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Urn Processes

Urn models fall under the larger class of processes known as

random processes with reinforcement, which find applications in

various areas.

Pólya (1957)

Any problem of probability appears comparable to a suitable

problem about bags containing balls and any random mass

phenomenon appears as similar in certain essential respects to

successive drawings of balls from a system of suitably combined

bags.

Urn models have been used for modeling clinical trials. More

recently, they have been applied to studying opinion dynamics,

reinforcement learning, evolutionary models, ant walks etc.
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Classical Urn Models

• One of the first urn models to be studied was the classical

Pólya urn model introduced by George Pólya in 1923.

• The model consisted of an urn which initially contains a finite

number of balls of different colours.

• At every discrete time-step t, a ball is drawn from the urn

uniformly at random and it is replaced in the urn along with

a > 0 balls of the same colour.
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Pólya urn model introduced by George Pólya in 1923.
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Classical Urn Models

Theorem (Eggenberger and Pólya, 1923)

Let Z (t) be the fraction of white balls in the urn after time t (or

after t draws). Then, as t →∞,

Z (t)
a.s.−−→ Z

such that Z ∼ β (Z (0), 1− Z (0)), where β(·, ·) denotes Beta

distribution.



Friedman Urn

Friedman Urn: The drawn ball is replaced in the urn with a

balls of the same colour and b balls of the opposite colour. In

case of Friedman urns, Z (t)→ 1/2 as t →∞.

Bagchi-Pal Urn: If the drawn ball is of white colour, it is

replaced in the urn with a balls of the same colour and b balls

of black colour and if it is of black colour, it is replaced in the

urn with c balls of the same colour and d balls of white

colour. Assuming the urn is balanced, that is a + b = c + d

and a− c ≤ (a + b)/2, Z (t)→ c
b+c as t →∞.
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Further Extensions

• Multicolour Urns (Amites Dasgupta, Krishanu Maulik, Arup

Bose, Irene Crimaldi).

• Infinite Colour Urns (Antar Bandyopadhyay, Debleena

Thacker, Svante Janson, Cécile Mailler).

• Random Replacement (Svante Janson, Rafik Aguech, Irene

Crimaldi).



Interacting Urns



A general two-colour interacting urn model

N urns such that the reinforcement in each urn depends on all the

urns or on a non-trivial subset of the given set of N urns.

We restrict our discussion to two-colour balanced urn schemes.



More precisely, suppose there are N urns with configurations

(Wi (t),Bi (t)), where Wi (t) and Bi (t) denote the number of

white balls and black balls respectively, at time t ≥ 0 in the

i th urn, for every i ∈ [N].

The reinforcement in the i th urn at time t is given by

(IWi (t), IBi (t)) = (Wi (t),Bi (t))− (Wi (t − 1),Bi (t − 1)). We

consider non-negative and finite reinforcement.

If the evolution of the i th urn depends on urns at

{i1, . . . , iki} ⊆ [N], then the conditional distribution of

(IWi (t), IBi (t)) is determined by Wi1(t − 1), . . . ,Wiki
(t − 1).

We call the set {i1, . . . , iki} the dependency set of the i th urn.

In particular, in a graph based general two-colour interacting

urn model, a natural choice for the dependency set of an urn

is the collection of urns in its neighbourhood.
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Interacting Pólya or Friedman Urns

P. Dai Pra, I. G. Minelli, P. Y. Louis and I. Crimaldi studied the

following Pólya interacting urn model (2014 & 2016).

They consider N two-colours urns in which the reinforcement of

each urn depends on all the other urns.

• At time 0, each urn contains a white and b black balls with

a ≥ 1, b ≥ 1.

• At each time t + 1, given the fraction of balls of white colour

in each urn at time t, independently of what happens in all

the other urns, a new white ball is replaced in urn i with

conditional probability αZ (t) + (1− α)Zi (t), where

Z (t) = 1
N

N∑
i=1

Zi (t) and α ∈ [0, 1].



Main Results

• lim
n→∞

Zi (t) = lim
n→∞

Z (t) =: Z almost surely.

• E[(Zi (t)− Z (t))2] =


t−2α for 0 < α < 1/2

t−1 log t for α = 1/2

t−1 for 1/2 < α ≤ 1.

.

•
√
t(Z (t)− Z )→ N

(
0, 1

N (Z (1− Z )
)
.

• For α > 1/2,√
t(Zj(t)− Z )→ N

(
0,
(

1
N + 1−1/N

2α−1

)
(Z (1− Z )

)
.

• For α = 1/2,
√

t
log t (Zj(t)− Z )→ N

(
0,
(
1− 1

N

)
(Z (1− Z )

)
.

• For 0 < α < 1/2, tα(Zj(t)− Z ) converges almost surely (and

in L1) to an almost surely non-zero random variable.



Interacting Urns on a Finite

Directed Graph

(Joint work with Gursharn Kaur)



Graph Structure

Consider a directed network G = (V , E), where V = [N] is the

set of nodes and E is the set of directed edges.

The vertex set of the graph is divided into two disjoint sets,

the set of stubborn vertices (zero in-degree) and the set of

flexible vertices (non-zero in-degree). These are denoted by S

and F respectively.

• No isolated vertices in the graph.

• No vertices with only a single self loop.
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So, V = S ∪ F with S = {i ∈ V : d in
i = 0} and

F = {i ∈ V : d in
i > 0}.

Without loss of generality, we assume that the vertices

labelled 1, . . . , |F | are flexible, while the rest are stubborn.

With this labelling, the adjacency matrix A (with

Ai ,j = I{i→j}) is of the form.(
AF 0

ASF 0

)
.
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Reinforcement dynamics

Suppose each vertex i ∈ V has an urn that contains balls of

two colours, white and black. Let (Wi (t),Bi (t)) be the

configuration of the urn at vertex i at time t ≥ 0.

A ball is selected uniformly at random from all the urns

simultaneously and independently of every other urn. The

colours of these balls are noted and they are replaced into

their respective urns. For every i ∈ V , if the colour of the ball

selected from the i th urn is white, αi white and mi − αi black

balls are added to each urn j , such that i → j ; and if the

colour of the ball selected from the i th urn is black then

mi − βi white balls and βi black balls are added to each urn j ,

such that i → j .
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In other words, the i th urn reinforces its out-neighbours

according to the following reinforcement matrix

Ri =

(
αi mi − αi

mi − βi βi

)
.

We classify the type of reinforcement as follows.

1. Pólya type: if αi = βi = mi . That is when Ri = mi I .

2. Non-Pólya type: if 0 < αi + βi < 2mi .

What can we say about the liming fraction of balls of

colour white in each urn?
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Notation

• Z(t) = (Z1(t), . . . ,ZN(t)).

• ai = αi/mi and bi = βi/mi . Let

a = (a1, . . . , aN), b = (b1, . . . , bN) and m̂i =
∑

j∈N(i)mj .

• Diagonal matrices:

B = Diag(a1 + b1 − 1, . . . , aN + bN − 1),

T(t) = Diag
(
T1(t), . . . ,TN(t)

)
,

M = Diag(m1, . . . ,mN) and

M̂ = Diag(m̂1, . . . , m̂|F |, 0, . . . , 0).

• W = BMAM̂
−1

where M̂
−1

=

[
M̂
−1
F 0

0 0

]
.



Convergence of Z(n)

Theorem (G. Kaur and N. S.)

Suppose for every f ∈ F there exists a node v such that v  f

and either v ∈ S or Rv 6= mv I . Then as t →∞, I −WF is

invertible and

ZF (t)
a.s.−−→ z? :=

[
1− (bMAM̂

−1
)F + ZS(0)WSF

]
(I −WF )−1.



Synchronization

Corollary

Suppose conditions for convergence as in the above theorem

hold. Then, under the synchronization conditions SC1 and SC2

given below, as t →∞, for every i ∈ F

Zi (t)
a.s.−−→ mF − βF + mS −mZS (0) + αZS (0) + βZS (0)

2mF + mS − αF − βF
.

In particular,

1. If Zj(0) = w for every j ∈ S and synchronization conditions

SC1 and SC2 hold, then Zi (t)
a.s.−−→ mF+mS−βF+w(αS+βS−mS )

2mF+mS−αF−βF ,

as t →∞ for every i ∈ F .

2. If S = ∅ and synchronization condition SC1 holds, then,

Zi (t)
a.s.−−→ mF−βF

2mF−αF−βF , as t →∞ for every i ∈ V .



Conditions for Synchronization

(SC1) There exist αF , βF ,mF ,mS ∈ R with αF + βF < 2mF + mS ,

such that for every i ∈ F ,

∑
j∈Ni∩F

Rj =

(
αF mF − αF

mF − βF βF

)
.

(SC2) If S 6= ∅, there exist αZS (0), βZS (0),mZS (0) ∈ R such that for

every i ∈ F ,
∑

j∈Ni∩S
mi = mS and

∑
j∈Ni∩S

Zj(0)Rj =

(
αZS (0) mZS (0) − αZS (0)

mZS (0) − βZS (0) βZS (0)

)



Uniform Reinforcement

When ai = a, bi = b,mi = m for all i ∈ V , W = BMAM̂
−1

reduces to (a + b − 1)Ã where Ã =

[
AF 0

ASF 0

][
D−1F 0

0 0

]
.

Synchronization conditions reduce to ZS(0)ÃSF = c11 and

1ÃF = c21. In that case, the limiting fraction is given by

(1− b) + (a + b − 1)c1
1− (a + b − 1)c2

1

and it equals
1− b

2− a− b
1

for S = ∅.



Idea of the Proof: Stochastic Approximation Theory

A stochastic approximation scheme in Rd is given by:

x(t + 1) = x(t) + a(t + 1)[h(x(t)) + M(t + 1)], t ≥ 0,

where supt‖x(t)‖ <∞ almost surely, and:

• The map h : Rd → Rd is Lipschitz.

•
∑

t a(t) =∞ and
∑

t a(t)2 <∞.

• {M(t)}t≥0 is a Martingale difference sequence with respect to

the increasing family of σ-fields given by σ(x(m),M(m))m≤t .

{M(t)} are square-integrable with

E [‖M(t + 1)‖2|Ft ] ≤ K (1 + ‖x(t)‖2)

for some constant K > 0.



The main result of the stochastic approximation theory says that

the iterates of the recursion for xt ∈ Rd satisfying

x(t + 1) = x(t) + a(t + 1)[h(x(t)) + M(t + 1)], t ≥ 0,

along with the given conditions, converge almost surely to the

stable limit points of the solutions of the ordinary differential

equation given by ẋ(t) = h(x(t)).



Proof of Convergence

Let Let Yi (t) denote the indicator of the event that a white ball is

drawn from the i th urn at time t ≥ 1.

Zi (t + 1) =
1

Ti (t + 1)
Wi (t + 1)

=
Ti (t)

Ti (t + 1)
Zi (t)

+
1

Ti (t + 1)

∑
j∈Ni

[αjYj(t + 1) + (mj − βj)(1− Yj(t + 1))]

= Zi (t)− m̂i

Ti (t + 1)
Zi (t)

+
1

Ti (t + 1)

∑
j∈Ni

mj

[
(aj + bj − 1)Zj(t) + 1− bj

]
+

1

Ti (t + 1)

∑
j∈Ni

mj(aj + bj − 1)∆Yj(t + 1)



∆Yj(t + 1) = Yj(t + 1)− E[Yj(t + 1)|F t ] is a Martingale

difference sequence. We can write the recursion for ZF (t).

ZF (t + 1) = ZF (t) + (∆Y (t + 1) WM̂)FTF (n + 1)−1

+
[
−Z(t) + Z(t)W + (1− b)MAM̂

−1]
F
M̂FTF (t + 1)−1.

where W = BMAM̂
−1

is of the form

W =

[
(BM)F 0

0 (BM)S

][
AF 0

ASF 0

][
M̂
−1
F 0

0 0

]

=

[
(BM)F AF M̂

−1
F 0

(BM)S ASF M̂
−1
F 0

]
.



Since T(t) = T(0) + tM̂, therefore M̂FT−1F (t) = O(1/t) and

h(z) = −z + zWF + ZS(0)WSF + 1− (bMAM̂
−1

)F .

Hence, the unique equilibrium point is given by

z? =
[
1− (bMAM̂

−1
)F + ZS(0)WSF

]
(I −WF )−1,

whenever I −WF is invertible.



The flexible set F can be partitioned into strongly connected

components F1, . . . ,Fk and WF can be written as an upper block

triangular matrix as follows

I −WF =


I1 −WF1 −WF1,F2 . . . −WF1,Fk

0 I2 −WF2 . . . −WF2,Fk

...
...

. . .
...

0 0 . . . Ik −WFk

 ,

where WFi ,Fj
= (BM)Fi

AFi ,Fj
(M̂
−1

)Fj
is a |Fi | × |Fj | matrix and

WFi
= WFi ,Fi

. It is enough to show that each block on diagonal is

invertible.



Note that (i , j)th element of WF is

[WF ]i ,j =
(αi + βi −mi )Ii→j

m̂j
=

(αi + βi −mi )Ii→j∑
i∈N(j)mi

Therefore the j-th column sum of WF ′ is given by

∑
i∈F ′

[WF ′ ]i ,j =

∑
i∈N(j)∩F ′(αi + βi −mi )∑

i∈N(j)mi
≤
∑

i∈N(j)∩F ′ mi∑
i∈N(j)mi

,

where the last inequality holds since αi + βi ≤ 2mi for every i ∈ V .

Note that the j-th column sum is strictly less than 1 under the

conditions of the theorem.



Fluctuation Theorems

A similar argument gives that the real parts of all the eigenvalues

of I −WF ′ are all positive. Thus, z? is a stable equilibrium.

What can we say about Z (t)− Z ?1?

We assume the following:

(A1) F is strongly connected.

(A2) W = BMAM̂
−1

is diagonalisable.
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Fluctuation Theorems: Notation

That is, there exists an invertible matrix U such that with

V = U−1, W = UΛV = U Diag(λ1, λ2, . . . , λN)V , where

λ1, . . . , λN are the N eigenvalues of W such that

<(λ1) ≥ <(λ2) ≥ · · · ≥ <(λN). Let u1, . . . , uN and v1, . . . , vN be

the right and left eigenvectors of the eigenvalues λ1, . . . , λN

respectively.

Define H := I −WF and ρ := λmin(H), where I is a |F | × |F |
identity matrix. Define Θ is the N × N diagonal matrix such that

Θi ,i =


z?i (1− z?i ) i ∈ F ,

Zi (0)(1− Zi (0)) i ∈ S .



Fluctuation Theorems

Theorem (G. Kaur and N. S.)

Suppose ZF (n) −→ z? almost surely as t →∞. Then,

1. for ρ > 1/2, as t →∞
√
t (ZF (t)− z?)

d−→ N (0,Σ)

with Σij =
∑

k∈F
∑

`∈F
λkλ`

1−λk−λ` (u>k Θu`)vkivlj , ∀i , j ∈ F .

2. for ρ = 1/2, as t →∞√
t

log t
(ZF (t)− z?)

d−→ N (0,Σ) ,

with Σij = 1
4(u>1 Θu1)v1iv1j ,∀i , j ∈ F .



Special Cases

Suppose ZF (t)
a.s.−−→ z?1.

1. Suppose W = W>. Then,

• For ρ > 1/2, Σ = z?(1− z?)W 2(I − 2W )−1.

• For ρ = 1/2, Σ = z?(1− z?)W 2U>

[
1 0

0 0

]
U.

2. Under the synchronization condition SC1,

• For ρ > 1/2, Σ =
(mF − βF )(mF − αF )

(2mF − βF − αF )2
W 2(I − 2W )−1.

• For ρ = 1/2, Σ = (mF−βF )(mF−αF )
N(mF )2

J.



Special Cases: Uniform Reinforcement

Ã = Ã>. Define C (a, b) = (a+b−1)2(1−a)(1−b)
2−a−b)2 .

• For ρ > 1/2, C (a, b)Ã2
F (I − 2(a + b − 1)ÃF )−1.

• For ρ = 1/2, C(a,b)
N J.

Friedman type: When a = b, ZF (n)
a.s.−−→ 1

21, and

C (a, b) =

(
a− 1

2

)2

.



Special Cases: Uniform Reinforcement

H = I − (a + b − 1)ÃF which implies

ρ =

1− (a + b − 1)λmax(ÃF ) when a + b − 1 > 0

1− (a + b − 1)λmin(ÃF ) when a + b − 1 < 0.



Pólya type Reinforcement

What happens when S = ∅ and there exists v such that

for all w  v , w is of Pólya type?

Suppose the graph is strongly connected and the following

balance conditions hold.

BC1: There exists is constant r > 0 such that 1MA = r1 and

MA1> = r1>.

BC2: The initial total number of balls in each urn is the same.
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What happens when S = ∅ and there exists v such that

for all w  v , w is of Pólya type?

Suppose the graph is strongly connected and the following

balance conditions hold.

BC1: There exists is constant r > 0 such that 1MA = r1 and

MA1> = r1>.

BC2: The initial total number of balls in each urn is the same.



Pólya type Reinforcement

Since there are no stubborn vertices we denote the vector

(Z1(t), . . . ,ZN(t)) by Zt .

Theorem (G. Kaur and N. S.)

Assume that the graph is strongly connected and BC1, BC2

hold. Then, there exists a finite random variable Z∞ such that

Zt
a.s.−−→ Z∞1.



CLT for Pólya type Reinforcement

Theorem (G. Kaur and N. S.)

Suppose Zt → Z∞1 almost surely. The following hold.

1. <(λ2) < 1/2,√
t(Zt − Z∞1)

d−→ N
(
0,Z∞(1− Z∞)

(
1
N J + Σ

))
, where

Σ = USU>, Sh,j = 1
1−λh−λj v

>
h vj , for 1 ≤ h, j ≤ N.

2. <(λ2) = 1/2,
√

t
log(t)(Zt − Z∞1)

d−→ N (0,Z∞(1− Z∞)Σ),

where Σ = USU with

Sh,j =

v>h vj λh + λj = 1

0 λh + λj 6= 1
, for 1 ≤ h, j ≤ N.



Recursion for Zn

For Pólya type reinforcement we have a = b = 1,B = I , M̂ = rI ,

and thus W = BMAM̂
−1

= 1
rMA. We have (Y1(t), . . . ,YN(t)) by

Yt . Under conditions BC1 and BC2 we have Ti (t) = Tj(t) =: Tt

for all i , j ∈ V and the recursion becomes

Zt+1 =

(
1− r

Tt+1

)
Zt +

1

Tt+1
Y t+1MA.

Let Υt := I − r

Tt

(
I − 1

r
MA

)
, then we can write

Zt+1 = ZtΥt+1 +
1

Tt+1
∆Y t+1

= Z0

t+1∏
k=1

Υk +
t+1∑
j=1

1

Tj
∆Y j

t+1∏
k=j+1

Υk



Sketch of the Proof for Convergence

Proposition

Under the balance conditions BC1 and BC2, Z̄t := 1
NZt1> is a

Martingale and Z̄t → Z∞ for some finite random variable Z∞.

Proof.

Using the balance condition BC1

E[Z̄t+1|F t ] =
1

N
E[Zt+11>|F t ] =

1

N
ZtΥt+11> =

1

N
Zt1
> = Z̄t

Thus Z̄t is a bounded martingale. Thus, there exists a random

variable Z∞ taking values in [0, 1] such that Z̄t → Z∞ almost

surely.



Let Dt = Zt − Z̄t1 = Zt

(
I − 1

N J
)
. Next, we show that under the

two balance conditions BC1 and BC2, Dt → 0 in L2 and almost

surely. We do this by proving that limt→∞ E[‖Dt‖2] = 0 and that

‖Dt‖2 admits an almost sure limit as n→∞.



Sketch of the Proof: Notation

Let Λt := I − r
Tt

(I − Λ) and K := I − 1
N J, then

Υt = P

(
I − r

Tt
(I − Λ)

)
P−1 = PΛtP

−1 and K = PΨP−1,

where

Ψ =


0 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


and,

Λt =


1 0 · · · 0

0 1− r
Tt

(1− λ2) · · · 0
...

...
. . .

...

0 0 · · · 1− r
Tt

(1− λt)

 .



Sketch of the Proof

Note that

Dt =
t∑

j=0

1

Tj
Uj

 t∏
k=j+1

Υk

K

=
t∑

j=0

1

Tj
UjP

 t∏
k=j+1

Λk

Ψ

P−1.



E
[
‖Dt‖2

]
≤ E

[ t∑
j=0

1

T 2
j

∥∥∥UjP

( t∏
k=j+1

Λk

)
ΨP−1

∥∥∥2]

≤
t∑

j=0

E
[
‖Uj‖2

] 1

T 2
j

∥∥∥P( t∏
k=j+1

Λk

)
ΨP−1

∥∥∥2
≤

t∑
j=0

C̃

T 2
j

∥∥∥( t∏
k=j+1

Λk

)
Ψ
∥∥∥2

≤
t∑

j=0

C̃

T 2
j

t∏
k=j+1

(
max

i

∣∣∣1− r

Tk
(1− λi )

∣∣∣)2

≈
t∑

j=0

1

j2

(
t

j

)−2(1−λ2)

= t−2(1−λ2)
t∑

j=0

j−2λ2 .



This gives:

E
[
‖Dt‖2

]
=


O(1/t) for − 1 ≤ λ2 < 1/2

O (log(t)/t) for λ2 = 1/2

O(t−2(1−λ2)) for 1/2 < λ2 < 1



Note that E[Dt+1|Fn] = E[Zt+1|F t ]K = ZtΥtK = DtΥt , since K

and Υt commute with each other under the balance condition

BC1.

E[‖Dt+1‖2|F t ] = E[Dt+1(Dt+1)>|F t ]

= E[Dt+1|F t ]E[Dt+1|F t ]
> + E[‖∆Dt+1‖2|F t ]

= DtΥt(DtΥ
>
t ) + E[‖∆Dt+1‖2|F t ]

= ‖Dt‖2 − Dt(I −ΥtΥ
>
t )D>t + E[‖∆Dt+1‖2|F t ]

≤ ‖Dt‖2 + E[‖∆Dt+1‖2|F t ]

≤ ‖Dt‖2 +
C

(t + 1)2



A Theorem of Robbins and Siegmund

Theorem (Almost Super-Martingales)
1 Let (Ω,F ,P) be a probability space and {Ft} be a filtration of

sub σ-fields of F . Let Ut , βt , γt be non-negative measurable

random sequences such that for all t ≥ 1,

E[Ut+1|Ft ] ≤ (1 + βt)Ut + νt − γt

Then on the set {
∑

t βt <∞,
∑

t νt <∞}, Ut converges almost

surely to a random variable and
∑

t γt <∞ almost surely.

1An application of a theorem of Robbins and Siegmund, D. Anbar, The Annals

of Statistics (1976) and A convergence theorem for nonnegative almost

supermartingales and some applications, H. Robbins and D. Siegmund,

Optimizing Methods in Statistics (1971).



CLT for Pólya type

• Show that Z̄t − Z∞, scaled appropriately, converges to a

Gaussian.

• Show that Zt − Z̄t1, , scaled appropriately, converges to a

Gaussian.



Thank you!
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