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Falling blocks

@ Blocks falling on Z with I:‘
space-time i.i.d. interarrival
times.

@ At time t, interface height ~ t
and fluctuations ~ +/t.

@ Model yielding a smoother
surface?

| |
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Corner growth model

° w;jarei.id. .

@ Change a valley to a trough
after the corresponding time

Wi j-
e T;j: the time of absorbing (1, ) wip < wa
satisfies the recursion w11

Tij=max{Ti—1j, Tij-1} + wij.

o Expect linear growth with t1/3 \/ \A/

fluctuations in the surface
height.
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Last Passage Percolation on Z?

@ Have i.i.d. random variables w; ;
on the vertices. The weight of a (r.r)
path is the sum of the values of e UG L
the traversed vertices in Z2.

@ G(u,v) is the maximum weight
of up-right paths going from u LA S S
to v. The almost surely unique
path attaining G(u, v) is called
the geodesic. M M St ol St/

@ For convenience, 5 . 4 A 4
6(n) = G((1.1), (n, ).

@ Satisfies the same recursion

G(u,v) = (1,1)
max{G(u,v —e1), G(u,v — &)} + w,.
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LPP on Z2: first order behaviour

@ Linear growth in all directions:

G 07 K . . .
Cafml — ¢(m. n) € (0,00)
as a — oo almost surely. === =

@ A consequence of

superadditivity:

G(r+s)> G(r)+ G(s) and }
Fekete's lemma/Kingman's . .(r, r).
theorem.

(r+s,r+s)

(1,1)
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Exponential LPP

e Each vertex in Z?2 carries an i.i.d. Exp(1) variable.

Theorem (Johansson'99)
For exponential LPP and m > n,

P(G(m, n)<t)—

mn [0,¢]” 1<l<_]<n j=1

n
o D QR | Ct
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Exponential LPP

@ Each vertex in Z2 carries an i.i.d. Exp(1) variable.

Theorem (Johansson'99)
For exponential LPP and m > n,

P(G(m,n) <t)= ! / H (x;i — xj)znxjm_”efxfd"x.

V4
mn J[0," 1 <ilj<n j=1

@ weight of geodesic <> length of longest increasing subsequence in a
random generalized permutation <> length of top row in a pair of
random Young Tableaux.

@ Theorem implies that G(m, n) has same distribution as the largest
eigenvalue of X*X where X is an m x n matrix of i.i.d. standard
complex Gaussian random variables.
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Exponential LPP: Properties
o Limit shape: Z€@almn) _ (\/m /52 as o — oo,

° % converges in distribution to a multiple of the GUE

Tracy-Widom distribution.
o [Ledoux, Rider '10]: For all y < §n%/3 and for all large n,
P(G(n) —4n > yn'/3) < Clefclym,
P(G(n) — 4n > yn'/3) > Cae=™?,
P(G(n) — 4n < —yn'/3) < Cre~ @’
e [Basu, Ganguly, Hegde, Krishnapur '19] Lower tail lower bound

P(G(n) — 4n < —yn*/3) > Coe™
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Exponential LPP: Properties

o Limit shape: Z€@almn) _ (\/m /52 as o — oo,

% converges in distribution to a multiple of the GUE

Tracy-Widom distribution.
o [Ledoux, Rider '10]: For all y < §n%/3 and for all large n,

P(G(n) —4n > yn'/3) < Cre—™”?,

P(G(n) — 4n > yn'/3) > Cae=™?,
P(G(n) — 4n < —yn'/3) < Cre~ @’

e [Basu, Ganguly, Hegde, Krishnapur '19] Lower tail lower bound
P(G(n) — 4n < —yn*/3) > Coe™ .

@ Works for all directions away from the boundaries.

@ Optimal in the exponent.
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Exponential LPP: Transversal Fluctuations

o Let A, be the event that the geodesic for G(n) stays in a strip of
width « about the line {x = y}.

@ [Johansson '99] P(A,z/3:c) — 1 and P(A,2/3-c) — 0 as n — oo.
e [Basu, Sidoravicius, Sly '16] P((A,2/3)¢) < Cre ",
e [Hammond, Sarkar '18] P((A,2/3)¢) > Coe—er,
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Exponential LPP: Transversal Fluctuations

e How far does the geodesic for G(n) venture from the line {x = y}?.
e By the limit shape result, for p, = (n/2 — x,n/2 + x),
2
EG ((1,1), pe) + EG (px, (n, n)) ~ 4n — c%.

@ For typical transversal fluctutations, heuristically X—nZ ~ n'/3 and thus

x ~ n?/3.

()

N
Pow

(n/2,n/2)

(1,1)
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Exponential LPP: Transversal Fluctuations

e Notation G(n) = G(n) —EG(n).

@ An upper bound on the
probability of By: the event that
px = (n/2 — x,n/2 + x) lies on
the geodesic.

@ An application of the
point-to-point moderate
deviation estimates. Here

x = m?/3,

\

(n/2,n/2)

(n,n)

(1,1)’

P(Bx) = P(G((1,1), px)) + G(px, (n, n)) = G(n))
<p <5((1, 1), py)) > Zr2n1/3> +P <é’(px, (n,n)) > Zr2n1/3)

+P <é(n) < —§r2n1/3>

< e—ar’ + e’ + oG’ < gmcr’
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Exponential LPP: Transversal fluctuations

@ By technical results, can obtain

IP( max {g(px)} > yn1/3) <e

x€(—n?/3,n2/3)

(n,n)

“nj2mf2)
n2/3 .

)

@ Summing up over r would give an e bound for the geodesic going

a distance more than rn?/3 transversally at the midpoint.
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The TASEP

o Totally Asymmetric Exclusion Process.
@ Start with a configuration of particles and holes on Z + %

@ Vertices have i.i.d. Exp(1) clocks which signal the respective particle
to attempt a jump to its right.

@ A jump is successful if there is a hole to the right of a particle.
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Connection between TASEP and exponential LPP

o Start the TASEP with the step initial
condition: all particles to the left of O
and all holes to the right of 0.

o If a particle moves from / + % to
(i +1) + 3, then flip the wedge on the
line {x =i+ 1}.

@ The time taken for the particle at
—m+ % to jump n steps to the right
has the same distribution as G(m, n).

00000000

@ Both satisfy the same recusion:

G((m,n)) =
max {G((m —1,n)), G((m,n— 1))} + W(m_p)-
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Other initial conditions for the TASEP: Flat

@ The flat initial condition: WW
particles at (i + 3) for all odd i. e
@ Time taken to add (m, n) is S
distributed as the point-to-line 'YeoX XNoX XoX Xeo
passage time Gy(m, n) from
{x+y =0} to (m,n)in
exponential LPP.
e [Baik, Rains] Same as the c ™
distribution of 2 X251 where
A2n+1 is the largest eigenvalue
of XTX, and X is a
(2n+42) x (2n+ 1) matrix of
i.i.d. standard normal variables.
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Other initial conditions for the TASEP: Stationary

o [Liggett '76] Product Ber(p)
measures are the extremal

stationary measures for the
TASEP.

@ Corresponds to the point-to-line
passage time from a random line
fluctuating about the

deterministic line {y = _1Tgx}'
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Stationary LPP

woo = 0, where the * is,

wip ~ Exp(1—p), i >1, where the V’s are,

woj ~ Exp(o), j > 1, where the A ’s are,
wij ~ Exp(1), 4,5 > 1, where the o’s are.

@ Start the TASEP with a particle at
O—i—%, a hole at —1—1—% and a

product Ber(p) measure elsewhere. AT
o Burke Property: Interpreting dlolofolo]o]o
particles as servers and holes as sh|oofo]o @y ®

||

customers, the particle at 0 + %
moves according to a Poisson
process of jump rate (1 — ). ool ¥ ¥ ¥ Y7 ¢ ¥

O
(5. 1)

(0,0)

P P H. H P H P.1 H

Figure from [Bélazs, Cator, Seppaldinen '06].
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Stationary LPP

woo = 0, where the * is,

wip ~ Exp(1—p), i >1, where the V’s are,

woj ~ Exp(o), j > 1, where the A ’s are,
wij ~ Exp(1), 4,5 > 1, where the o’s are.

e [Bilazs, Cator, Seppaladinen '06]
Time for the n'® particle to the left
of 0 crossing the m*2 hole to the Aol ololalole
right of 0 is distributed according to dlolo]olo]o]o
the passage time Ggiat(m, n). dlololololele

@ Time has same distribution on the N e M)
boundaries. For the interior, the

recursion is the same. ool 1% % & % %

O
(5. 1)

(0,0)

P P H. H P H P.1 H

Figure from [Bélazs, Cator, Seppaldinen '06].
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The characteristic direction

@ A first order calculation

indicates that the geodesic in Exp(ph “‘?15[/0}
the direction ((1 — 0)?, 0?) o
spends a negligible amount of “a" o o
time on the boundary. o ".ﬁ‘ "’."

e Finding the vector (61, 6>) such o ‘.»“ “."’
that 1%9 + (\/ 01 —x+ \/%)2 ‘o" “““

and % + (01 + V02 — x)* are (0,0)°* g

maximized at x = 0.
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Exit time

Exp(e)

@ A general point in the
characteristic direction —-
vo = ((1 — 0)n, 0°n). Bxp(1-0)

o Exit time: Z” the point at
which the geodesic for Ggiat(vn)
exits the coordinate axes.

Exp(o)

(0, -2z™)

Exp(1—0)
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Upcoming

@ 7" the exit time in the characteristic direction fluctuates at the scale
2/3
n</>,

@ Deviation estimates for the exit time at the correct scale.
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Exit time

Exp(e)

@ A general point in the
characteristic direction —-
vo = ((1 — 0)n, 0°n). Bxp(1-0)

o Exit time: Z” the point at
which the geodesic for Ggiat(vn)
exits the coordinate axes.

Exp(o)

(0, -2z™)

Exp(1—0)
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Expected weight of geodesics with exit time x

o v,=((1- g)2n 0°n), a generic point in the characteristic direction.

o Recall that £~ +(\/01—x+f) and % + (v/01 + V02 — x)* are

maximised at x = 0 for the characteristic direction
(61,602) = ((1 - 0)?, 0%).
@ Taylor expansion:

4o x2

91”-X+ 92” Nn—m?

e For p = 1/2, the above is n — *

e For typical exit times, heuristically X—nz ~ n/3 and thus x ~ n?/3.
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Exit time tail estimates

@ Upper tail estimates?

o [Bélazs, Cator, Seppildinen '06] Power law tail: P(|Z"| > rn®/3) < §.
o [Ferrari, Occelli '18] P(|Z"| > m?/3) < Ce~<"".

o [Seppildinen, Shen '19] P(|Z"| > rn?/3) > Ce~<".
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Exit time tail estimates

@ Upper tail estimates?

o [Bélazs, Cator, Seppildinen '06] Power law tail: P(|Z"| > rn®/3) < §.
o [Ferrari, Occelli '18] P(|Z"| > m?/3) < Ce~<"".

o [Seppildinen, Shen '19] P(|Z"| > rn?/3) > Ce~<".

o Lower tail: [Seppaldinen, Shen '19] P(|Z"| < 6n?/3) < C6|log §|?/3.
o [?77] P(|Z"| < 6n?/3) > C6.

Theorem ([B. '20],[Emrah, Janjigian, Seppaldinen '20]) J

P(|Z"] > m?/3) < Ce="

Manan Bhatia (l1Sc) July 29, 2020 3/18



Technical estimates

@ Recall that for all x < §n?/3,
P(G(n) — 4n > xn*/3) < Cle_C1X3/2.

e [Basu, Sidoravicius, Sly '16]

3/2
P max G(u,v) > 4n~|—xn1/3> < Ge @,
ueA,veB

@ Works with uniform constants as long as the long sides are bounded
away from being horizontal /vertical.
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Upper tail for the exit time

o Take p=1/2.

e Will show P(Z" €
(rn?/3,(r +1)n?/3) < Ce—cr’
with uniform constants as long

= (n/2,n/2)

as 0 <r< (1 —e)”lz/g.
@ Thecase Z" > (1 —¢) ”12/3 can
be handled separately. We skip
it.
o Then P(Z" > m?/3) < .
Zoo e_CX3 N e_cr3 (0,0) m?3 (4 10?3
. :
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Bounding P(Z" € (rn?/3, (r + 1)n?/3)

o Let w, denote (rn2/3,0)- For x in (w,, w,11), we have
E (Gatat () + G(x, vn)) < n— r2n'/3,

P(Z" € (wr,wry1)) =P( max  {Ggat(x) + G(X, V) } = Gstat(Vn))

XE(Wr7Wr+1
r2n1/3 r2p1/3
< P(Ggtat(vn) < n— ) + P(max{ Ggtat (x) + G(x, vp)} > n— 5 )
_ 2p1/3 _ F201/3
< P(max{G(x, v,,)} > )—HP’(max{Gstat(x)} > 1
3

S efcr + () § vy = (n/2.1/2)

(0,0) 23 (r 4 )n2/3
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Bounding P(Z" € (rn?/3, (r + 1)n?/3)

o Let w, denote (rn?/3,0). For x in (w,, w,;1), we have
E (Gstat(X) + G(x, v,)) < n— r?n/3.

P(Z" € (wr,wry1)) =P( max  {Ggat(x) + G(X, V) } = Gstat(Vn))

XE(Wr,Wr+1
2,.1/3 2,1/3
T 4 P(max{ Gugar (X) + G(x, va)} > n— ’; )

P2n1/3

< IPD(Gstat(vn) <n-—

r2n1/3
4

< P(max{é(x, v,,)} > )+ P(max{gstat(x)} >

3

< e 4 ()

v = (n/2,0/2)

@ Notice that
Gstat(vn) > G((la 1)? Vn)'
@ Moderate deviations for
exponential LPP gives e’
upper bound for the red term. 00

23 (r 4 1)n2/3
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The term coming from the boundary weights

@ A random walk estimate.

Gstat(Wr) — 2w, r3/2 —er’
P > <e .
( \/rnt/3 - 4 =€

vn = (n/2,1/2)

(0,0) /3 (r+1)n??
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Moderate deviations for the stationary passage time

@ Bounding the tails
P(Gstat(vn) - n> yn1/3)7
P(Gtas(vn) — n < —yn'/3).

@ First, compare to tails of exponential LPP.
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Tails for exponential LPP
o [Ledoux, Rider '10]: For all y < 5n?/3 and for all large n,
P(G(n) —4n > yn'/3) < Cle_cly3/2,
P(G(n) — 4n > yn'/3) > Cze~*?,
P(G(n) — 4n < —yn*/3) < Cye Y.
e [Basu, Ganguly, Hegde, Krishnapur '19] Lower tail lower bound

P(G(n) — 4n < —yn'/3) > Cae™ .
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Tails for exponential LPP
o [Ledoux, Rider '10]: For all y < 5n?/3 and for all large n,
P(G(n) —4n > yn'/3) < Cle_cly3/2,
P(G(n) — 4n > yn'/3) > Cze~*?,
P(G(n) — 4n < —yn*/3) < Cye Y.
e [Basu, Ganguly, Hegde, Krishnapur '19] Lower tail lower bound
P(G(n) — 4n < —yn*/3) > Coe™ Y’
@ Works for Laguerre ensembles generally:

P(Gy(n) — 4n < —yn'/3) > Cge= Y.

@ Recall that Gy(m, n) is the line-to-point passage time from
{x+y =0} to (m,n) and Gy(n) = Gy(n, n).
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Upper tail in stationary LPP

Theorem ([B. '20],[Emrah, Janjigian, Seppéaldinen '20])
For all y < 6n*/3 and n large enough,

Cre™"” < P(Gytar(vi) — n > yn*3) < G,

Gstat(vn) > G((1,1), vp) gives lower bound.

Do o = 1/2 for convenience. Recall v, = (n/2,n/2).

Need to bound P(maxee(—n/2,n/2){ Gstat (X) + G(x, va)} > n+ yn'/3).
Paths with large exit times can be handled. Reduces to bounding
P(maXee(—n/a,n/4){ Gstat(X) + G(x, va)} > n 4 yn'/3),
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Upper tail in stationary LPP

o Recall w, = (rN?/3,0) and that for x in (w,, w, 1), we have
E (Gstat (X) + G(x, v,)) < n— r?n'/3.

B, max (Gau(x) + Glx.v)} = n o yn!l?) < Ceebr s

XE(Wr,Wyi1

(y+r2)3/2 _ay32
OZr*—oo cy+r) 2 L emer’?,

L Un= (n/2,n/2)

(0,0) 23 (r 4 1)n?/3
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Lower tail in stationary LPP
Theorem ([B. '20])
For o =1/2 and all y < 6n?/3 and n large enough,

™ < P(Gyar(vn) — n < —yn*'?) < e,

@ Gsat(vn) > G((1,1), vp) gives the upper bound for all .
@ For the lower bound, we will use

P(Gy(n) — 4n < —yn*/3) > Ce .

(0,0)
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Strong Burke property of stationary LPP

@ The increments along any down-right path are
independent. The vertical and horizontal
increments are distributed as Exp(p) and
Exp(1 — o) respectively.

@ Increment stationarity of the model:

i (0) — G, (2) is distributed as G2 (*)-

e Gives a coupling where GZ,,(-) is computed by

using boundary weights given by I, .. and

X
z+-e2"

Manan Bhatia (l1Sc)
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Strong Burke property of stationary LPP

The increments along any down-right path are
independent. The vertical and horizontal
increments are distributed as Exp(p) and
Exp(1 — o) respectively.
Increment stationarity of the model:

i (0) — G, (2) is distributed as G2 (*)-

Gives a coupling where GZ,,(+) is computed by

using boundary weights given by I, .. and
§+-62'
e = G (ier) — GX . ((i — 1)eq): horizontal

increments of GJ,.(-) on the line z + Zey.
;—Heg = Gs);at(ie2) - Gs);at((i - 1)62) vertical
increments of GJ,;(-) on the line z 4 Zes.
a is the unique point maximising
x.t(a) + G(a,y) or equivalently
s)fcat(a) o s);at(z) + G(aay)'

Manan Bhatia (1Sc)

O @] o @) @)
! @] o @) @)
(I)—O o o @)
@) CI)—O—O @)
@) o @) (I) @)
@) o o !—O

July 29, 2020

13/18



An equivalent stationary LPP model
(p) — Gl (0) = ()

° Gs(t;t
using /,J as boundary weights.

o Also,
Gt (p) — G (0) = GLi(p).
Hence Qgtat(p) sotat(p)

@ €3 = €1 — €.

o Define T(t) = Yt o K5, "

© Gai(p) = maxe {T(t) + G (tes, p)}.

e Each Ké+:e3 " _ = X; — Y; where X; and
Y; are all mutually independent with

marginals Exp(1/2). Hence each

( n)
K0+te has mean zero.

Manan Bhatia (l1Sc)
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An equivalent stationary LPP model
° Gt ™" (p) = Gl T (0) = Ghui(p)
using /,J as boundary weights.

o Also,

Gl (p) —
Hence GY..(p) =

@ €3 = €1 — €.
o Define T(t) = Yt o K5, "

Gs&;:’;")(m
stat (P)

G tat( )

L)

i

N
(0.0) <

() N
Koi'ey N

(=n.—n)

© Gai(p) = maxe {T(t) + G (tes, p)}.

@ Each Ké+:e3 " — = X; — Y; where X; and

Y; are all mutually independent with

marginals Exp(1/2). Hence each .

( n)
K0+te has mean zero.

@ Similar exit-time result: Geodesic leaves
line outside (—xn?/3, xn?/3) with
probability at most e~
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Lower tail lower bound

@ Only works for p = 1/2. Recall v, = (n/2,n/2).
P(Gar(va) < n—yn'/?) =P (m?x{T(t) + G (tes, va)} < n— y”1/3)

@ By exit-time result, the stationary geodesic exits the line {x + y = 0}
in t ¢ [—y?n?/3,y2n?/3] with probability at most e~".

@ Need to lower bound
P (maxte(_y2nz/37y2n2/3) {T(t)+ G (te3,vn)} < n— yn1/3).
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Lower tail lower bound

—ynl/3
P (te(y;:;%y?nﬂfi){-,-(t) + G (tes,vp)} < n—yn )

1/3 1/3
>P max T(t) < o P { max{G (te3,vy)} < n— yn
te( 2 2

—y2n2/3,y2n2/3)

1/3
> GP <G€(Vn) <n-— ynz ) > Ce .

@ First term: a Brownian motion estimate. Second term: point-to-line
LPP lower tail lower bound.
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Some remarks

@ We use the random matrix estimates for exponential LPP.

@ Since we only used the point-to-point moderate deviations, the same
method should give bounds for other models like stationary versions
of geometric and Poissonian LPP.

@ The work by [Emrah, Janjigian, Seppalainen '20] uses the Burke
property of stationary LPP to derive an exact formula for the |.m.g.f.
of Ggtat(m, n) which is used to give the exit-time bounds.
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Questions?
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