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The setting

Homogeneous Poisson point process in the plane.

In ‘equilibrium’ After thinning



1. Invariant point processes in C

2. Rare events

3. Conditional limiting distribution and Potential theory -
constrained minimizers
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Invariant\Stationary point processes in C

Point process in C: X = {z};¢
Number of points in a set G C C: n(G) = nx(G).

Assume the distribution of X is invariant with respect to
isometries of C (rotations, translations, reflections).

Examples:

e Homogeneous Poisson Point Process
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Invariant\Stationary point processes in C

Point process in C: X = {z};¢
Number of points in a set G C C: n(G) = nx(G).

Assume the distribution of X is invariant with respect to
isometries of C (rotations, translations, reflections).

Examples:

e Homogeneous Poisson Point Process
e Infinite Ginibre ensemble (‘eigenvalues’)
e Zeros of the Gaussian Entire Function



Ginibre ensemble (random eigenvalues)

Finite ensemble

e Complex eigenvalues of non-Hermitian N x N matrix
e Entries are independent standard complex Gaussian

e Determinantal point process
Infinite ensemble - limit of finite Ginibre as N — oo

e Also a determinantal point process
e 'Gas' with particle-particle interactions (repulsion)
embedded in uniform background.

e Compare with Poisson p.p. which is a gas with no
interactions between the particles.



Zeros of the Gaussian Entire Function (GEF)

{€,}°, - independent standard complex Gaussians.

GEF is given by the Gaussian Taylor series:
F(z) = igz— zeC.
n=0 \/m

e Infinite radius of convergence (almost surely).
Zero set: Z(F) = F~1(0) is a discrete set in C.

Forms a point process which is not determinantal. More

complicated interactions between the ‘particles’.

On short scales similar to Ginibre (repulsion).



Some pictures...

All processes are normalized to have the same intensity.

This is how they look like in ‘equilibrium’:

Poisson Point Process  Ginibre ensemble Gaussian zeros

Expected number of points in G is £ Area(G).



Rare events



Point processes - rare events

e X, rescaled process so that
Area ) )
E [nx,(G)] = &ﬂ (interested in r — 00)
T
e Statistics of GEF zeros are reasonably well-understood.
e Variance: Forrester-Honner, Sodin-Tsirelson,
Shiffman-Zelditch
e CLT: Sodin-Tsirelson, Nazarov-Sodin
e Large/Moderate deviations (disk): Krishnapur,
Sodin-Tsirelson, Nazarov-Sodin-Volberg

e Consider rare events. Typical examples are:
e Hole event: {nx,(G) = 0}
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Point processes - rare events

e X, rescaled process so that
E [nx,(G)] = Ar%(g)ﬂ (interested in r — 00)
e Statistics of GEF zeros are reasonably well-understood.
e Variance: Forrester-Honner, Sodin-Tsirelson,
Shiffman-Zelditch
e CLT: Sodin-Tsirelson, Nazarov-Sodin
e Large/Moderate deviations (disk): Krishnapur,
Sodin-Tsirelson, Nazarov-Sodin-Volberg
e Consider rare events. Typical examples are:
e Hole event: {nx,(G) =0}

e Deficiency: {nx, (G) < 3E [nx,(G)]}
e Overcrowding: {nx,(G) > 2E [nx,(9)]}



Rare events and conditional distribution

E.g. for the hole event. As r — o0, what is the asymptotic
rate of decay of

P (nx,(9) = 0)?
and what is the liming spatial distribution of the points

conditioned on these rare events?

e Poisson process: follows immediately from the definition.
Ginibre: determinantal structure, potential theory helps.

e Need to approximate with finite ensembles with N points,

where N is a function of r.



Limiting conditional distribution - examples

Ginibre ensemble. G is the unit disk.
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Limiting conditional distribution - more examples

Zeros of the GEF. G is the unit disk.

.
s -

Deficiency Overcrowding

There is a partial duality (Ghosh-N.). 1



Large deviations for empirical distribution

Suppose we can approximate in some sense the process X, by
a process XM with N points. We consider the empirical
measure of the points of the latter process:

1 N
= — Ow;-
s

A large deviation principle (LDP) for the sequence of empirical
measures jy roughly means that for nice subsets C of M;(C)
we have

log P, xm (v € C) ~ —ap Lg}é lx (),

where ay — oo and Iy : My(C) — R is the rate function.
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LDP - Ginibre ensemble

e Hiai-Petz, Ben Arous-Zeitouni

e Finite Ginibre (") — eigenvalues of N x N matrix with
i.i.d. complex Gaussian entries (in random uniform order).

e Joint density of (complex) eigenvalues {w1, ..., wy}
w.r.t. Lebesgue measure on CV

N
o H|WJ — wy| - exp (—NZ ]wj|2>
j=1

J#k
e Roughly speaking the probability of a rare event is

determined by the maximum of the joint density over all
“admissible configurations” of the points {ws, ..., wy}.
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LDP - Ginibre ensemble - cont.

Write joint density in logarithmic scale:

ocexp( Zlog Z|WJ\2D

J#k
We rewrite
5 o wf? = [ 1wl duw ()

and (disregarding the singularity on the diagonal)

5 o8 o = [ ok o (2) o (w) = E(un)

J#k
leading to the rate function:

Z/\ledu+5(u)+ Co.
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LDP - Ginibre ensemble - cont.

For example the hole event {ng,(G) = 0} corresponds to the
set of measures

Mg = {p € Mi(C): n(g) =0}
(Remark: Mg is actually not a good set of measures in the

sense of large deviations theory).

Asymptotically, with N oc r?

log P (ne, (G) = 0) < logP,,, _em (v € Mg) < —N> inf Is(p).

nEMg

Rate function Is(u) = [ |w|?>du + E() + Cs is sometimes
called in potential theory the weighted logarithmic energy of .

14



LDP - Gaussian complex zeros

The rescaled GEF is given by the Gaussian Taylor series:

)—an%, z€C,

where &, are independent standard complex Gaussians.
Approximate the zeros of F, by zeros of the polynomials

Z):nzogn(\r/z% = gNH _VVJ

%/_J
:iQN(Z)

Joint density of the zeros {ws, ..., wy} is more complicated:

o< [ = wel ([ 10w @) 267 dm(z>)_(NH)

JFk 15




LDP - Gaussian complex zeros - cont.

Zeitouni and Zelditch proved a large deviations result for the
empirical measure of the zeros (in a more general setting).
The rate function is given by

h(p) = QSUP{U“ (z) - %} +E(W)+ G

zeC

using logarithmic potential and energy

Uk (2) = / log |z — w] dys (w)

e = [[ e =@ an() = - [ U () du(a).

C
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Conditional limiting distribution
and Potential theory -

constrained minimizers




Conditional limiting distribution

The following heuristics holds (known as the “Gibbs
Conditioning Principle” in large deviations theory):

E.g. in the case of the hole event in the set G, the measure pg
in the set

Mg = {p € Mi(C) : u(G) = 0},

that minimizes the value of the functional /¢ corresponds to
the limiting distribution of the processes X¥(") on the hole
event.

Q: How to solve a constrained minimization problem for
(convex) functionals on probability measures?
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Results for the Ginibre ensemble

Round hole: determinantal structure allows direct
computation. ng,(D)— sum of indep. random variables.

e Jacovici-Lebowitz-Manificat - Prediction for finite 3
ensembles in two and three dimensions.
e Including the Ginibre ensemble (determinantal).
e Description of the limiting measure for round hole.
e Predictions for moderate and large fluctuations (JLM).
e Shirai - infinite Ginibre ensemble.

There are also results for more general cases.

e Adhikari-Reddy - decay rate of the hole probability for
general domains.
e Anderson-Serfaty-Zeitouni - description of the limiting

measure for deficiency/overcrowding events. 18



Interlude - some results in one dimension

e Ben Arous-Guionnet - first empirical LDP for GUE.

e Majumdar-Nadal-Scardicchio-Vivo - description of limiting
distribution conditioned on a ‘gap’.

e Valké-Virag, Holcomb-Valké - decay rate of gap
probability for Sineg process.

e Limiting conditional distribution?

e Basu-Dembo-Feldheim-Zeitouni - exponential
concentration around the mean for zeros of stationary
Gaussian processes.

e Many other results.
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Complex Gaussian Zeros - circular case

There is no determinantal structure! The radial symmetry of
Taylor series is helpful for circular domains.

Theorem (Ghosh-N.)

The empirical distribution of the Gaussian zero process,
conditioned on having no zeros in a disk of radius r, converges
in distribution, as r — oo, to the Radon measure:

dm(w)
dun (W) = e dgwi=1} + 1{|w\2\/E}T

This affirms a prediction of Nazarov and Sodin — a “forbidden
region” appears outside the hole, where the asymptotic density

of the zeros vanishes.
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Complex Gaussian Zeros - “forbidden region”

In order to have no zeros in a large disk, we have to balance
by moving outer zeros to the boundary of the disk.
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Complex Gaussian Zeros - circular case - cont.

There is no determinantal structure. The radial symmetry of

Taylor series is helpful for circular domains.

e with S. Ghosh we identified the precise logarithmic decay
rate of the probability of deficiency and overcrowding for
the GEF, and the limiting distributions.

e Before, Sodin and Tsirelson found the correct rate of
decay for these events (matching those of Ginibre).

e In addition, Nazarov, Sodin, and Volberg proved that the
JLM prediction for large charge fluctuation of Coulomb
systems also applies to the zeros.
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Complex Gaussian Zeros - non circular case

Now there is no determinantal structure, no radial symmetry,
and no connection to familiar objects from potential theory!

e with A. Wennman we found which shapes of the hole lead
to a round forbidden region.

e can describe the class of shapes for forbidden regions

corresponding to holes with smooth boundary (and more
general cases).

e we had to develop some new methods related to free

boundary\obstacle problems, to describe properties of the
constrained minimizing measures.
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Complex Gaussian Zeros - disk-like domains

Definition
A simply-connected domain G C C is disk-like with center 0

and radius 1, if the Riemann map ¢ : G — D, which maps 0
to 0, with ¢(0) = 1, satisfies

1
@) 2 lzlew (~5l2) . z€6.

Theorem (N.-Wennman)
The G be a sufficiently nice simply-connected domain. The

forbidden region is the disk D(0, \/e) if and only if G is
disk-like.

Remark: In this case the measure of the singular component is
proportional to the harmonic measure of G from the point 0. 24



Disk-like domains - examples

One can check that equilateral triangles are not disk-like, while
squares are. Limiting measures on a square shaped hole:

Ginibre Zeros of GEF
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Some open problems

What happens when G is not simply-connected?
e Some very partial results (annulus)

How does the singular component on the boundary of the hole
looks like when we ‘zoom in'?

e Shirai - found profile of the singular component for
Ginibre ensemble in the circular case.

e Ginibre ensemble in the non-circular case 77

e Zeros of the GEF 77

Replace Gaussian coefficients with Gaussian processes.
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