gentil, and
Scheffer, Latata-Oleszkiewicz and Wang)

¢ Inequalities for Glauber dynamics: Ising model,
Exponential Random Graphs (mLSI by Marton,
Gotze-Sambale-Sinulis)

e Symmetric group (mLSI by Gao-Quastel, mLSI, Beckner
by Bobkov-Tetali): Hoeffding statistics and their suprema

* Measures with Stochastic covering property (mLSI by
Hermon-Salez)

* Zero range processes (mLSI by Hermon-Salez)
* the Poisson space (mLSI by Wu)
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Examples: Glauber dynamics.

e X = B!, where I is a finite set
e X-valued X with law u
e fori eI,

pi(-|z) == P(X; € - | Xpgpe = 3(3¢)

e The Glauber dynamic is given by generator

Li@) = 3 [ (F@1,-esmict, g mis s 20) = @) udylo),
ier’F
e in words, after an exponential time we pick up a coordinate
at random and replace it by its conditionally independent
copy given the value of the other coordinates.



Corollary
Let X/, i € I be a r.v. such that
P(X] € |X = 2) = mi(-|o)
and X* = (X1,...,X;—1, X}, Xi41,..., Xp). If the Glauber
dynamics satisfies mLSI(K) then for any f: X — R and p > 2,
1f(X) = Ef(X)]

< oVE| (S B0 - r(x)x)

el

T

< VR (S0 - scp?)

el

r



Corollary
Let X/, i € I be a r.v. such that

P(X] € X =) = i 2)
and X* = (X1,...,X;—1, X}, Xi41,..., Xp). If the Glauber
dynamics satisfies mLSI(K) then for any f: X — R and p > 2,

1F(X) = EfXOI»
. 1/2
< OVET||( S E((f(X) - F(X))?X))

el

T

< VR (S0 - scp?)

el

r

Remark: Recovers (up to constants) the BBLM result since
mLSI holds for all product measures.
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Corollary (Kotowski-Polaczyk-Strzelecki-A. 2019, 2020)

Let X be a random vector with values in [—1, 1] satisfying
mlSI(K). Let f: R — R be a tetrahedral polynomial of
degree d. Then for any t > 0,

P(|£(X) - Ef(X)| > t)
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Tetrahedral polynomials

Recall: A multivariate polynomial is tetrahedral if it is affine in
each variable.

Corollary (Kotowski-Polaczyk-Strzelecki-A. 2019, 2020)

Let X be a random vector with values in [—1, 1] satisfying
mlSI(K). Let f: R — R be a tetrahedral polynomial of
degree d. Then for any t > 0,

P(|£(X) - Ef(X)| > t)

<2 (— — min min ( ! )2/|j|)
S SR T O 1k<a T, \KF2|EVEf(X)| '

Remark If X C {—1,0,1}" then every polynomial can be
written in a tetrahedral form.



Theorem (Marton, Gotze-Sambale-Sinulis)

Assume that X is finite and p has full support. Define

=, S | L(Xi| X (5ye = wpipe) — L(Xi| Xfiye = ygaye)llv
T{53e=Y{53¢

and o =1 — |A],p. Define also

f i\Jv|I{i}c)-
f = infmin i (yilygiye)

Then the mLSI(K) holds with K < a=237L.
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Ising model on finite graphs

X = {+1,—1}" (spins)
J = (Jij)Zj:I
e h € R™ (external field)

— a symmetric matrix J; = 0 (interactions)

,LL({&}) 7 exp ( Z J1j515] i hﬁi)a
i=1

3,j=1

Gotze-Sambale-Sinulis:

>1- maxz |Jijl, B> ce Il
i<n

* thus we get inequalities for polynomials: applications to
testing Ising models.
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Triangle counts in exponential random graphs
o I, ={(i,j) € [n]*: i < j}
e X, = {0,1}/» — simple graphs on n-vertices
*y=0n-7) €R?
e Gi=(Vi,E;),i=1,...,s — simple connected graphs
(convention G = K3)

o u~ e with

: Ng, ()
H’Y(‘r) - n2 Z’YZ Vil
=1

where Ny (G) is the number of copies of H in G.

e Sambale-Sinulis: if
1 S
6= 52 [l Eil(|1B:| = 1) < 1,
i=2

then @ > 1 —6 and 8 > ce 2l



Corollary (Sambale—Sinulis, Polaczyk—Strzelecki—A.)

Let T be the number of triangles in an exponential random
graph with § < 1. Set K = (1 — §)~2¢2"l. Then for t > 0,

P(|IT — ET| > t) <

1 12 t £2/3
2 exp (—— A /\7)),
Cn3(K3 + K2A2) + nAK B2 \/nK3/2 + nKA" K

where A is a probability of finding an edge and B is a
probability of finding a cherry at a fixed place in a graph.



Corollary (Sambale—Sinulis, Polaczyk—Strzelecki—A.)

Let T be the number of triangles in an exponential random
graph with § < 1. Set K = (1 — §)~2¢2"l. Then for t > 0,

P(|IT — ET| > t) <

" 1 12 t t2/3
P <_5 W3 (K3 + K2A2) + AK B? VKo + nKAA?))’

where A is a probability of finding an edge and B is a
probability of finding a cherry at a fixed place in a graph.

Remark: The subgraph-count problem in the Erdés-Rényi
case has long history: Kim—Vu, Janson—Rucinski—Oleszkiewicz,
Chatterjee, Wolff-A., DeMarco—Kahn, Chatterjee-Dembo,
Lubetzky-Zhao, Sileikis-Warnke



The Poisson space

e 11 — a Poisson process on X with a o-finite intensity .

¢ Add-one and remove-one gradients

D:jf(n) = f(77+5x)_f(77)7 D;f("?) = (f(n)_f(n_5r))]l{z€n}

The Dirichlet form is related to the add-one gradient, i.e.,

E(f.9) = E [ (DI D(DI9)A(da)

* Wu proved mLSI(1)



Translation into our setting by Mecke’s formula:

— 5 [ (D )n(do) + 5 [ (DF $n)PA(do)

and

To(f) = 2/Df ))2n(da) 2/D+f

Corollary (Polaczyk-Strzelecki-A., 2020)
For r > 2,

If —Efll- <

and

I(f —EF)+ ]l < CV|y/Ta(h)]]
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Obtained independently by Sambale-Sinulis—Théle
Applies, e.g., to Poisson U-statistics (e.g., subgraph counts
in geometric random graphs) or suprema of Poisson
integrals,

Many concentration inequalities for the Poisson space were
obtained by Bachmann—Peccati-Reitzner, Reynaud-Bouret,
and other authors.

For geometric examples we have, inequalities of similar

strength follow from their approach, based directly on
mLSI and some self-bounding properties.

Question: can one find natural geometric examples with
heavier tails in which one is forced to work with moments?



Thank you



