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Coupling Binomial with Gaussian

s =X L L X with X, i.d. 1 with equal Probabilitg

: ,
«» let/Z bea standard Gaussian

+ CLT & Can couple sothat |S, — Z\/n| = 0(\/2) a.s.

R Tusnéclg had better constants. Irrelevant for us. Power 2 on Z important

» P{ ]S, — Z\/; | > x} < e *which is far better than what CLT gave

2 K<-39 ingreclient in the Proo? of KMT theorems



KMT for simple symmetric random walk

l
» O = (59,51, --.) SORW as before
«» W a standard Brownian motion in one dimension

. Donsker’s theorem & Can COUPIC so that max |S, — W,| = 0(\/%) a.s.
0<k<n

KOMLAS MAJOR TUSNADY (KMT-RW). Thereisa C < o and a coupling so that

max |5, — W;| < C(logn+x) wp. >21—-e™
0<k<n

+ Improves upon the \/Z in Donsker’s theorem. Bound logn is optimal
» logn as oPPosecl to O(1) in univanate coupling

+ Komlds, M.ajor, Tusnéclg showed this for X, with exponential tail



KMT for uniform empirical process

« Vi, Vo, ... iid. uniform[0,1]

» ‘impirical CDF: F,(t) = proportion of k < ntorwhich v, <t

2 fimpirical process: G () = \/Z(Fn(t) —Nfor0<r<1
» Drownian briclge: W) =W, —tW,tor0 <t < 1

» Donsker (Kolmogorov-Smimov) imP!ies coupling so that

max{\/n|G,(t) — W()| : 0<r<1} =0(H/n)a.s.

KoMLOS MAJOR TUSNADY (KMT-EP). Thereisa C < oo and a coupling so that

max \/ﬁ |G (1) — W(1)| < C(logn + x) w.p. 2 ] —e™

0<:<1



Broad outline of the proof

Proof strategies

Combinatorial: KMT, Csorgo-Révész, Bretagnolle and Massart, Dudley, Massart, Carter—Pollard, Pollard
(both KMT-RW and KMT-EP). Excellent reference - Pollard’s book UGMPT

Analytic: Chatterjee (KMT-RW for SSRW). Extension by Bhattacharjee and Goldstein.

Steps in both kinds of proof

1. Univariate coupling lemmas such as Tusnady’s lemma or other similar coupling lemmas (will see in
second lecture). Combinatorial proof compares Binomial to Gaussian by Stirling’s etc. (but way more
involved). Analytic proof uses a form of Stein’s method.

2. Go from univariate coupling to coupling of paths. In the dyadic approach, couple (G, (1/2), W(1/2)),
(G, (1/4), W(1/4)),(G (3/4), W(3/4)), ... for log n generations. Chatterjee craftily frames a statement
that can be proved by induction on n.



An 1dea: Use the Cauchy criterion

» Toshow x, = x, enough to show |x, —x, . | < =D X1, | & = Then,

1 1
‘)C —X‘ < le i +1‘ <—OI‘ ‘Xn—)C‘ < Z‘xn2j_xn21+1‘ S_

ng
j>n j=>0

» Analogously, to show closeness of S, to Z\/Z (like with unlike), suffices to
show closeness of 2S5, to S, (like with like).

* As §, ~ Binomial, hope for purely combinatorial proof (this lecture) or using
finite Markov chains (second lecture)



Our version of the combinatorial prooft



T'usnady-like lemma

TUSNADY TYPE LEMMA. for large cnoug}w evenn, there is a coupling so that

S %
n

Deducing Tusnady’s lemma

Fix a Iarge enough even number n and let /o =

. 2 1
i Successively couple so that | Z <7 | and |Z, - Z < 4
e Y 2 | Zi | < 12y zk\/; |2 — Zy1 | 2k+2\/; | Z)es | 2k+1\/£

By Bernstein/HoeHdin Sz =Y with high probability.
y 55 22 Y

Hence, a.s., {Z,} 15 Cauchg and Z, — Z ~ NQO,1)




How to couple 28, and S, ,? Preparation

FACT (easy to Prove)

X,Y - Z,-valued. Assume P{X > k — f(k)} > P{Y >k} and P{Y > k—g(k)} > P{X >k} forall k.
Then, theg can be Couplecl so that X > Y — f(Y) e e 2(X).

» Towards the goal of CouPling 2S, with S,,, letn = 2m.

= Szm S8m
. Let a, (k) = P{S,, = 2kj and B, (k) = P{Sy, =4k or 4k — 2}. PMFs of X = = and Y = e
_|_
, Let@, (k) = Z a(j) and f,,(k) = Z B (j) be the tails
JjZk j=>k 2
+ From the Fact) it suthces to prove that Because g(k) = 0 and f(¥) = ; -1
m
s = fZ
a (k) <p, (k)forallk and @ (k) >p, ) fork<¢ 1

2m



How to couple 25, and $,,,,? Reduction

,:, a,,(k) = Z a(j) where g (=TS Tl ( =17 ) L

o m+ k) 22m
% : sam + 1 |
p (k) = jzzkﬂm(]) where Pl = PlSe =4dkordk— 21 = <4m " Zk) %
2
. To show (symmetrg etc):a (k) < B (k) forallk and a (k) > p (£) fork < ¢ |

2m

L

Binomial tails don’t have simple closed form expressions. But we do have estimates such as

)= : D(p) = plogCp) = (L = p)log@ = Zp)

\Vk(n — k) -




How to couple 2§, and §,,? The key lemma

KEY COMBINATORIAL LEMMA. « (k) </ (k) forallk and a, (k) > p, () fork < ¢

2 Compares mass functions instead of tails

« Must be combined with estimates for binomial coetficients to complete the ProcnC

el : 1 3 5 ,
+» As — S — it suggests Carter-Pollard improvement: — 2l = 7 ' Tusnaclg’s lemma bound

ny

m2 m n

s [‘Sijec’tive Proo?? (see next slide)



Proof of the key combinatorial lemma

KEY COMBINATORIAL LEMMA. « (k) </ (k) forall k and a, (k) > p, () fork < ¢

= k) (fn’:l :-r Zlk) . p,. (k) (fnT : 21k>
Let f(m, k) := o (0 == 2= (mz:/}:k) and g,(m, k) := T = = <m+221‘h>

Lemma follows from following claims

S, ko) = | g(m k) <lifth+1<k<[@h— Dm "

1. fim,k+1) > fim,k)for 1 <k <m—1andm > 1||1. g(m,k+1) < gy(m, k) for h+ 1 < k < [(4h — Dm?]""

2. fim,1) > fim + 1,1) form > 1 2. g (mh+1)>g(m+ Lh+ 1) form>h+1

3. fm,1) > 1asm - o© 3. gg(m,h+1) - 1 asm — oo for h fixed



Proof of the key combinatorial lemma

In the other two steps, we get to take ratios and cancel most of the factorials

To show that f(m,1) > f(m + 1,1), compute f(m + 1,1)/f(m,1) to get

mm—+2) X (8m+2)...(8m + 9) - px)
262m + D2m +2) X (4m + 3)...dm + 6) X (4m)...(dm+3)  g(x)

Majorization explained
where x = 8m and ] et P

px) =(x+ 16)(x + 9x + 7)(x + S)(x + 3) 16+9-25>22-12+10
q (X) = (x 12)()6 + 10)()6 8)()6 = 6)(x 4) 16+9+7=32>30=12+10+8

16+9+7+5=37>36=12+10+8+6
16+9+7+5+3=40=12+10+8+6+4

(16,9,7,5,3) majorizes (12,10,8,6,4), hence p(x) < g(x) for x > 0 by Schur concavity




Proof of the key combinatorial lemma

Remains to show that f(m, k + 1) > f(m, k) for | <k < m — 1. Again take ratios
e b b r2gtaix—alx—a+t )
He b o daxtatrxta+?)

with x = 4m, a = 2k

Do not see any majorization, but Numerator-Denominator gives

2x(x — 2a) + 2x + 4a*(a+2) > 0

sincex —2a=4m —k) > 0

Remark. It is in this step for the second claim that we get g,(m, k + 1) < g,(m, k) provided

2((4h — Dx* —2a°) + 2x(8h + 2a — 1) + 8(a*(h — 1) + ah + h) > 0
Second and third terms are positive. For the first to be positive, require k> < (4h — 1)m?




Our version of the analytic proof



KMT for simple symmetric random walk

» S = (591, ...) SSRW
«» W a standard Brownian motion in one dimension

. Donsker’s theorem & Can COUPIC so that max |S, — W,| = 0(\/%) a.s.
0<k<n

KOMLAS MAJOR TUSNADY (KMT-RW). Thereisa C < o and a coupling so that

max |5, — W;| < C(logn+x) wp. >21—-e™
0<k<n

+ Improves from \/Z in Donsker’s theorem to log n which is optimal

+ Komlos, Major, Tusnéclg showed this for X; with exponential tail



Chatterjee’s approach to KM'T for SSRW

Univariate coupling lemmas In Place of Tusnéclg’s Iemma, Chattezjee proves two

lemmas coupling binomial and hyl:)ergeometric to Gaussian. Subject of the rest of the talk

From univarate couphng to that of Paths Induction on n (Ieng’ch of the random
walk) applied to the Fo”owing statement: For any Probable value t of S, , there is

a coupling of the random walk conditioned to have § =13 random walk

faridge) with Brownian motion conditioned to have W(n) = t (Brownian fariclge)

such that the maximum difference M, between the two Paths satisfies

2 2
_[e;tM”’t] S eA log n+BA % Forll S /10 :

Here Ay, A, B are fixed constants.




Coupling lemma for Binomial

o LetS, =X, + ... + X, where X; are .i.d. £1. SRSWR of k coupons from a box

Wltl"l equal number O{: COUPOHS Iabe”ed + 1 ancl —1

CHATTERJEE’S BINOMIAL COUPLING LEMMA. For some 0y, Ky, there is a coupling for any

n > 1such that E [eedsfz\/ﬂ] < K.

« Like in Tusnéclg’s |emma, two random variables of std. dev. \/E are couplecl within unit distance

0,Z°

% Tusnécly’s lemma imPlies this because E[e%?"] < oo for small enough 0,

» Converse not Possiblq as largeness of the ditference not related with the value of Z (or S



Coupling lemma for hypergeometric

» Let S;[n, s] be the sum of k coupons drawn without replacement from a box containing n

coupons labelled +1 whose sumis s e () gy coupons of either kind. (ngergeometric)

| = 5%\ k(n — k)
» Let Wiln, sl = §,In,s] — —s be the centred version. Its variance is (1 )

n neg =1

£z k) be the variance of W, [n,0] (case of unbiased box>

oo L,Ct 02 —
n,k 1 — 1

CHATTERJEE’S HYPERGEOMETRIC COUPLING LEMMA. For some 0,, M, there is a Coupling

s

1 2
for n > 1 and gn <kX< gn such that E [eeka[n’S]_an,kzll < MO Lo 9 < 0, .

’ Supplements binomial coupling and feeds into the induction stel:) (which is about briclges)

n
o .’f‘.’:nough to have k ~ 5 (nearest integer, for eg.)




Univariate couplings using Cauchy criterion

From the Fo”owing lemmas, it is easy to deduce Chattexjee’s Coupling lemmas,

using the Cauclﬂg criterion as in the first Part of the talk

BINOMIAL COUPLING LEMMA. For some 6, K, there is a couplinggor any n > 1 such that

= _680|25n_S4n|] S KO

1 2

HYPERGEOMETRIC COUPLING LEMMA. For some 0, k;, M, forevennand —n < k < =n,

3 3
, sk ,
with W, = W, [n,0], W, = W,;,[4n,0], W = W, [n, s] 3 there are couplmgs such that

0 _[691|2W1—W2|] < K 2

S2
<2_> = [69|W1—W|] S 61+M16’27 For aﬂy 6 S 91




Coupling distributions on Z using Markov chains



T'he general strategy of coupling

“ a, [ - probability distributions on Z that we want to couple. Eg., 2§ .S,

+ We shall need nearest neighbour Markov chains on Z with these stationary
distributions. This means no gaps in support

]
. Examples: —S,, has support [—2n,2n] N Z - Good!

2
But S, has gaps. Modify to S, + R where R is an independent r.v. taking values
ol ]
-1,0,1 w.p. —,—,—. Enough to couple S, + R with —§,,
AT ; y 7>

* Similar games (scaling, additive perturbation) for hypergeometric coupling



T'he general strategy of coupling

Assume that a has finite connected support in Z. Many choices of rates 17 fori — i F 1
Ehrenfest-like chain: If a is reversible for /Il-i =T7()Fiforsome?: Z+— R

Does it exist? The equations a(i)(T(i) — i) = a(i+ 1)(T(i + 1) + i + 1) can be solved from right end of

t t t ( .) (] [} ( .)
SUPPOI' O ge (L=t : E 04

J>1
Satisfied at left end if and only if @ has zero mean

T 1s called the Stein coefficient of o

Example: If f is the distribution of S, + R, then

2n+1

B

2n+2




Relationship to Stein’s method

» Stein’s method: E[WAW)] =

“[6°f(W)] for a large class of fif and only if W ~ N(0,6°)

« The Ornstein-Uhlenbeck process has generator Lg(x) = g”(x) — xg'(x) and stationary

distribution 7 = N(0,1). Stein’s equation is

- [Lg] =0, withf=g’

« If a random variable W satisfied E[Wf(W)] = E[Tf(W)], Chatterjee calls T the Stein

coefficient of W. Closeness of 1T to constant related to closeness of W to normal.

« Stein’s equation for Binomial: E[n(g(W + 2) — g(W))] =

and only if W ~ §,

C[W(g(W 4+ 2) — g(W))] for a large class of g if

« Ehrenfest chain has generator Lg(i) = (n — 1)(g(i + 2) — g(i)) + (n + i)(g(i — 2) — g(i)) and stationary

distribution 7 = Z£(S,). Stein’s equation is

+ If a random variable W satisfied

a2~ SOW =

= [Lh] = 0, with k(i) = £(i) — (i — 2)

C[W(g(W 4+ 2) — g(W))], we call T the Stein

coefficient of W. Closeness of T to constant related to closeness of W to normal.

+ Equivalently, (W) is stationary for a Markov chain with rates A= = T(i) F i




Coupling nearest neighbour Markov chains on Z

+ Let a, f§ be stationary distributions for rates A, u;~ (n.n, continuous times chains on Z)

+ Define a Markov chain on Z* with rates as follows. Basic idea: Try to move together as much as
possible. Never move in opposing directions

+* (Generator
LA, ) = 67+ (i + Lj+ 1) = flQ, ) + 0 (G + L) = @, ) + 0754 (flij + 1) = £, j)
HO-(flE = 1 = 1) = fi, ) + 0 = 1) = f ) + 677 (fGij = 1) = £, )

P T +4+ _ g+ +

ei,_j’o == :“j_)+ (l,]) eij}’o — (/1i+ = /’tj+)+

(91.;.’_ — /11_ A\ //t]_ HZ’]_ — (//t]_ ¥ & /ﬂti—)+



Coupling nearest neighbour Markov chains on Z

+ LetZ = (X,Y) denote the Markov chain on Z* with generator
LG, ) = 057G + 1+ D) = f ) + 65+ 1) = fGi ) + 65 (G + 1) = £ )
Hl,_]’_(f(l G 19] e 1) _f(laj)) o Hl,_]’o(f(l e 19]) _f(laj)) Qlo:]_(f(l,] = 1) _f(laj))

+ If y is a stationary distribution of Z, then E [Lf(Z)] = 0 for all f : 7 -~ R

¢ foy) = @) Lf(G,)) = AT (@G + 1) — ¢() + 4 (9(i — 1) — (i) =>First marginal of y is a

o fy) = wO): LG, j) = i@+ 1) = w() + g @ — 1) — p(j)) =>Second marginal of y is

+ LetH=X-Y. It f(x,y) = @(x —y) then E [Lf(Z)] = 0 reduces to
= [(B — |ADw(H) —y(H — 1)] = 2 JA_y(H — 1) = A,w(H)] — (#)

i e e
wh) = g+ 1) = ) AGH) = OF =t =37 +u7) BG.) =& =g+ 147 = p7 D)




Coupling Ehrenfest-like chains

Ehrenfest-like chains: - = S(i) F i and //tji =] (r==7 [Ehen
A j) =j—tand B, j) = |i —j| + (|T()) = S@) | = [j - i] ),

Writing Q = | S(X) — T(Y) |, (#) becomes
= [0 — | H|) 4 (w(H) — w(H — 1))] = 2E [H,y(H — 1) — H_y(H)]

Use? Puty(x) =1, ,togetk [H 1y, ] <ENQ—-a),JorP[H2>a+ 1} <EI[Q-a),]

1 1
Example: X = —S, and Y = §, + R where R ~ —§, is an independent copy. Then

z 2
2n+ 1 ifje{-n,—n+1,...,n—1,n}
Sy ="Zntlor |tE=nw_ and L= 2 ._
2n+ 2 e ifie{-n—-1,—n+1,...,.n—1n+1}
YZ
Here Q <2 which has exponential tail. Immediately gives Binomial coupling lemma.

n+1



Coupling Ehrenfest-like chains

« General bound. With Q = |S(X) — T(Y)| and H = X — Y, for any function y

= [(Q — [H|),(p(H) — y(H — 1))] = 2E [H,y(H — 1) — H_y/(H)]

« Exponential tail on H not good enough for hypergeometric coupling lemma. Better bound: For some universal

constants K, k, © (the quadratic 67 in the exponent is important)

5 [e‘ngl] <KE [e"ng for0 <O — (%)

If fis convex, its dual is

« Proof of (*): Taking y(x) = e 9(x+1)1x>0 and y(x) = e 9(_x+1)1x<0 and add to get I T(y ) := supixy — f(x)}
2, |H| e < (e - 1) _}/[Qengl] Clearly V x,y,
< (e — 1){,59 = [|H| /] + e~ 'E [e9F } Xy = &)+ )
because fxlog x and ﬁe_H% are Legendre convex duals of each other. Choose f = 1/ 6% and rearrange.

|
Use for small enough 6 to get -y[ﬁ | H |l < K -},[e’cezQ]. Now use ¢* < e’ + erx with any b. B

« The essential point is this: In the Markov coupling, H = X — Y is controlled by Q = | S — T'| (the difference in

Stein coefficients)



Binomial coupling

+ Let Sn’p ~ Binomial(n, p) (centered) taking values in {—np, —np + 1,...,nqg — 1,nq}

= It has Stein coefficient T(x) = 2pgn + (g — p)x

¢ X =8, 1 has Ty(x) = 2nand Y = 2§, £ R has Ty(y) = 2n + O(y*/n). Thus

YZ
(0 < — in this case. Gives the Binomial coupling lemma.
n

« X=38, 1 has Ty(x) = n/2 and Y = §, , has T\(y) = 2pgn + (¢ — p)y- Thus

2

) s

Q§£|1—4pq\+\p—qlYWhichisboundedby—+ i with s = n(p — g)
2 n n \/%

2
+ In the Markov chain coupling E[¢?"] < E[e¥2] < e




Hypergeometric coupling lemma

1 Z

HYPERGEOMETRIC COUPLING LEMMA. For some 0, k;, M, forevennand —n < k < =n,

3 3
, sk ,
with W, = W, [n,0], W, = W, [4n,0], W = W [n, s| — —, there are couplmgs such that

: n
(1) E[ef2W—Wl] <k,

_ )
<2> = _€9|W1_W|] = 61+M16’27 For an9 0 < 61

% Eﬂtirelg analogous to the previous situation (W), Wp, W) < (Sn,%, 54,1,%, Sn.p) with s = n(p — ¢)

¢ Can compute explicitlg the Stein coeticients of W, W,, W

ek

2 f)ouncling exponential moments of O made easy 139 alemma of Hoegding that says
[ f(W)] < ELAS,,)] for any convex function f




T'hank you for listening!



