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Coupling Binomial with Gaussian
❖ Let  with  i.i.d.  with equal probability 

❖ Let  be a standard Gaussian 

❖ CLT  Can couple so that  a.s.

Sn = X1 + … + Xn Xk ±1

Z

⇔ Sn − Z n = o( n)

TUSNADY’S LEMMA.  For large enough , there is a coupling so that  

                                    and   

n
|Sn | ≤ |Z | n + 3 |Sn − Z n | ≤ Z2 + 11

❖  Tusnády had better constants. Irrelevant for us. Power 2 on  important  

❖   which is far better than what CLT gave 

❖  Key ingredient in the proof of KMT theorems

Z

ℙ{ |Sn − Z n | ≥ x} ≤ e−cx



KMT for simple symmetric random walk
❖  SSRW as before 
❖  a standard Brownian motion in one dimension 

❖ Donsker’s theorem  Can couple so that  a.s. 

S = (S0, S1, …)
W

⇔ max
0≤k≤n

|Sk − Wk | = o( n)

Komlós Major TusnÁdy (KMT-RW).  There is a  and a coupling so that  
   w.p. 

C < ∞
max
0≤k≤n

|Sk − Wk | ≤ C(log n + x) ≥ 1 − e−x

❖ Improves upon the  in Donsker’s theorem. Bound   is optimal 
❖  as opposed to  in univariate coupling 
❖ Komlós, Major, Tusnády showed this for  with exponential tail

n log n
log n O(1)

Xi



KMT for uniform empirical process
❖  i.i.d. uniform[0,1] 

❖ Empirical CDF: proportion of  for which  

❖ Empirical process:  for  

❖ Brownian bridge:  for  

❖ Donsker (Kolmogorov-Smirnov) implies coupling so that  
 a.s.

V1, V2, …

Fn(t) = k ≤ n Vk ≤ t

Gn(t) = n(Fn(t) − t) 0 ≤ t ≤ 1

W(t) = Wt − tW1 0 ≤ t ≤ 1

max{ n |Gn(t) − W(t) | : 0 ≤ t ≤ 1} = o( n)

Komlos Major Tusnády (KMT-EP).  There is a  and a coupling so that  

   w.p. 

C < ∞
max
0≤t≤1

n |Gn(t) − W(t) | ≤ C(log n + x) ≥ 1 − e−x



Broad outline of the proof

1. Univariate coupling lemmas such as Tusnády’s lemma or other similar coupling lemmas (will see in 
second lecture). Combinatorial proof compares Binomial to Gaussian by Stirling’s etc. (but way more 
involved). Analytic proof uses a form of Stein’s method.

2. Go from univariate coupling to coupling of paths. In the dyadic approach, couple , 
 for  generations. Chatterjee craftily frames a statement 

that can be proved by induction on . 

(Gn(1/2), W(1/2))
(Gn(1/4), W(1/4)), (Gn(3/4), W(3/4)), … log n

n

Combinatorial: KMT, Csörgõ-Révész, Bretagnolle and Massart, Dudley, Massart, Carter—Pollard, Pollard 
(both KMT-RW and KMT-EP). Excellent reference - Pollard’s book UGMPT

Analytic: Chatterjee (KMT-RW for SSRW). Extension by Bhattacharjee and Goldstein. 

Steps in both kinds of proof

Proof strategies



An idea: Use the Cauchy criterion

❖ To show , enough to show  or . Then, 

 or 

❖ Analogously, to show closeness of  to  (like with unlike), suffices to 
show closeness of  to  (like with like).

❖ As , hope for purely combinatorial proof (this lecture) or using 
finite Markov chains (second lecture)

xn → x |xn − xn+1 | ≤
1
n2

|xn − x2n | ≤
1
nε

|xn − x | ≤ ∑
j≥n

|xj − xj+1 | ≲
1
n

|xn − x | ≤ ∑
j≥0

|xn2 j − xn2 j+1 | ≲
1
nε

Sn Z n
2Sn S4n

Sm ∼ Binomial



Our version of the combinatorial proof



Tusnády-like lemma

❖
Fix a large enough even number  and let    

❖
Successively couple so that  and  

❖ By Bernstein/Hoeffding,  with high probability.  

❖ Hence, a.s.,  is Cauchy and  

❖
Summing,  and  which is Tusnády’s lemma (for even )

n Z0 =
Sn

n
, Z1 =

S4n

4n
, …, Zk =

S4kn

4kn
, …

|Zk | ≤ |Zk+1 | +
2

2k n
|Zk − Zk+1 | ≤

1

2k+2 n
|Zk+1 |2 +

9

2k+1 n

|Zk | ≤ 2k/10

{Zk} Zk → Z ∼ N(0,1)

|Zk | ≤ |Z | +
2

n
|Zk − Z | ≤

1

4 n
Z2 +

9

n
n

TUSNADY TYPE LEMMA.  For large enough even , there is a coupling so that  

   and   

n

|2Sn | ≤ |S4n | + 2 |2Sn − S4n | ≤
|S4n |2

8n
+ 9

Deducing Tusnády’s lemma



How to couple  and ? Preparation2Sn S4n
FACT (easy to prove)   

  -  -valued. Assume   and   for all . 
Then, they can be coupled so that  and .
X, Y ℤ+ ℙ{X ≥ k − f(k)} ≥ ℙ{Y ≥ k} ℙ{Y ≥ k − g(k)} ≥ ℙ{X ≥ k} k

X ≥ Y − f(Y ) Y ≥ X − g(X)

❖ Towards the goal of coupling   with , let  

❖
Let   and  . PMFs of  and  

❖
Let  and  be the tails 

❖ From the fact, it suffices to prove that  

         for all     and     for 

2Sn S4n n = 2m .

αm(k) = ℙ{S2m = 2k} βm(k) = ℙ{S8m = 4k or 4k − 2} X =
S2m

2
Y = [ S8m

4 ]
+

αm(k) = ∑
j≥k

α( j) βm(k) = ∑
j≥k

βm( j)

αm(k) ≤ βm(k) k αm(k) ≥ βm(ℓ) k ≤ ℓ −
ℓ2

2m
− 1

Because  and g(k) = 0 f(ℓ) =
ℓ2

2m
+ 1



How to couple  and ? Reduction2Sn S4n

❖
   where  

❖
 where  

❖ To show (symmetry etc.):  for all     and     for 

αm(k) = ∑
j≥k

α( j) αm(k) = ℙ{S2m = 2k} = ( 2m
m + k) 1

22m

βm(k) = ∑
j≥k

βm( j) βm(k) = ℙ{S8m = 4k or 4k − 2} = ( 8m + 1
4m + 2k) 1

28m

αm(k) ≤ βm(k) k αm(k) ≥ βm(ℓ) k ≤ ℓ −
ℓ2

2m
− 1

Binomial tails don’t have simple closed form expressions. But we do have estimates such as  

 A
n

k(n − k)
e−nD(k/n) ≤

1
2n (n

k) ≤ B
n

k(n − k)
e−nD(k/n)

A
n

k(n − k)
e−nD(k/n) ≤

n

∑
j=k

1
2n (n

j ) ≤ e−nD(k/n)

D(p) = p log(2p) + (1 − p)log(2 − 2p)

These only suffice for comparison in the far tail



How to couple  and ? The key lemma2Sn S4n

❖ Compares mass functions instead of tails 

❖ Must be combined with estimates for binomial coefficients to complete the proof 

❖ As   it suggests Carter-Pollard improvement:  in Tusnády’s lemma bound 

❖ Bijective proof? (see next slide)

ℓ3

m2
≲

ℓ2

m
1
n

|Z |3 ≤ Z2

Key Combinatorial Lemma.   for all    and    for αm(k) ≤ βm(k) k αm(k) ≥ βm(ℓ) k ≤ ℓ −
ℓ3

4m2
− 1



Proof of the key combinatorial lemma

Let      and   

Lemma follows from following claims

f(m, k) :=
βm(k)
αm(k)

=
( 8m + 1

4m + 2k)
26m ( 2m

m + k)
gh(m, k) :=

βm(k)
αm(k − h)

=
( 8m + 1

4m + 2k)
26m ( 2m

m + k − h)

Key Combinatorial Lemma.   for all    and    for αm(k) ≤ βm(k) k αm(k) ≥ βm(ℓ) k ≤ ℓ −
ℓ3

4m2
− 1

1.  for  and 

2.  for 

3.  as 

f(m, k + 1) ≥ f(m, k) 1 ≤ k ≤ m − 1 m ≥ 1

f(m,1) ≥ f(m + 1,1) m ≥ 1

f(m,1) → 1 m → ∞

1.  for 

2.  for 

3.  as  for  fixed

gh(m, k + 1) ≤ gh(m, k) h + 1 ≤ k ≤ [(4h − 1)m2]1/3

gh(m, h + 1) ≥ gh(m + 1,h + 1) m ≥ h + 1

gh(m, h + 1) → 1 m → ∞ h

f(m, k) ≥ 1  if  gh(m, k) ≤ 1 h + 1 ≤ k ≤ [(4h − 1)m2]1/3



Proof of the key combinatorial lemma

 as   is trivial (Stirling’s or invoke local limit theorem).f(m,1) → 1 m → ∞

To show that , compute  to get 

  

   
where  and 

  

(16,9,7,5,3) majorizes (12,10,8,6,4), hence  for  by Schur concavity

f(m,1) ≥ f(m + 1,1) f(m + 1,1)/f(m,1)

m(m + 2) × (8m + 2)…(8m + 9)
26(2m + 1)(2m + 2) × (4m + 3)…(4m + 6) × (4m)…(4m + 3)

=
p(x)
q(x)

x = 8m
p(x) = (x + 16)(x + 9)(x + 7)(x + 5)(x + 3)
q(x) = (x + 12)(x + 10)(x + 8)(x + 6)(x + 4)

p(x) ≤ q(x) x > 0

Majorization explained
16>12

16+9=25>22=12+10
16+9+7=32>30=12+10+8

16+9+7+5=37>36=12+10+8+6
16+9+7+5+3=40=12+10+8+6+4

Proof that f(m, k) ≥ 1

In the other two steps, we get to take ratios and cancel most of the factorials

f(m,1) =
(8m + 1

4m + 2)
26m ( 2m

m + 1)



Proof of the key combinatorial lemma
Remains to show that  for  Again take ratios

  with 

Do not see any majorization, but Numerator-Denominator gives

 

since 

f(m, k + 1) ≥ f(m, k) 1 ≤ k ≤ m − 1.
f(m, k + 1)

f(m, k)
=

(x + 2a + 4)(x − a)(x − a + 1)
(x − 2a)(x + a + 1)(x + a + 2)

x = 4m, a = 2k

2x(x − 2a) + 2x + 4a2(a + 2) ≥ 0

x − 2a = 4(m − k) > 0

Remark. It is in this step for the second claim that we get  provided
                    
Second and third terms are positive. For the first to be positive, require  

gh(m, k + 1) ≤ gh(m, k)
2((4h − 1)x2 − 2a3) + 2x(8h + 2a − 1) + 8(a2(h − 1) + ah + h) ≥ 0

k3 ≲ (4h − 1)m2



Our version of the analytic proof



KMT for simple symmetric random walk
❖  SSRW 
❖  a standard Brownian motion in one dimension 

❖ Donsker’s theorem  Can couple so that  a.s. 

S = (S0, S1, …)
W

⇔ max
0≤k≤n

|Sk − Wk | = o( n)

Komlós Major TusnÁdy (KMT-RW).  There is a  and a coupling so that  
   w.p. 

C < ∞
max
0≤k≤n

|Sk − Wk | ≤ C(log n + x) ≥ 1 − e−x

❖ Improves from  in Donsker’s theorem to  which is optimal 
❖ Komlós, Major, Tusnády showed this for  with exponential tail

n log n
Xi



Chatterjee’s approach to KMT for SSRW
Univariate coupling lemmas In place of Tusnády’s lemma, Chatterjee proves two 
lemmas coupling binomial and hypergeometric to Gaussian.

From univariate coupling to that of paths Induction on  (length of the random 
walk) applied to the following statement: For any probable value  of , there is 
a coupling of the random walk conditioned to have  (a random walk 
bridge) with Brownian motion conditioned to have  (Brownian bridge) 
such that the maximum difference  between the two paths satisfies  

                                            for  
Here  are fixed constants.

n
t Sn

Sn = t
W(n) = t

Mn,t

𝔼[eλMn,t] ≤ eA log n+Bλ2 t2
n λ ≤ λ0 .

λ0, A, B We do not talk about this second step 

Subject of the rest of the talk



Coupling lemma for Binomial
❖ Let  where  are i.i.d. . SRSWR of  coupons from a box 

with equal number of coupons labelled  and 
Sk = X1 + … + Xk Xj ±1 k

+1 −1

Chatterjee’s binomial coupling lemma.  For some , there is a coupling for any  

                                                                                           such that  .

θ0, κ0

n ≥ 1 𝔼 [eθ0|Sn−Z n|] ≤ κ0

❖ Like in Tusnády’s lemma, two random variables of std. dev.  are coupled within unit distance 

❖ Tusnády’s lemma implies this because  for small enough  

❖ Converse not possible, as largeness of the difference not related with the value of  (or )

n

𝔼[eθ0Z2] < ∞ θ0

Z Sn



Coupling lemma for hypergeometric
❖ Let  be the sum of  coupons drawn without replacement from a box containing  

coupons labelled  whose  sum is  i.e.,  coupons of either kind. (Hypergeometric) 

❖ Let  be the centred version. Its variance is  

❖ Let  be the variance of  (case of unbiased box)

Sk[n, s] k n
±1 s (n ± s)/2

Wk[n, s] = Sk[n, s] −
k
n

s (1 −
s2

n2 ) k(n − k)
n − 1

σ2
n,k =

k(n − k)
n − 1

Wk[n,0]

Chatterjee’s hypergeometric coupling lemma. For some , there is a coupling 

for   and  such that   for .

θ1, M1

n ≥ 1
1
3

n ≤ k ≤
2
3

n 𝔼 [eθ|Wk[n,s]−σn,kZ|] ≤ e1+M1θ2 s2
n θ ≤ θ1

❖ Supplements binomial coupling and feeds into the induction step (which is about bridges) 

❖ Enough to have  (nearest integer, for eg.)k ≈
n
2



Univariate couplings using Cauchy criterion
From the following lemmas, it is easy to deduce Chatterjee’s coupling lemmas, 
using the Cauchy criterion as in the first part of the talk

binomial coupling lemma.  For some , there is a coupling for any   such that 
                                                                                             

θ0, κ0 n ≥ 1
𝔼[eθ0|2Sn−S4n|] ≤ κ0

hypergeometric coupling lemma. For some , for even  and ,  

with , , , there are couplings such that 

   (1)  

  (2)   for any 

θ1, κ1, M1 n
1
3

n ≤ k ≤
2
3

n

W1 = Wk[n,0] W2 = W4k[4n,0] W = Wk[n, s] −
sk
n

𝔼[eθ1|2W1−W2|] ≤ κ1

𝔼[eθ|W1−W|] ≤ e1+M1θ2 s2
n θ ≤ θ1



Coupling distributions on  using Markov chainsℤ



The general strategy of coupling
❖  - probability distributions on  that we want to couple. Eg., 

❖ We shall need nearest neighbour Markov chains on  with these stationary 
distributions. This means no gaps in support

❖ Examples:  has support  - Good!  

But  has gaps. Modify to  where  is an independent r.v. taking values 

-1,0,1 w.p.  Enough to couple  with  

❖ Similar games (scaling, additive perturbation) for hypergeometric coupling

α, β ℤ 2Sn, S4n

ℤ

1
2

S4n [−2n,2n] ∩ ℤ

Sn Sn + R R
1
4

,
1
2

,
1
4

. Sn + R
1
2

S4n



The general strategy of coupling
❖ Assume that  has finite connected support in . Many choices of rates  for 

❖ Ehrenfest-like chain: If  is reversible for  for some 

❖ Does it exist? The equations  can be solved from right end of 

support to get   

❖ Satisfied at left end if and only if  has zero mean

❖ T is called the Stein coefficient of 

α ℤ λ±
i i ↦ i ∓ 1

α λ±
i = T(i) ∓ i T : ℤ ↦ ℝ

α(i)(T(i) − i) = α(i + 1)(T(i + 1) + i + 1)

T(i) = i +
2

α(i) ∑
j>i

jα( j)

α

α

Example: If  is the distribution of , then  for  (The true Ehrenfest chain)α S4n/2 T(i) = 2n −2n ≤ i ≤ 2n

Example: If  is the distribution of , then 

                                                 

β Sn + R

T( j) =
2n + 1  if j ∈ {−n, − n + 2,…, n − 2,n}

2n + 2 − j2

n + 1  if j ∈ {−n − 1, − n + 1,…, n − 1,n + 1}



Relationship to Stein’s method
❖ Stein’s method:  for a large class of  if and only if 
❖ The Ornstein-Uhlenbeck process has generator  and stationary 

distribution . Stein’s equation is , with 
❖ If a random variable  satisfied , Chatterjee calls  the Stein 

coefficient of . Closeness of  to constant related to closeness of  to normal.

𝔼[Wf(W)] = 𝔼[σ2f′ (W)] f W ∼ N(0,σ2)
Lg(x) = g′ ′ (x) − xg′ (x)

π = N(0,1) 𝔼π[Lg] = 0 f = g′ 

W 𝔼[Wf(W)] = 𝔼[Tf′ (W)] T
W T W

❖ Stein’s equation for Binomial:  for a large class of  if 
and only if 

❖ Ehrenfest chain has generator  and stationary 
distribution . Stein’s equation is , with 

❖ If a random variable  satisfied , we call   the Stein 
coefficient of . Closeness of  to constant related to closeness of  to normal.

❖ Equivalently,  is stationary for a Markov chain with rates 

𝔼[n(g(W + 2) − g(W))] = 𝔼[W(g(W + 2) − g(W))] g
W ∼ Sn

Lg(i) = (n − i)(g(i + 2) − g(i)) + (n + i)(g(i − 2) − g(i))
π = ℒ(Sn) 𝔼π[Lh] = 0 h(i) = f(i) − f(i − 2)

W 𝔼[T(g(W + 2) − g(W))] = 𝔼[W(g(W + 2) − g(W))] T
W T W
ℒ(W) λ±

i = T(i) ∓ i



Coupling nearest neighbour Markov chains on  ℤ
❖ Let  be stationary distributions for rates  (n.n, continuous times chains on )

❖ Define a Markov chain on  with rates as follows. Basic idea: Try to move together as much as 
possible. Never move in opposing directions

❖ Generator  
 

              

α, β λ±
i , μ±

i ℤ

ℤ2

Lf(i, j) = θ+,+
i,j ( f(i + 1,j + 1) − f(i, j)) + θ+,∘

i,j ( f(i + 1,j) − f(i, j)) + θ∘,+
i,j ( f(i, j + 1) − f(i, j))

+θ−,−
i,j ( f(i − 1,j − 1) − f(i, j)) + θ−,∘

i,j ( f(i − 1,j) − f(i, j)) + θ∘,−
i,j ( f(i, j − 1) − f(i, j))

θ+,+
i,j = λ+

i ∧ μ+
j

θ−,−
i,j = λ−

i ∧ μ−
j

θ−,∘
i,j = (λ−

i − μ−
j )+

θ∘,−
i,j = (μ−

j − λ−
i )+

θ∘,+
i,j = (μ+

j − λ+
i )+

θ+,∘
i,j = (λ+

i − μ+
j )+(i, j)



Coupling nearest neighbour Markov chains on  ℤ
❖ Let   denote the Markov chain on  with generator

 
              

❖ If  is a stationary distribution of , then  for all 

❖ :    First marginal of  is 

❖ :   Second marginal of   is 

❖ Let . If    then  reduces to  
                               — (#) 

             

Z = (X, Y) ℤ2

Lf(i, j) = θ+,+
i,j ( f(i + 1,j + 1) − f(i, j)) + θ+,∘

i,j ( f(i + 1,j) − f(i, j)) + θ∘,+
i,j ( f(i, j + 1) − f(i, j))

+θ−,−
i,j ( f(i − 1,j − 1) − f(i, j)) + θ−,∘

i,j ( f(i − 1,j) − f(i, j)) + θ∘,−
i,j ( f(i, j − 1) − f(i, j))

γ Z 𝔼γ[Lf(Z)] = 0 f : ℤ2 ↦ ℝ

f(x, y) = φ(x) Lf(i, j) = λ+
i (φ(i + 1) − φ(i)) + λ−

i (φ(i − 1) − φ(i)) ⟹ γ α

f(x, y) = ψ(y) Lf(i, j) = μ+
j (ψ( j + 1) − ψ( j)) + μ−

j (ψ( j − 1) − ψ( j)) ⟹ γ β

H = X − Y f(x, y) = φ(x − y) 𝔼γ[Lf(Z)] = 0
𝔼γ[(B − |A | )(ψ(H) − ψ(H − 1)] = 2𝔼γ[A−ψ(H − 1) − A+ψ(H)]

ψ(h) = φ(h + 1) − φ(h) A(i, j) =
1
2

(λ+
i − μ+

j − λ−
i + μ−

j ) B(i, j) =
1
2

( |λ+
i − μ+

j | + |λ−
i − μ−

j | )



Coupling Ehrenfest-like chains
❖ Ehrenfest-like chains:  and .  Then  

                             and 

❖ Writing , (#) becomes 
                         

❖ Use? Put  to get  or 

λ±
i = S(i) ∓ i μ±

j = T( j) ∓ j
A(i, j) = j − i B(i, j) = | i − j | + ( |T( j) − S(i) | − | j − i | )+

Q = |S(X) − T(Y) |
𝔼γ[(Q − |H | )+(ψ(H) − ψ(H − 1))] = 2𝔼γ[H+ψ(H − 1) − H−ψ(H)]

ψ(x) = 1x≥a 𝔼γ[H+1H≥a+1] ≤ 𝔼γ[(Q − a)+] ℙγ[H ≥ a + 1} ≤ 𝔼γ[(Q − a)+]

Example:  and  where  is an independent copy. Then 

   for       and 

Here  which has exponential tail. Immediately gives Binomial coupling lemma.

X =
1
2

S4n Y = Sn + R R ∼
1
2

S2

S(i) = 2n | i | ≤ n T( j) =
2n + 1  if j ∈ {−n, − n + 1,…, n − 1,n}

2n + 2 − j2

n + 1  if i ∈ {−n − 1, − n + 1,…, n − 1,n + 1}

Q ≤ 2 +
Y2

n + 1



Coupling Ehrenfest-like chains
❖ General bound. With   and , for any function  

                               

❖ Exponential tail on  not good enough for hypergeometric coupling lemma. Better bound: For some universal 
constants  (the quadratic  in the exponent is important) 
                                                            for       — (*)

❖ Proof of (*): Taking  and  and add to get 
                            
                                                    

because  and  are Legendre convex duals of each other. Choose  and rearrange.  

Use for small enough  to get . Now use  with any . 

❖ The essential point is this: In the Markov coupling,  is controlled by  (the difference in 
Stein coefficients)

Q = |S(X) − T(Y ) | H = X − Y ψ
𝔼γ[(Q − |H | )+(ψ(H) − ψ(H − 1))] = 2𝔼γ[H+ψ(H − 1) − H−ψ(H)]

H
K, κ, Θ θ2

𝔼 [eθ|H|] ≤ K 𝔼 [eκθ2Q] θ ≤ Θ

ψ(x) = eθ(x+1)1x>0 ψ(x) = eθ(−x+1)1x<0
2𝔼γ[ |H |eθ|H|] ≤ (eθ − 1)𝔼γ[Qeθ|H|]

≤ (eθ − 1){βθ𝔼 [ |H |eθ|H|] + βe−1𝔼 [eQ/β]}
βx log x βe−1+ x

β β = 1/θ2

θ 𝔼γ[θ |H |eθ|H|] ≤ K𝔼γ[eκθ2Q] ex ≤ eb +
1
b

xex b ∎

H = X − Y Q = |S − T |

If  is convex, its dual is 
  

Clearly  
 

f
f †(y) := sup{xy − f(x)}

∀ x, y,
xy ≤ f(x) + f †(y)



Binomial coupling
❖ Let  (centered) taking values in 

❖ It has Stein coefficient 

❖  has  and  has . Thus 

 in this case. Gives the Binomial coupling lemma.

❖  has  and  has . Thus 

 which is bounded by  with 

❖ In the Markov chain coupling 

Sn,p ∼ Binomial(n, p) {−np, − np + 1,…, nq − 1,nq}

T(x) = 2pqn + (q − p)x

X = S4n, 1
2

TX(x) = 2n Y = 2Sn, 1
2

+ R TY(y) = 2n + O(y2/n)

Q ≤
Y2

n
X = Sn, 1

2
TX(x) = n/2 Y = Sn,p TY(y) = 2pqn + (q − p)y

Q ≤
n
2

|1 − 4pq | + |p − q |Y
s2

n
+

s

n

|Y |

n
s = n(p − q)

𝔼[eθ|H|] ≤ 𝔼[eκθ2Q] ≤ ecθ2 s2
n



Hypergeometric coupling lemma
hypergeometric coupling lemma. For some , for even  and ,  

with , , , there are couplings such that 

   (1)  

  (2)   for any 

θ1, κ1, M1 n
1
3

n ≤ k ≤
2
3

n

W1 = Wk[n,0] W2 = W4k[4n,0] W = Wk[n, s] −
sk
n

𝔼[eθ1|2W1−W2|] ≤ κ1

𝔼[eθ|W1−W|] ≤ e1+M1θ2 s2
n θ ≤ θ1

❖ Entirely analogous to the previous situation  with  

❖  Can compute explicitly the Stein coefficients of  

❖ Bounding exponential moments of  made easy by a lemma of Hoeffding that says 
 for any convex function 

(W1, W2, W) ⇔ (Sn, 1
2
, S4n, 1

2
, Sn,p) s = n(p − q)

W1, W2, W

Q
𝔼[ f(W)] ≤ 𝔼[ f(Sn,p)] f



Thank you for listening!


