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Geometric graphs

Let d € N with d > 2. Let r > 0. Given dis-
joint, locally finite X ¢ R¢, ) c R%, define the
geometric graph G(X,r) (G = (V,E)) by

V=XE={{z,2}: |z —2| <r}
and the bipartite geometric graph G(X,)Y,r) by

V=XUW,E={{z,y} z€X,yeV|z—y|l <r}



Random geometric graphs

Given \,u > 0, let Py, and 9, be independent
homogeneous Poisson point processes of in-
tensity \,u resp. in RY, Let Z be the class
of graphs which percolate, i.e. have an infinite
component. By a standard zero-one law, given
also r > 0 we have

P[G(Py, Qu,r) € I) € {0, 1};

PI[G(Py,r) € Z] € {0, 1}.

The graph G(P)y, Qu,r) is a (loose) continuum
analogue to AB percolation on a lattice (e.g.
Halley (1980), Appel and Wierman (1987)),
where each vertex is either type A or type
B, and one is interested in infinite alternating
paths.



Critical values. Given A > 0 and r > 0O, define
pe(r, A) ;= inf{u : P[G(Py, Qu,r) € Z] = 1}
with inf{} := +o00. Set
)\?B(r) = inf{\: pe(r, \) < oo}
and
Ae(r) :=inf{\: P[G(Py,r) € I] = 1}.

THEOREM 1 (Iyer and Yogeshwaran (2012),
Penrose (2014)):

AAB(r) = Ae(2r)
and

pe(r, Ae(2r) + 8) = O(57 > log 8|) as 6 | 0.



Proving M8 (r) > A.(2r) is trivial

If A > MB(r) then Iu with G(Py,Qu,7) € T
a.sS..

Then also G(Py,2r) € Z a.s., SO A > A(2r).



Proving MAB(r) < A:(2r) is less trivial

Suppose A > A¢(2r), so G(P,y,2r) € Z a.s. We
want to show:

dup (large) such that G(Py,Qu,r) € T a.s., SO
A > NB ().



Discretization of G(Py, Q,,r). Divide R? into
cubes of side € (small). Say each cube C is A-
occupied if P,(C) > 0 is and is B-occupied if
Q,(C) > 0. Induces bipartite site-percolation
on e-grid.



Sketch proof of MAB(r) < A.(2r) (1): Dis-
cretization Suppose A > A¢(2r). Then I s<r
and v < A with G(P,,2s) € T a.s.

For e > 0, p,q € [0,1]; let Pp 4 be the measure
under which each site z € ¢Z% is A-occupied
with probability p and (independently) B-occupied
with probability ¢ (it could be both, or neither).
Let A be the set of A-occupied sites and B the
set of B-occupied sites. Set t = (r + s)/2 and
e= (r—1t)/(9d). Can show

Py,1,:[G(A, B, 1) € 7] = 1

where p, = 1 — exp(—ve?) (Prob that e-cube
has > 1 point of P,).

Next lemma will show dg < 1:

Pp)\,q,&“[G(Aa Bat) < I] — 17

which implies P[G(Py,Pu,r) € Z] = 1, where
q=qu- U



Proving M\2B(r) < A.(2r) (2): Coupling Lemma
If P, 1 . [G(A, B,t) € I) = 1 then Jgq < 1:

]P)pA,Q,g[G(A, B,t) - I] = 1.

Proof: Consider a Bernoulli random field of
‘open’ vertices and edges of the directed graph
(V, E) with V = £Z% and (u,v) € E iff ju—v| < t.

Each vertex v € V is open with probability p)
and each edge (u,v) is open with probability ¢
(chosen below). Deine the subsets of V:

A1 :=A{v:wvis open and all edges out of v are open}
Bl = 6Zd;

A> ={v :v is open }
B> = {v: at least one edge into v is open}.

If G(A1,B1,t) € 7 then G(A», B>, t) € T.

Can choose ¢ so Plv € A1] = pv. Then by our
assumption, G(Aq1,B1,t) percolates and hence
so does G(Ap, By, t). O



A finite bipartite geometric graph

Set d = 2. Set P’ = P\n[0,1]%, O = 9\n
[0,1]2. Let 7 > 0.

Let G'(\,7,7) be the graph on V = P with
X, X' connected iff they have a common neigh-
bour in G(Py, 0\ ,r), i.e.

E(G'(\7,r) = {{X,X'}: 3y € @F, with
X Y| <r[X' -Y|<r}

Let py(7) = min{r : G'(\,7,7) is connected }
(a random variable).

THEOREM 2 (MP 2014). Ar(p\(7))2/log X —
1

7_/\—4 as )\ — OQ.
and with a suitable coupling this extends to a.s.

convergence as X\ runs through the integers.

Idea of proof. Isolated vertices determine
connectivity.



Partial sketch proof of Theorem 2

Let a > 0. Suppose Arrs/log A = a.

Let N, be the number of isolated points in
G(P§7 Qf)\) T)\)

Let N| be the number of isolated points in
G(P{,2ry). On the torus,

E[Ny] = Aexp(—7A(nrs)) = A1797,

E[N}] = dexp(=A(w(2ry)?)) = Al7%

Both expectations go to zero iff a > 1/7 and
a>1/4,ie a>1/(tN4).



‘Soft’ random geometric graphs

Let ¢ : Ry — [0, 1] nonincreasing; d > 2, A > 0.
Let G()\, ¢) have vertex set Vy := P, N [0, 1]4.

Each z,y € V), are connected by an edge with
probability ¢(|ly—x|) (generalises geometric and
Erdos-Renyi random graphs). Then

E[No(GO\ )] = A [exp (=2 [ 6(ly — 2y ) dz,
with all integrals being over [0, 1]¢.
Let £ := { connected G : 2 < |V(G)| < oo}

Let M 1= {G with No(G) = O}
No(G) := # isolated vertices of G. Clearly

K C Mj.
Might hope that for G = G(\, ¢) with X large

PG € K] = P|G € M;] = exp(—-E[No(G)])



A class of connection functions
Given decreasing ¢ : Ry — [0,1], and n > 0, let

rp(@) = inf{t € Ry : ¢(¢) < n¢(0)},
ro(¢) = sup{t € Ry : ¢(t) > 0}.

Let &, be the class of connection functions ¢
with 7, (¢) > nro(s).

]

Given n, ®y is a class of connection functions
that have uniformly finite range measured in
terms of their characteristic length-scale r,(¢).

Note &, C &, for n > 7'

All step functions of the form ¢(t) = plio.,] (t)
are in d;.



Limit theorem for soft RGGs. (MP 2016).
Suppose d > 2, n>0. Then as A — oo,

sup [P[G(X, ¢) € M]
pc Dy,

—exp [—A/exp (—/\/qsuy _ a:|)dy) da:] 0
(where all integrals are over [0, 1]9) and

sup |IP’[G(/\, ¢) € K]
peDy,

_ exp [—)\/exp (—A/¢(|y _ x|)dy> dm] 0.
Thus

sup |P[G(\, ¢) € K] —P[G(\, ¢) € M1]| — 0.
PEDy
Also a de-Poissonized version of this result holds.

(with V) replaced by n i.i.d. points in [0, 1]%).



Domination number of random geometric
graphs

A dominating set in a graph G = (V,E) is a
set S C V such that dist(S,V) <1 .

Domination number v(G) = min{|S| : S a dom-
inating set}.

Theorem. Suppose d =2, 2" 1/2 « ry < 1 as
A — 00. Then

w2y (G(PE, r)) 5 € = 27v/3/9 & 1.209
as A — oo. If instead Ar¢ — p € (0, 00),

73y (G(PL,ry)) = H(u)

for some H(u). [Cf. Bonato, Lozier, Mitsche,
Peréz-Gimenéz, Pratat 2015]

What about the soft graph G(P{,ry,p) for p
fixed?



