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Symmetric α-stable distribution

All random objects (e.g., random variables, random vectors, random
processes, random measures, etc.) discussed here will be de�ned on a common
probability space (Ω,A,P). Corresponding expectation operator will be
denoted by E(·).

A random variable X : Ω→ R (measurable) is said to follow SαS distribution
(0 < α ≤ 2) with scale parameter σ > 0

(
denoted by X ∼ SαS(σ)

)
if

E(eiθX) :=

∫
Ω

eiθX(ω)P(dω) = e−σ
α|θ|α , θ ∈ R.

See, e.g., Samorodnitsky and Taqqu (1994).

α = 2 ⇒ X ∼ Normal. α = 1 ⇒ X ∼ Cauchy.

Assume: 0 < α < 2 ⇒ P(|X| > x) ∼ Cα x−α as x→∞.

In particular, E(|X|p) <∞ if and only if p < α.
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Stationary SαS random �elds

Let (G, .) be a countable (possibly noncommutative) group with identity
element e.

A collection {Xt}t∈G of random variables (all de�ned on (Ω,A,P)) is called an
SαS random �eld if for all k ≥ 1, for all t1, t2, . . . , tk ∈ G and for all
c1, c2, . . . , ck ∈ R,

k∑
i=1

ciXti ∼ SαS.

An SαS random �eld {Xt}t∈G is (left) stationary if for all s ∈ G,

{Xs.t}t∈G
L
= {Xt}t∈G.

Important special cases: G = Z, G = Zd, G = Fd (d > 1), discrete Heisenberg
groups, discrete hyperbolic groups, lamplighter groups, etc.
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Nonsingular G-action

Let (G, ·) be a countable group with identity element e. {φt}t∈G is called a
nonsingular (also known as quasi-invariant) G-action on a σ-�nite standard
measure space (S,S, µ) if

φt : S → S is a measurable map for each t ∈ G,

φe(s) = s for all s ∈ S,

φt1.t2 = φt2 ◦ φt1 for all t1, t2 ∈ G (i.e., φt : s 7→ t−1.s),

µ ◦ φt ∼ µ for all t ∈ G (important special case: µ ◦ φt = µ for all t).

See, for instance, Varadarajan (1970), Zimmer (1984), Krengel (1985),
Aaronson (1997).
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Rosinski (1995) representation of a stationary SαS �eld

Given a stationary SαS (0 < α < 2) random �eld {Xt}t∈G, there exist

(i) a σ-�nite standard measure space (S,S, µ),

(ii) a function f : S → R such that ‖f‖α :=

(∫
|f |αdµ

)1/α

<∞, and

(iii) a nonsingular G-action {φt}t∈G on (S,S, µ)

such that each real linear combination

k∑
i=1

ciXti ∼ SαS

(∥∥∥∥ k∑
i=1

cifti

∥∥∥∥
α

)
, (1)

where

ft = ±
(
dµ ◦ φt
dµ

)1/α

f ◦ φt , t ∈ G.

Converse also holds: given (i), (ii) and (iii), there exists a stationary SαS
random �eld {Xt}t∈G satisfying (1).

{ft}t∈G = a Rosinski representation of {Xt}.
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Properties of stationary stable �elds via the action

Various probabilistic facets of a stable random �eld have been connected to
the ergodic theoretic properties of the underlying nonsingular action:

Mixing features: Rosinski and Samorodnitsky (1996), Samorodnitsky
(2005), Roy (2007, 2012), Wang, R. and Stoev (2013)

Large deviations issues: Mikosch and Samorodnitsky (2000), Fasen and
R. (2016)

Growth of maxima: Samorodnitsky (2004), R. and Samorodnitsky (2008),
Owada and Samorodnitsky (2015a), Sarkar and R. (2018), Athreya, Mj
and R. (2019)

Extremal point processes: Resnick and Samorodnitsky (2004), R. (2010),
Sarkar and R. (2018)

Statistical aspects: Bhattacharya and R. (2018)

Uniform Hölder continuity of paths: Panigrahi, R. and Xiao (2018)

The present work carries this link forward to the realm of von Neumann
algebras via Murray and von Neumann (1936)'s crossed product construction.
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A Crash Course on von Neumann Algebras
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Topologies on operators

B(H) := all bdd linear operators on a separable Hilbert space H over C.

Norm topology (metrizable): Tα → T in NT i�
‖Tα − T‖ := sup‖ξ‖≤1 ‖(Tα − T )ξ‖ → 0. [Topology of uniform convergence
on bounded subsets of (H, inner-product topology).]
I Too strong and restrictive.
I B(H) may not be separable.
I Di�cult to carry out sophisticated analysis.

∨

Strong operator topology (not metrizable): Tα → T in SOT i�
‖(Tα − T )ξ‖ → 0 for all ξ ∈ H. [Topology of pointwise convergence on
(H, inner-product topology).]

∨

Weak operator topology (not metrizable): Tα → T in SOT i�
〈(Tα − T )ξ, η〉 → 0 for all ξ, η ∈ H. [Topology of pointwise convergence on
(H, weak topology).]
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Bicommutant theorem of von Neumann

Theorem (von Neumann)

Suppose M is a ∗-subalgebra of B(H) containing 1, the identity operator. Then
the following are equivalent:

1 M is closed in weak operator topology.

2 M is closed in strong operator topology.

3 M = (M ′)′ =: M ′′.

Here M ′ := {T ∈ B(H) : TA = AT for all A ∈M} is the commutant of M .

The �rst two are analytic properties while the third one is an algebraic one.

De�nition (see, e.g, Sunder (1987), Jones (2009), Peterson (2013))

A unital ∗-subalgebra of B(H) satisfying one (and hence all) of the above
equivalent conditions is called a von Neumann algebra (or a W∗-algebra).
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The central decomposition

Note that if M is a von Neumann algebra, then so is M ′. We now de�ne a
very important class (building blocks) of von Neumann algebras.

De�nition

A von Neumann algebra M is called a factor if Z(M) := M ∩M ′ :=
{T ∈M : TA = AT for all A ∈M} = C1 (i.e., the centre is trivial).

Theorem (von Neumann)

Any von Neumann algebra can be decomposed as a direct sum (or more
generally, �direct integral�) of factors: there exists a measure space (Y,Y, ρ)
such that

M =

∫
Y

My ρ(dy) (direct integral; see Knudby (2011)),

where My is a factor for ρ-almost all y ∈ Y .

Enough (for a von Neumann algebraist) to study and classify factors.
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Type II1 factors

�De�nition�
A factor M is of type II1 if M is ini�nite-dimensional and it admits a
normalized trace, i.e., there exists a �continuous� linear functional tr : M → C
satisfying tr(1) = 1, tr(ab) = tr(ba) and tr(a∗a) ≥ 0 for all a, b ∈M .

De�nition (R. (2020+))

A von Neumann algebra M is said to admit no II1 factor in its central
decomposition if M has a central decomposition

M =

∫
Y

My ρ(dy) (direct integral),

such that for ρ-almost all y ∈ Y , My is not a factor of type II1.

If Y is countable with ρ being the counting measure, then the direct integral
becomes a direct sum (M = ⊕y∈YMy) of factors. In this special case, the
above de�nition is equivalent to saying no My is a type II1 factor.
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Recall: nonsingular G-action

Let (G, ·) be a countable group with identity element e. {φt}t∈G is called a
nonsingular (also known as quasi-invariant) G-action on a σ-�nite standard
measure space (S,S, µ) if

φt : S → S is a measurable map for each t ∈ G,

φe(s) = s for all s ∈ S,

φt1.t2 = φt2 ◦ φt1 for all t1, t2 ∈ G,

µ ◦ φt ∼ µ for all t ∈ G.
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�Group measure space construction�

(G, ·) is a countable group with identity element e.

(S,S, µ) is a σ-�nite standard measure space

{φt}t∈G is a nonsingular G-action on (S,S, µ)

�De�nition� (see, e.g, Jones (2009), Peterson (2013))

Following the work of Murray and von Neumann (1936) (in the
measure-preserving case), one can construct a von Neumann algebra (as a
subalgebra of B(`2(G)⊗ L2(S, µ))) that �encodes the ergodic theoretic features�
of {φt}t∈G by internalizing a crossed product relation that normalizes
L∞(S, µ) inside B(L2(S, µ)) through the Koopman representation. This von
Neumann algebra is called group measure space construction.

Notation: L∞(S, µ) o{φt} G or simply L∞(S, µ) oG.
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subalgebra of B(`2(G)⊗ L2(S, µ))) that �encodes the ergodic theoretic features�
of {φt}t∈G by internalizing a crossed product relation that normalizes
L∞(S, µ) inside B(L2(S, µ)) through the Koopman representation. This von
Neumann algebra is called group measure space construction.

Notation: L∞(S, µ) o{φt} G or simply L∞(S, µ) oG.
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How good is the connection?
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The minimal group measure space construction

Theorem (R. (2020+))

Suppose {Xt}t∈G is a (left) stationary SαS random �eld indexed by a

countable group G. Let {φ(1)
t }t∈G and {φ(2)

t }t∈G be two nonsingular G-actions
(on (S(1), µ(1)) and (S(2), µ(2)), respectively) obtained from two minimal (and
hence Rosinski) representations. Then

L∞(S(1), µ(1)) oG ∼= L∞(S(2), µ(2)) oG

as von Neumann algebras. In particular, group measure space construction is
an invariant for any minimal representation of a �xed stationary SαS random
�eld.

Sketch of proof.

{φ(1)
t } ∼= {φ

(2)
t } as group actions (extension of Theorem 3.6 of Rosinski (1995))

⇒ they are �orbit equivalent� ⇒ L∞(S(1), µ(1)) oG ∼= L∞(S(2), µ(2)) oG by
a seminal result of Singer (1955).
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A W ∗-rigidity question

Summary: Minimal group measure space construction is an invariant for any
stationary SαS random �eld.

Same holds for stationary max-stable �elds by an extension of Proposition 6.1
in Wang and Stoev (2009).

Question: How much does this invariant �remember� the random �eld?

In other words, if two stationary SαS random �elds (not necessarily indexed
by the same group) have isomorphic minimal group measure space
constructions, then do they have similar probabilistic properties?

This question parallels the theory of W ∗-rigidity (a term coined by Sorin Popa
- see the survey of Ioana (2018)) for group actions.

See also the ICM 2018 lecture of Adrian Ioana from YouTube.

Parthanil Roy Stable �elds and von Neumann Algebras 24 / 37



A W ∗-rigidity question

Summary: Minimal group measure space construction is an invariant for any
stationary SαS random �eld.

Same holds for stationary max-stable �elds by an extension of Proposition 6.1
in Wang and Stoev (2009).

Question: How much does this invariant �remember� the random �eld?

In other words, if two stationary SαS random �elds (not necessarily indexed
by the same group) have isomorphic minimal group measure space
constructions, then do they have similar probabilistic properties?

This question parallels the theory of W ∗-rigidity (a term coined by Sorin Popa
- see the survey of Ioana (2018)) for group actions.

See also the ICM 2018 lecture of Adrian Ioana from YouTube.

Parthanil Roy Stable �elds and von Neumann Algebras 24 / 37



A W ∗-rigidity question

Summary: Minimal group measure space construction is an invariant for any
stationary SαS random �eld.

Same holds for stationary max-stable �elds by an extension of Proposition 6.1
in Wang and Stoev (2009).

Question: How much does this invariant �remember� the random �eld?

In other words, if two stationary SαS random �elds (not necessarily indexed
by the same group) have isomorphic minimal group measure space
constructions, then do they have similar probabilistic properties?

This question parallels the theory of W ∗-rigidity (a term coined by Sorin Popa
- see the survey of Ioana (2018)) for group actions.

See also the ICM 2018 lecture of Adrian Ioana from YouTube.

Parthanil Roy Stable �elds and von Neumann Algebras 24 / 37



A W ∗-rigidity question

Summary: Minimal group measure space construction is an invariant for any
stationary SαS random �eld.

Same holds for stationary max-stable �elds by an extension of Proposition 6.1
in Wang and Stoev (2009).

Question: How much does this invariant �remember� the random �eld?

In other words, if two stationary SαS random �elds (not necessarily indexed
by the same group) have isomorphic minimal group measure space
constructions, then do they have similar probabilistic properties?

This question parallels the theory of W ∗-rigidity (a term coined by Sorin Popa
- see the survey of Ioana (2018)) for group actions.

See also the ICM 2018 lecture of Adrian Ioana from YouTube.

Parthanil Roy Stable �elds and von Neumann Algebras 24 / 37



A W ∗-rigidity question

Summary: Minimal group measure space construction is an invariant for any
stationary SαS random �eld.

Same holds for stationary max-stable �elds by an extension of Proposition 6.1
in Wang and Stoev (2009).

Question: How much does this invariant �remember� the random �eld?

In other words, if two stationary SαS random �elds (not necessarily indexed
by the same group) have isomorphic minimal group measure space
constructions, then do they have similar probabilistic properties?

This question parallels the theory of W ∗-rigidity (a term coined by Sorin Popa
- see the survey of Ioana (2018)) for group actions.

See also the ICM 2018 lecture of Adrian Ioana from YouTube.

Parthanil Roy Stable �elds and von Neumann Algebras 24 / 37



A W ∗-rigidity question

Summary: Minimal group measure space construction is an invariant for any
stationary SαS random �eld.

Same holds for stationary max-stable �elds by an extension of Proposition 6.1
in Wang and Stoev (2009).

Question: How much does this invariant �remember� the random �eld?

In other words, if two stationary SαS random �elds (not necessarily indexed
by the same group) have isomorphic minimal group measure space
constructions, then do they have similar probabilistic properties?

This question parallels the theory of W ∗-rigidity (a term coined by Sorin Popa
- see the survey of Ioana (2018)) for group actions.

See also the ICM 2018 lecture of Adrian Ioana from YouTube.

Parthanil Roy Stable �elds and von Neumann Algebras 24 / 37



What about any Rosinski representation?

Another W ∗-rigidity question: How much does a Rosinski (not
necessarily the minimal) group measure space construction remember the
stable random �eld?

Since any Rosinski representation �can be written in terms of� any
minimal representation, we conjecture that many von Neumann algebraic
aspects of the corresponding group measure space construction will
become invariants and many stochastic properties of the �eld will be
remembered.

We have exhibited two such instances in this work when G = Zd - both
ergodicity and complete non-ergodicity are W ∗-rigid properties for stable
random �elds.

From now on G = Zd (unless mentioned otherwise).
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Operator Algebraic Characterization of

Ergodicity for Stable Random Fields (G = Zd)
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Ergodicity of Zd-indexed stable �elds

Recall that any stationary SαS random �eld X = {Xt}t∈Zd induces a

measure-preserving shift action (of Zd) on
(
RZd ,PX

)
, where

PX = law of X := P
({
ω ∈ Ω :

(
Xt(ω) : t ∈ Zd

)
∈ ·
})
.

De�nition

{Xt}t∈Zd is called ergodic if the above shift action is so, i,e., the

shift-invariant subsets of RZd are PX-trivial.

Question: When is {Xt}t∈Zd ergodic? [Helps in proving limit theorems.]

d = 1: Samorodnitsky (2005) gave a criterion based on the ergodic
theoretic properties of the underlying action.

d > 1: Wang, R. and Stoev (2013) extended the above work.

R. (2020+): New characterization using group measure space
construction for d ≥ 1.
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Ergodicty via von Neumann algebas

Theorem (R. (2020+))

Suppose {Xt}t∈Zd is a stationary SαS random �eld generated by a free
nonsingular action {φt}t∈Zd . Then {Xt}t∈Zd is ergodic (equiv., weakly mixing)
if and only if the corresponding group measure space construction admits no
II1 factor in its central decomposition.

Corollary (R. (2020+))

�Admitting no II1 factor in the central decomposition� is an invariant for any
�free Rosinski group measure space construction� of a �xed stationary stable
random �eld indexed by Zd.

In other words, if a free Rosinski group measure space construction of such a
random �eld admits no II1 factor in its central decomposition, then the same
is true about any free Rosinski group measure space construction of that
random �eld.
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Connection to orbit equivalence

Corollary (R. (2020+) - Ergodicity is W ∗-rigid and hence OE-rigid)

If two stationary SαS random �elds indexed by Zd (possibly with two di�erent
d's) have isomorphic free Rosinski group measure space constructions, then
one is ergodic (equiv., weakly mixing) if and only if the other one is so.

In
particular, if they are generated by orbit equivalent free actions, then also the
same conclusion holds.

The indexing groups having possibly di�erent ranks (as Z-modules) is actually
very useful in the context of orbit equivalence.

The seminal result of Connes, Feldman and Weiss (1981) states that any
nonsingular action of Zd (more generally, of any amenable group) is orbit
equivalent to a nonsingular Z-action.

Therefore, it is now possible to associate a stationary SαS process to any
stationary SαS random �eld indexed by Zd in an ergodicity-preserving
manner. This may help in classi�cation of such �elds.
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same conclusion holds.

The indexing groups having possibly di�erent ranks (as Z-modules) is actually
very useful in the context of orbit equivalence.

The seminal result of Connes, Feldman and Weiss (1981) states that any
nonsingular action of Zd (more generally, of any amenable group) is orbit
equivalent to a nonsingular Z-action.

Therefore, it is now possible to associate a stationary SαS process to any
stationary SαS random �eld indexed by Zd in an ergodicity-preserving
manner. This may help in classi�cation of such �elds.
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Sketch of proof

Can we prove it when the action {φt}t∈Zd is also ergodic? Yes we can.

I a fact from von Neumann Algebras: if {φt}t∈G is free and ergodic, then the

factor L∞(S, µ)oG is of type II1 if and only if there exists a

{φt}-invariant �nite measure ν ∼ µ, and
I Theorem 4.1 of Wang, R. and Stoev (2013) (probabilistic input).

What about the general case? Use

I ergodic decomposition (Schmidt (1976), Corollary 6.9) for a nonsingular
action on a standard measure space, and

I its canonical connection to the central decomposition of the corresponding

group measure space construction (another operator algebraic tool).

From the proof, it transpires that

I {Xt}t∈Zd is fully non-ergodic i� (almost) all the factors are of type II1 and

I same characterization of ergodicity holds for max-stable �elds.
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Future directions

View more known examples through our lens - Cohen and Samorodnitsky
(2006) (known to be ergodic), Dombry and Guillotin-Plantard (2009),
Owada and Samorodnitsky (2015a), etc.

When will a stationary SαS random �eld be mixing? Connection to
Dombry and Kabluchko (2017) (for max-stable �elds). Will mixing be a
W ∗-rigid property (like ergodicity) for G = Zd?

What is the role of type III factors in various probabilistic properties of
stationary SαS random �elds? How about the stable random �eld of
Sarkar and R. (2018) generated by the action of Fd on its
Furstenberg-Poisson boundary?

Ergodicity for stationary SαS random �elds indexed by G 6= Zd? The
hindrance is not operator algebraic but ergodic theoretic - unavailability
of ergodic theorem for nonsingular actions of groups - extension of
Lindenstrauss (2001)? For discrete Heisenberg groups, use Jarrett (2019)?
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Koopman representation

G-action {φt} lifts to the space of all real-valued measurable functions on S by

σtg = g ◦ φt, t ∈ G.

This lifted action preserves the L∞-norm but not other Lp-norms.

However, for each t ∈ G, πt : L2(S, µ)→ L2(S, µ) given by

(πtg)(s) = g ◦ φt(s)
(
dµ ◦ φt
dµ

(s)

)1/2

, s ∈ S

de�nes an isometry. The unitary representation {πt}t∈G of G inside L2(S, µ)
is called the Koopman representation.
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The crossed product relation

Using the cocycle relationship

dµ ◦ φuv
dµ

=
dµ ◦ φu
dµ

σu

(
dµ ◦ φv
dµ

)
, u, v ∈ G,

one gets that for all a ∈ L∞(S, µ) (thought of as acting on L2(S, µ) by
multiplication), for all t ∈ G and for all g ∈ L2(S, µ),

(πt a πt−1g)(s) = ((σta)g)(s), s ∈ S. (2)

In other words, the Koopman representation �normalizes� L∞(S, µ) inside
B(L2(S, µ)). The group measure space construction is a space, where the
crossed product relation (2) is internalized.
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Group measure space construction

Consider the von Neumann algebra

B(l2(G)⊗ L2(S, µ)) = B(l2(G))⊗ B(L2(S, µ))

(with the closure being taken with respect to the weak/strong operator
topology). De�ne a representation of G by t 7→ ut := λt ⊗ πt, where {λt} is
the left regular representation and {πt} is the Koopman representation. We
also represent L∞(S, µ) by a 7→ 1⊗Ma, whereMa is the multiplication (by
a) operator on L2(S, µ). It can be checked that the following �internal� crossed
product relation holds:

ut(1⊗Ma)ut−1 = 1⊗Mσta .

De�ne the group measure space construction (also known as crossed product
construction) as

L∞(S, µ) oG := {ut, 1⊗Ma : t ∈ G, a ∈ L∞(S, µ)}′′.
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Connections to ergodic theory

It can be shown that the internal crossed product relation implies that any
x ∈ L∞(S, µ) oG can be uniquely written as x =

∑
t∈G atut with

{at : t ∈ G} ⊆ L∞(S, µ). Thus, we can view x as a |G| × |G| matrix with
entries coming from L∞(S, µ) that are the same along each left
group-diagonal; see, e.g, Jones (2009).

Theorem (see, e.g, Peterson (2013))

The following results hold for a nonsingular G-action {φt} and the
corresponding group measure space construction de�ned above.

1 If the action {φt}t∈G is free and ergodic, then L∞(S, µ) oG is a factor.

2 If L∞(S, µ) oG is a factor, then {φt}t∈G is ergodic.

3 If {φt}t∈G is free and ergodic, then the factor L∞(S, µ) oG is of type II1
if and only if {φt}t∈G is a positive action.

Furthermore, if the two nonsingular actions (not necessarily of the same
group) are orbit-equivalent, then the corresponding group measure space
constructions are isomorphic as von Neumann algebras
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