Moderate deviation estimates in stationary last passage percolation

Manan Bhatia

Indian Institute of Science

July 29, 2020

Falling blocks

- Blocks falling on Z with space-time i.i.d. interarrival times.
- At time t, interface height ~ t and fluctuations ~ √t.
- Model yielding a smoother surface?

Corner growth model

- *w_{i,j}* are i.i.d. .
- Change a valley to a trough after the corresponding time $w_{i,j}$.
- *T_{i,j}*: the time of absorbing (*i*, *j*) satisfies the recursion

 $T_{i,j} = \max\{T_{i-1,j}, T_{i,j-1}\} + w_{i,j}.$

• Expect linear growth with $t^{1/3}$ fluctuations in the surface height.

Last Passage Percolation on \mathbb{Z}^2

- Have i.i.d. random variables w_{i,j} on the vertices. The weight of a path is the sum of the values of the traversed vertices in Z².
- G(u, v) is the maximum weight of up-right paths going from uto v. The almost surely unique path attaining G(u, v) is called the geodesic.
- For convenience, G(n) = G((1, 1), (n, n)).
- Satisfies the same recursion

G(u, v) = (1, 1)max { G(u, v - e₁), G(u, v - e₂) } + w_v.

LPP on \mathbb{Z}^2 : first order behaviour

- Linear growth in all directions: $\frac{G(0,\alpha(m,n))}{\alpha} \rightarrow c(m,n) \in (0,\infty)$ as $\alpha \rightarrow \infty$ almost surely.
- A consequence of superadditivity: $G(r + s) \ge G(r) + G(s)'$ and Fekete's lemma/Kingman's

theorem.

Exponential LPP

• Each vertex in \mathbb{Z}^2 carries an i.i.d. Exp(1) variable.

Theorem (Johansson'99) For exponential LPP and $m \ge n$, $\mathbb{P}(G(m,n) \le t) = \frac{1}{Z_{m,n}} \int_{[0,t]^n} \prod_{1 \le i < j \le n} (x_i - x_j)^2 \prod_{j=1}^n x_j^{m-n} e^{-x_j} d^n x.$

Exponential LPP

• Each vertex in \mathbb{Z}^2 carries an i.i.d. $\operatorname{Exp}(1)$ variable.

```
Theorem (Johansson'99)
```

For exponential LPP and $m \ge n$,

$$\mathbb{P}(G(m,n) \leq t) = \frac{1}{Z_{m,n}} \int_{[0,t]^n} \prod_{1 \leq i < j \leq n} (x_i - x_j)^2 \prod_{j=1}^n x_j^{m-n} e^{-x_j} d^n x.$$

- weight of geodesic ↔ length of longest increasing subsequence in a random generalized permutation ↔ length of top row in a pair of random Young Tableaux.
- Theorem implies that G(m, n) has same distribution as the largest eigenvalue of X^*X where X is an $m \times n$ matrix of i.i.d. standard complex Gaussian random variables.

Exponential LPP: Properties

- Limit shape: $\frac{\mathbb{E}G(\mathbf{0},\alpha(m,n))}{\alpha} \to (\sqrt{m} + \sqrt{n})^2$ as $\alpha \to \infty$.
- $\frac{G(n)-4n}{n^{1/3}}$ converges in distribution to a multiple of the GUE Tracy-Widom distribution.
- [Ledoux, Rider '10]: For all $y < \delta n^{2/3}$ and for all large n,

$$\mathbb{P}(G(n) - 4n > yn^{1/3}) \le C_1 e^{-c_1 y^{3/2}},$$
$$\mathbb{P}(G(n) - 4n > yn^{1/3}) \ge C_3 e^{-c_3 y^{3/2}},$$
$$\mathbb{P}(G(n) - 4n < -yn^{1/3}) \le C_2 e^{-c_2 y^3}.$$

• [Basu, Ganguly, Hegde, Krishnapur '19] Lower tail lower bound

$$\mathbb{P}(G(n) - 4n < -yn^{1/3}) \ge C_4 e^{-c_4 y^3}.$$

Exponential LPP: Properties

- Limit shape: $\frac{\mathbb{E}G(\mathbf{0},\alpha(m,n))}{\alpha} \to (\sqrt{m} + \sqrt{n})^2$ as $\alpha \to \infty$.
- $\frac{G(n)-4n}{n^{1/3}}$ converges in distribution to a multiple of the GUE Tracy-Widom distribution.
- [Ledoux, Rider '10]: For all $y < \delta n^{2/3}$ and for all large n,

$$\begin{split} \mathbb{P}(G(n) - 4n > yn^{1/3}) &\leq C_1 e^{-c_1 y^{3/2}}, \\ \mathbb{P}(G(n) - 4n > yn^{1/3}) &\geq C_3 e^{-c_3 y^{3/2}}, \\ \mathbb{P}(G(n) - 4n < -yn^{1/3}) &\leq C_2 e^{-c_2 y^3}. \end{split}$$

• [Basu, Ganguly, Hegde, Krishnapur '19] Lower tail lower bound

$$\mathbb{P}(G(n) - 4n < -yn^{1/3}) \ge C_4 e^{-c_4 y^3}.$$

- Works for all directions away from the boundaries.
- Optimal in the exponent.

Manan Bhatia (IISc)

Exponential LPP: Transversal Fluctuations

- Let A_α be the event that the geodesic for G(n) stays in a strip of width α about the line {x = y}.
- [Johansson '99] $\mathbb{P}(A_{n^{2/3+\epsilon}}) \to 1$ and $\mathbb{P}(A_{n^{2/3-\epsilon}}) \to 0$ as $n \to \infty$.
- [Basu, Sidoravicius, Sly '16] $\mathbb{P}((A_{rn^{2/3}})^c) \leq C_1 e^{-c_1 r^3}$.
- [Hammond, Sarkar '18] $\mathbb{P}((A_{rn^{2/3}})^c) \ge C_2 e^{-c_2 r^3}$.

Exponential LPP: Transversal Fluctuations

- How far does the geodesic for G(n) venture from the line $\{x = y\}$?.
- By the limit shape result, for $p_x = (n/2 x, n/2 + x)$,

$$\mathbb{E}G\left((1,1),p_{x}\right)+\mathbb{E}G\left(p_{x},(n,n)\right)\sim 4n-C\frac{x^{2}}{n}$$

• For typical transversal fluctutations, heuristically $\frac{x^2}{n} \sim n^{1/3}$ and thus $x \sim n^{2/3}$.

Exponential LPP: Transversal Fluctuations

- Notation $\widetilde{G}(n) = G(n) \mathbb{E}G(n)$.
- An upper bound on the probability of B_x : the event that $p_x = (n/2 x, n/2 + x)$ lies on the geodesic.
- An application of the point-to-point moderate deviation estimates. Here $x = rn^{2/3}$.

$$\begin{split} \mathbb{P}(B_{x}) &= \mathbb{P}(G((1,1),p_{x})) + G(p_{x},(n,n)) = G(n)) \\ &\leq \mathbb{P}\left(\widetilde{G}((1,1),p_{x})) \geq \frac{C}{4}r^{2}n^{1/3}\right) + \mathbb{P}\left(\widetilde{G}(p_{x},(n,n)) \geq \frac{C}{4}r^{2}n^{1/3}\right) \\ &+ \mathbb{P}\left(\widetilde{G}(n) \leq -\frac{C}{2}r^{2}n^{1/3}\right) \\ &\leq e^{-c_{1}r^{3}} + e^{-c_{2}r^{3}} + e^{-c_{3}r^{6}} \leq e^{-cr^{3}}. \end{split}$$

Exponential LPP: Transversal fluctuations

• By technical results, can obtain

$$\mathbb{P}\left(\max_{x\in(-n^{2/3},n^{2/3})}\{\widetilde{G}(p_x)\}\geq yn^{1/3}\right)\leq e^{-cy^{3/2}}.$$

• Summing up over r would give an e^{-cr^3} bound for the geodesic going a distance more than $rn^{2/3}$ transversally at the midpoint.

The TASEP

- Totally Asymmetric Exclusion Process.
- Start with a configuration of particles and holes on $\mathbb{Z} + \frac{1}{2}$.
- Vertices have i.i.d. Exp(1) clocks which signal the respective particle to attempt a jump to its right.
- A jump is successful if there is a hole to the right of a particle.

Connection between TASEP and exponential LPP

- Start the TASEP with the step initial condition: all particles to the left of 0 and all holes to the right of 0.
- If a particle moves from i + ¹/₂ to (i + 1) + ¹/₂, then flip the wedge on the line {x = i + 1}.
- The time taken for the particle at $-m + \frac{1}{2}$ to jump *n* steps to the right has the same distribution as G(m, n).
- Both satisfy the same recusion:

 $G((m, n)) = \max \{G((m - 1, n)), G((m, n - 1))\} + w_{(m, n)}.$

Other initial conditions for the TASEP: Flat

- The flat initial condition: particles at (i + ¹/₂) for all odd i.
- Time taken to add (m, n) is distributed as the point-to-line passage time Gℓ(m, n) from {x + y = 0} to (m, n) in exponential LPP.
- [Baik, Rains] Same as the distribution of $\frac{1}{2}\lambda_{2n+1}$ where λ_{2n+1} is the largest eigenvalue of $X^T X$, and X is a $(2n+2) \times (2n+1)$ matrix of i.i.d. standard normal variables.

Other initial conditions for the TASEP: Stationary

- [Liggett '76] Product Ber(ρ) measures are the extremal stationary measures for the TASEP.
- Corresponds to the point-to-line passage time from a random line fluctuating about the deterministic line $\{y = -\frac{\varrho}{1-\rho}x\}$.

Stationary LPP

- Start the TASEP with a particle at $0 + \frac{1}{2}$, a hole at $-1 + \frac{1}{2}$ and a product $Ber(\varrho)$ measure elsewhere.
- Burke Property: Interpreting particles as servers and holes as customers, the particle at $0 + \frac{1}{2}$ moves according to a Poisson process of jump rate $(1 - \varrho)$.

- $$\begin{split} \omega_{00} &= 0, \\ \omega_{i0} &\sim \operatorname{Exp}(1-\varrho), \ i \geq 1, \\ \omega_{0j} &\sim \operatorname{Exp}(\varrho), \ j \geq 1, \\ \omega_{ij} &\sim \operatorname{Exp}(1), \ i, j \geq 1, \end{split}$$
- where the \star is, where the \bigtriangledown 's are, where the \bigtriangleup 's are, where the \circ 's are.

Figure from [Bálazs, Cator, Seppäläinen '06].

Stationary LPP

- [Bálazs, Cator, Seppäläinen '06] Time for the n^{th} particle to the left of 0 crossing the m^{th} hole to the right of 0 is distributed according to the passage time $G_{\text{stat}}(m, n)$.
- Time has same distribution on the boundaries. For the interior, the recursion is the same.

- $$\begin{split} & \omega_{00} = 0, \\ & \omega_{i0} \sim \operatorname{Exp}(1 \varrho), \ i \geq 1, \\ & \omega_{0j} \sim \operatorname{Exp}(\varrho), \ j \geq 1, \\ & \omega_{ij} \sim \operatorname{Exp}(1), \ i, j \geq 1, \end{split}$$
- where the \star is, where the \bigtriangledown 's are, where the \bigtriangleup 's are, where the \circ 's are.

Figure from [Bálazs, Cator, Seppäläinen '06].

The characteristic direction

- A first order calculation indicates that the geodesic in the direction $((1 - \varrho)^2, \varrho^2)$ spends a negligible amount of time on the boundary.
- Finding the vector (θ_1, θ_2) such that $\frac{x}{1-\varrho} + (\sqrt{\theta_1 x} + \sqrt{\theta_2})^2$ and $\frac{x}{\varrho} + (\sqrt{\theta_1} + \sqrt{\theta_2 - x})^2$ are maximized at x = 0.

Exit time

- A general point in the characteristic direction $v_n = ((1 \varrho)^2 n, \varrho^2 n).$
- Exit time: Z^n the point at which the geodesic for $G_{\text{stat}}(v_n)$ exits the coordinate axes.

Upcoming

- Z^n : the exit time in the characteristic direction fluctuates at the scale $n^{2/3}$.
- Deviation estimates for the exit time at the correct scale.

Exit time

- A general point in the characteristic direction $v_n = ((1 \varrho)^2 n, \varrho^2 n).$
- Exit time: Z^n the point at which the geodesic for $G_{\text{stat}}(v_n)$ exits the coordinate axes.

Expected weight of geodesics with exit time x

- $v_n = ((1 \varrho)^2 n, \varrho^2 n)$, a generic point in the characteristic direction.
- Recall that $\frac{x}{1-\varrho} + (\sqrt{\theta_1 x} + \sqrt{\theta_2})^2$ and $\frac{x}{\varrho} + (\sqrt{\theta_1} + \sqrt{\theta_2 x})^2$ are maximised at x = 0 for the characteristic direction $(\theta_1, \theta_2) = ((1-\varrho)^2, \varrho^2).$
- Taylor expansion:

$$\frac{x}{1-\varrho} + (\sqrt{\theta_1 n - x} + \sqrt{\theta_2 n})^2 \sim n - \frac{4\varrho}{(1-\varrho)^3} \frac{x^2}{n}$$

• For $\varrho = 1/2$, the above is $n - \frac{x^2}{n}$.

• For typical exit times, heuristically $\frac{x^2}{n} \sim n^{1/3}$ and thus $x \sim n^{2/3}$.

Exit time tail estimates

- Upper tail estimates?
- [Bálazs, Cator, Seppäläinen '06] Power law tail: $\mathbb{P}(|Z^n| \ge rn^{2/3}) \le \frac{C}{r^3}$.
- [Ferrari, Occelli '18] $\mathbb{P}(|Z^n| \ge rn^{2/3}) \le Ce^{-cr^2}$.
- [Seppäläinen, Shen '19] $\mathbb{P}(|Z^n| \ge rn^{2/3}) \ge Ce^{-cr^3}$.

Exit time tail estimates

- Upper tail estimates?
- [Bálazs, Cator, Seppäläinen '06] Power law tail: $\mathbb{P}(|Z^n| \ge rn^{2/3}) \le \frac{C}{r^3}$.
- [Ferrari, Occelli '18] $\mathbb{P}(|Z^n| \ge rn^{2/3}) \le Ce^{-cr^2}$.
- [Seppäläinen, Shen '19] $\mathbb{P}(|Z^n| \ge rn^{2/3}) \ge Ce^{-cr^3}$.
- Lower tail: [Seppäläinen, Shen '19] $\mathbb{P}(|Z^n| \le \delta n^{2/3}) \le C\delta |\log \delta|^{2/3}$.
- [???] $\mathbb{P}(|Z^n| \leq \delta n^{2/3}) \geq C\delta.$

Theorem ([B. '20],[Emrah, Janjigian, Seppäläinen '20]) $\mathbb{P}(|Z^n| \ge rn^{2/3}) \le Ce^{-cr^3}$

Technical estimates

- Recall that for all $x < \delta n^{2/3}$, $\mathbb{P}(G(n) - 4n > xn^{2/3}) \le C_1 e^{-c_1 x^{3/2}}.$
- [Basu, Sidoravicius, Sly '16] $\mathbb{P}\left(\max_{u \in A, v \in B} G(u, v) \ge 4n + xn^{1/3}\right) \le C_2 e^{-c_2 x^{3/2}}.$
- Works with uniform constants as long as the long sides are bounded away from being horizontal/vertical.

Upper tail for the exit time

- Take $\varrho = 1/2$.
- Will show $\mathbb{P}(Z^n \in (rn^{2/3}, (r+1)n^{2/3}) \le Ce^{-cr^3}$ with uniform constants as long as $0 < r < (1-\epsilon)\frac{n^{1/3}}{2}$.
- The case $Z^n \ge (1-\epsilon)\frac{n^{1/3}}{2}$ can be handled separately. We skip it.
- Then $\mathbb{P}(Z^n \ge rn^{2/3}) \le \sum_r^{\infty} e^{-cx^3} \sim e^{-cr^3}.$

Bounding $\mathbb{P}(Z^n \in (rn^{2/3}, (r+1)n^{2/3}))$

• Let w_r denote $(rn^{2/3}, 0)$. For \mathbf{x} in (w_r, w_{r+1}) , we have $\mathbb{E}(G_{\text{stat}}(\mathbf{x}) + G(\mathbf{x}, v_n)) \leq n - r^2 n^{1/3}$.

$$\mathbb{P}(Z^{n} \in (w_{r}, w_{r+1})) = \mathbb{P}(\max_{\mathbf{x} \in (w_{r}, w_{r+1})} \{G_{\text{stat}}(\mathbf{x}) + G(\mathbf{x}, v_{n})\} = G_{\text{stat}}(v_{n}))$$

$$\leq \mathbb{P}(G_{\text{stat}}(v_{n}) < n - \frac{r^{2}n^{1/3}}{2}) + \mathbb{P}(\max\{G_{\text{stat}}(\mathbf{x}) + G(\mathbf{x}, v_{n})\} > n - \frac{r^{2}n^{1/3}}{2}))$$

$$\leq \mathbb{P}(\max\{\widetilde{G}(\mathbf{x}, v_{n})\} \geq \frac{r^{2}n^{1/3}}{4}) + \mathbb{P}(\max\{\widetilde{G}_{\text{stat}}(\mathbf{x})\} \geq \frac{r^{2}n^{1/3}}{4}))$$

$$\leq e^{-cr^{3}} + ().$$

Bounding $\mathbb{P}(Z^n \in (rn^{2/3}, (r+1)n^{2/3}))$

• Let w_r denote $(rn^{2/3}, 0)$. For \mathbf{x} in (w_r, w_{r+1}) , we have $\mathbb{E}(G_{\text{stat}}(\mathbf{x}) + G(\mathbf{x}, v_n)) \leq n - r^2 n^{1/3}$.

$$\mathbb{P}(Z^{n} \in (w_{r}, w_{r+1})) = \mathbb{P}(\max_{\mathbf{x} \in (w_{r}, w_{r+1})} \{G_{\text{stat}}(\mathbf{x}) + G(\mathbf{x}, v_{n})\} = G_{\text{stat}}(v_{n}))$$

$$\leq \mathbb{P}(G_{\text{stat}}(v_{n}) < n - \frac{r^{2}n^{1/3}}{2}) + \mathbb{P}(\max\{G_{\text{stat}}(\mathbf{x}) + G(\mathbf{x}, v_{n})\} > n - \frac{r^{2}n^{1/3}}{2}))$$

$$\leq \mathbb{P}(\max\{\widetilde{G}(\mathbf{x}, v_{n})\} \geq \frac{r^{2}n^{1/3}}{4}) + \mathbb{P}(\max\{\widetilde{G}_{\text{stat}}(\mathbf{x})\} \geq \frac{r^{2}n^{1/3}}{4})$$

$$\leq e^{-cr^{3}} + ().$$

- Notice that $G_{\text{stat}}(v_n) \ge G((1,1), v_n).$
- Moderate deviations for exponential LPP gives e^{-cr⁶} upper bound for the red term.

The term coming from the boundary weights

• A random walk estimate.

$$\mathbb{P}\left(\frac{G_{\text{stat}}(w_r) - 2w_r}{\sqrt{rn^{1/3}}} \ge \frac{r^{3/2}}{4}\right) \le e^{-cr^3}$$

Moderate deviations for the stationary passage time

• Bounding the tails

$$\mathbb{P}(G_{\text{stat}}(v_n) - n \ge yn^{1/3}),$$

$$\mathbb{P}(G_{\text{stat}}(v_n) - n \le -yn^{1/3}).$$

• First, compare to tails of exponential LPP.

Tails for exponential LPP

• [Ledoux, Rider '10]: For all $y < \delta n^{2/3}$ and for all large n,

$$\mathbb{P}(G(n) - 4n > yn^{1/3}) \le C_1 e^{-c_1 y^{3/2}},$$
$$\mathbb{P}(G(n) - 4n > yn^{1/3}) \ge C_3 e^{-c_3 y^{3/2}},$$
$$\mathbb{P}(G(n) - 4n < -yn^{1/3}) \le C_2 e^{-c_2 y^3}.$$

• [Basu, Ganguly, Hegde, Krishnapur '19] Lower tail lower bound

$$\mathbb{P}(G(n) - 4n < -yn^{1/3}) \ge C_4 e^{-c_4 y^3}.$$

Tails for exponential LPP

• [Ledoux, Rider '10]: For all $y < \delta n^{2/3}$ and for all large n,

$$\mathbb{P}(G(n) - 4n > yn^{1/3}) \le C_1 e^{-c_1 y^{3/2}},$$
$$\mathbb{P}(G(n) - 4n > yn^{1/3}) \ge C_3 e^{-c_3 y^{3/2}},$$
$$\mathbb{P}(G(n) - 4n < -yn^{1/3}) \le C_2 e^{-c_2 y^3}.$$

• [Basu, Ganguly, Hegde, Krishnapur '19] Lower tail lower bound

$$\mathbb{P}(G(n) - 4n < -yn^{1/3}) \ge C_4 e^{-c_4 y^3}.$$

• Works for Laguerre ensembles generally:

$$\mathbb{P}(G_{\ell}(n) - 4n < -yn^{1/3}) \geq C_5 e^{-c_5 y^3}.$$

• Recall that $G_{\ell}(m, n)$ is the line-to-point passage time from $\{x + y = 0\}$ to (m, n) and $G_{\ell}(n) = G_{\ell}(n, n)$.

Upper tail in stationary LPP

Theorem ([B. '20], [Emrah, Janjigian, Seppäläinen '20]) For all $y < \delta n^{2/3}$ and n large enough,

 $C_1 e^{-c_1 y^{3/2}} \leq \mathbb{P}(G_{\text{stat}}(v_n) - n \geq y n^{1/3}) \leq C_2 e^{-c_2 y^{3/2}}$

- $G_{\text{stat}}(v_n) \ge G((1,1), v_n)$ gives lower bound.
- Do $\rho = 1/2$ for convenience. Recall $v_n = (n/2, n/2)$.
- Need to bound $\mathbb{P}(\max_{\mathbf{x}\in(-n/2,n/2)} \{G_{\text{stat}}(\mathbf{x}) + G(\mathbf{x},v_n)\} \ge n + yn^{1/3}).$
- Paths with large exit times can be handled. Reduces to bounding $\mathbb{P}(\max_{\mathbf{x}\in(-n/4,n/4)} \{G_{\text{stat}}(\mathbf{x}) + G(\mathbf{x},v_n)\} \ge n + yn^{1/3}).$

Upper tail in stationary LPP

• Recall $w_r = (rN^{2/3}, 0)$ and that for **x** in (w_r, w_{r+1}) , we have $\mathbb{E}(G_{\text{stat}}(\mathbf{x}) + G(\mathbf{x}, v_n)) \le n - r^2 n^{1/3}$. $\mathbb{P}(\max_{\mathbf{x} \in (w_r, w_{r+1})} \{G_{\text{stat}}(\mathbf{x}) + G(\mathbf{x}, v_n)\} \ge n + yn^{1/3}) \le Ce^{-c(y+r^2)^{3/2}}$.

•
$$\sum_{r=-\infty}^{\infty} e^{-c(y+r^2)^{3/2}} \sim e^{-cy^{3/2}}$$

Lower tail in stationary LPP

Theorem ([B. '20])

For $\rho = 1/2$ and all $y < \delta n^{2/3}$ and n large enough,

 $C_1 e^{-c_1 y^3} \leq \mathbb{P}(G_{\text{stat}}(v_n) - n \leq -y n^{1/3}) \leq C_2 e^{-c_2 y^3}.$

- $G_{\text{stat}}(v_n) \ge G((1,1), v_n)$ gives the upper bound for all ϱ .
- For the lower bound, we will use

$$\mathbb{P}(G_\ell(n)-4n<-yn^{1/3})\geq Ce^{-cy^3}.$$

Strong Burke property of stationary LPP

- The increments along any down-right path are independent. The vertical and horizontal increments are distributed as Exp(ρ) and Exp(1 - ρ) respectively.
- Increment stationarity of the model: $G_{\text{stat}}^{x}(\cdot) - G_{\text{stat}}^{x}(z)$ is distributed as $G_{\text{stat}}^{z}(\cdot)$.
- Gives a coupling where $G_{\text{stat}}^{z}(\cdot)$ is computed by using boundary weights given by $I_{z+\cdot e_{1}}^{x}$ and $J_{z+\cdot e_{2}}^{x}$.

Strong Burke property of stationary LPP

- The increments along any down-right path are independent. The vertical and horizontal increments are distributed as Exp(ρ) and Exp(1 - ρ) respectively.
- Increment stationarity of the model: $G_{\text{stat}}^{x}(\cdot) - G_{\text{stat}}^{x}(z)$ is distributed as $G_{\text{stat}}^{z}(\cdot)$.
- Gives a coupling where $G_{\text{stat}}^{z}(\cdot)$ is computed by using boundary weights given by $I_{z+\cdot e_{1}}^{x}$ and $J_{z+\cdot e_{2}}^{x}$.
- $I_{z+ie_1}^{\times} = G_{\text{stat}}^{\times}(ie_1) G_{\text{stat}}^{\times}((i-1)e_1)$: horizontal increments of $G_{\text{stat}}^{\times}(\cdot)$ on the line $z + \mathbb{Z}e_1$.
- J[×]_{z+ie2} = G[×]_{stat}(ie2) G[×]_{stat}((i − 1)e2): vertical increments of G[×]_{stat}(·) on the line z + Ze2.
- *a* is the unique point maximising $G_{\text{stat}}^{x}(a) + G(a, y)$ or equivalently $G_{\text{stat}}^{x}(a) - G_{\text{stat}}^{x}(z) + G(a, y).$ Manan Bhatia (IISc)

An equivalent stationary LPP model

- $G_{\text{stat}}^{(-n,-n)}(p) G_{\text{stat}}^{(-n,-n)}(\mathbf{0}) = G_{\text{stat}}^{\mathbf{0}}(p)$ using *I*,*J* as boundary weights.
- Also, $G_{\text{stat}}^{(-n,-n)}(p) - G_{\text{stat}}^{(-n,-n)}(\mathbf{0}) = \underline{G}_{\text{stat}}^{\mathbf{0}}(p).$ Hence $\underline{G}_{\text{stat}}^{\mathbf{0}}(p) = G_{\text{stat}}^{\mathbf{0}}(p).$

•
$$e_3 = e_1 - e_2$$

- Define $T(t) = \sum_{j=0}^{t} K_{0+ie_3}^{(-n,-n)}$.
- $\underline{G}_{\mathrm{stat}}^{\mathbf{0}}(p) = \max_{t} \{ T(t) + G(te_3, p) \}.$
- Each $K_{0+te_3}^{(-n,-n)} = X_i Y_i$ where X_i and Y_i are all mutually independent with marginals Exp(1/2). Hence each $K_{0+te_3}^{(-n,-n)}$ has mean zero.

An equivalent stationary LPP model

- $G_{\text{stat}}^{(-n,-n)}(p) G_{\text{stat}}^{(-n,-n)}(\mathbf{0}) = G_{\text{stat}}^{\mathbf{0}}(p)$ using *I*,*J* as boundary weights.
- Also, $G_{\text{stat}}^{(-n,-n)}(p) - G_{\text{stat}}^{(-n,-n)}(\mathbf{0}) = \underline{G}_{\text{stat}}^{\mathbf{0}}(p).$ Hence $\underline{G}_{\text{stat}}^{\mathbf{0}}(p) = G_{\text{stat}}^{\mathbf{0}}(p).$

•
$$e_3 = e_1 - e_2$$
.

- Define $T(t) = \sum_{j=0}^{t} K_{0+ie_3}^{(-n,-n)}$.
- $\underline{G}_{\mathrm{stat}}^{\mathbf{0}}(p) = \max_{t} \{ T(t) + G(te_3, p) \}.$
- Each $K_{0+te_3}^{(-n,-n)} = X_i Y_i$ where X_i and Y_i are all mutually independent with marginals Exp(1/2). Hence each $K_{0+te_3}^{(-n,-n)}$ has mean zero.
- Similar exit-time result: Geodesic leaves line outside $(-xn^{2/3}, xn^{2/3})$ with probability at most e^{-cx^3} .

Lower tail lower bound

- Only works for $\varrho = 1/2$. Recall $v_n = (n/2, n/2)$. $\mathbb{P}(\underline{G}_{\text{stat}}^{\mathbf{0}}(v_n) \le n - yn^{1/3}) = \mathbb{P}\left(\max_t \{T(t) + G(te_3, v_n)\} \le n - yn^{1/3}\right)$
- By exit-time result, the stationary geodesic exits the line {x + y = 0} in t ∉ [-y²n^{2/3}, y²n^{2/3}] with probability at most e^{-cy⁶}.
- Need to lower bound $\mathbb{P}\left(\max_{t\in(-y^2n^{2/3},y^2n^{2/3})}\left\{T(t)+G\left(te_3,v_n\right)\right\}\leq n-yn^{1/3}\right).$

Lower tail lower bound

$$\mathbb{P}\left(\max_{t\in(-y^{2}n^{2/3},y^{2}n^{2/3})} \{T(t)+G(te_{3},v_{n})\} \le n-yn^{1/3}\right)$$

$$\ge \mathbb{P}\left(\max_{t\in(-y^{2}n^{2/3},y^{2}n^{2/3})} T(t) \le -\frac{yn^{1/3}}{2}\right) \mathbb{P}\left(\max\{G(te_{3},v_{n})\} \le n-\frac{yn^{1/3}}{2}\right)$$

$$\ge C_{1}\mathbb{P}\left(G_{\ell}(v_{n}) \le n-\frac{yn^{1/3}}{2}\right) \ge Ce^{-cy^{3}}.$$

• First term: a Brownian motion estimate. Second term: point-to-line LPP lower tail lower bound.

- We use the random matrix estimates for exponential LPP.
- Since we only used the point-to-point moderate deviations, the same method should give bounds for other models like stationary versions of geometric and Poissonian LPP.
- The work by [Emrah, Janjigian, Seppäläinen '20] uses the Burke property of stationary LPP to derive an exact formula for the l.m.g.f. of $G_{\text{stat}}(m, n)$ which is used to give the exit-time bounds.

Questions?