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The heat equation problem



An ODE

e Consider the following ODE

Y _bly), )=y

e The solution blows up in finite time if and only if

T:/yoob(ls)ds

is finite.



The SDE

e We now consider the following SDE:

13
Xt = XO + / b(Xs)dS + Bt.
0

The solution blows up almost surely if and only if

/Oob(ls)ds<oo.

This is a special case of Feller's test for explosion.

The intuition is that the Brownian motion pushes the solution
up so that the deterministic part makes the solution blows up.



The deterministic heat equation

e We now consider the heat equation with Dirichlet boundary

condition. 9
8—1: = Au+ b(u) on [0,1]
e The solution will blow-up in finite time if
1
/ @ds < 0

and the initial condition wug is large enough.

e The point is that the presence of the Dirichlet Laplacian makes
it that the above integral condition is not enough for blow-up.



The stochastic heat equation

e We now look at the following stochastic heat equation

ou

5 = Au+b(u)+W on [0,1]

e |t turns out since the noise terms pushes the solution up, the
following condition guarantees blow-up no matter what the

initial condition is
> 1
——d .
/ s <

e Question: What kind of condition do be have for the
stochastic wave equation?



e Look at y(t) := fol u(t, x)p(x)dx
e Use comparison arguments.

e For the deterministic case, compare with a non-linear ODE
which can be analysed

e For the stochastic case, compare with an SDE which blows up

according to Feller's test.

e If y(t) blows up, then sup,c(o 1) |u(t, x)| blows up as well.



The wave equation




An ODE

e Consider the second order ODE:

d?y

i b(y) y(0)=a, y'(0)=5.
e This is equivalent to

WO =atpi+ | (¢ = $)b(y(s)) ds

e The solution blows up if and only if

/OO 51 ds < oo
o [B2+2 [, b(r)dr]t/?

e What is the role of this condition on blow-up properties of

stochastic equations?



The proof

Y'(0)y'(t) = b(y(t))y'(t) t>0

e This is equivalent to

Y'(£)? = y/( —2/ b(y /aymb(r)dr.

e This is of the form y’(t) = F(y(t)). So that the integral
condition for the first order ODE applies and we obtain the
required condition.



The deterministic wave equation

e Consider the following wave equation with Dirichlet boundary

condition. )
% = Au+b(u) on [0,1]

e Set

a:/Oqu(x)u(x,O)dx 5:/01 6(x) e (x, 0) dx

e The solution blows up in finite time provided that

0o s -1/2
T= / [ua2 + 82 — us® + 2/ b(r)dr} ds < 00
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The Stochastic wave equation

o We look at

et =Au+b(u)+ W on [0,1]
ot2 ’
with Dirichlet boundary conditions.

e Suppose that for «, 5 > 0, we have

> 1
T(a, B) ::/a 3+ 2f; b(r)dr]1/2 ds < oo

e Then the solution blows up with a positive probability.
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The idea behind the proof

e We look at the integral formulation of the solution.

u(t.x) /Gtxy)vo()dy+ (/Gtxy)uo()dy>

//G —s,x,y) W(dsdy)
+/0 /0 G(t —s,x,y)b(u(s,y))dsdy as.

e A major difficulty is that we do not have a comparison
principle for the wave equation.

e But an important observation is that for small times we can
still use some kind of comparison argument together with the
fact that the stochastic part gets large with a positive
probability.
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The kernel G(t, x,y) is given by the following

G(t,x,y) = ST en(y)

nm
n=1

where ¢,(x) = v2sin(nmx), n > 1.
We look at y(t) fo u(t, x)p1(x)dx

The idea is to compare y(t) with an integral equation for a
certain time interval only.

The integral condition will then follow.
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e The stochastic part is given by

t 1 pl
L[] ste=sxnatowidsan ox
o Jo Jo
e This can be rewritten as
t rl
M) = [ [ sin(a(e = 9)enly) Wiy o)
0o Jo
t
= C/ sin(m(t — s)) dBs
0
t
= C7r/ cos(m(t — s))Bs ds.
0
e Using this and the support theorem for Brownian motion, we

can show that in a certain time interval the above quantity can
get large with a positive probability.
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e The function y(t) can then be compared to an integral
equation of the form

y(t) =A+B(t— to)+2/t(t—s)b(y(s)) ds+L te]|t,T]

to

e For blow-up we need

o0 1
z ds < o0,
/AH [B2+2 [, b(r)dr]*/2
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e Consider

y(t)=A+ Bt + /Ot(t —s)b(y(s))ds+ G(t) te][0,T].

e G(t) grows to infinity as t — oo

e For blow-up we need

/Oo 51 ds < oo,
o [B2+2[; b(r)dr]t/?2
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The wave equation on the whole line

e We look at
U + b(u) + W
— = Au u
ot?

on the whole line

e Suppose that for «, 5 > 0, we have

o0 1
T(a, B) == /a 7+ 2 [ (i ds < 0o

e Then the solution blows up almost surely.
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The idea behind the proof

e We look at the integral formulation of the solution.

u(t.x) / Gtxy)vo()dy—i—</ Gtxy)uo()dy>

/ / G(t —s,x,y) W(dsdy)
+/_oo/o G(t —s,x,y)b(u(s, y)) dsdy as.

e The following is a Gaussian process

g(t, x) = /Ot/_z G(t—s, x — y)W(dy ds).
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e For fixed x € R, almost surely,

t
lim sup g(t,x) > 1.

t—oo ty/loglogt

e This requires a bit of Gaussian theory to prove.

e We can then compare the mild solution to an integral equation

which blows up.
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