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Falling blocks

Blocks falling on Z with
space-time i.i.d. interarrival
times.

At time t, interface height ∼ t
and fluctuations ∼

√
t.

Model yielding a smoother
surface?

1 2 3 4 5 . . .
. . .
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Corner growth model

wi ,j are i.i.d. .

Change a valley to a trough
after the corresponding time
wi ,j .

Ti ,j : the time of absorbing (i , j)
satisfies the recursion

Ti ,j = max{Ti−1,j ,Ti ,j−1}+ wi ,j .

Expect linear growth with t1/3

fluctuations in the surface
height.
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Last Passage Percolation on Z2

Have i.i.d. random variables wi ,j

on the vertices. The weight of a
path is the sum of the values of
the traversed vertices in Z2.

G (u, v) is the maximum weight
of up-right paths going from u
to v . The almost surely unique
path attaining G (u, v) is called
the geodesic.

For convenience,
G (n) = G ((1, 1), (n, n)).

Satisfies the same recursion

G (u, v) =

max {G (u, v − e1),G (u, v − e2)}+ wv .
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LPP on Z2: first order behaviour

Linear growth in all directions:
G(0,α(m,n))

α → c(m, n) ∈ (0,∞)
as α→∞ almost surely.

A consequence of
superadditivity:
G (r + s) ≥ G (r) + G (s)′ and
Fekete’s lemma/Kingman’s
theorem.
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Exponential LPP

Each vertex in Z2 carries an i.i.d. Exp(1) variable.

Theorem (Johansson’99)

For exponential LPP and m ≥ n,

P(G (m, n) ≤ t) =
1

Zm,n

∫
[0,t]n

∏
1≤i<j≤n

(xi − xj)
2

n∏
j=1

xm−nj e−xjdnx .

weight of geodesic ↔ length of longest increasing subsequence in a
random generalized permutation ↔ length of top row in a pair of
random Young Tableaux.

Theorem implies that G (m, n) has same distribution as the largest
eigenvalue of X ∗X where X is an m × n matrix of i.i.d. standard
complex Gaussian random variables.
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Exponential LPP: Properties

Limit shape: EG(0,α(m,n))
α → (

√
m +

√
n)2 as α→∞.

G(n)−4n
n1/3

converges in distribution to a multiple of the GUE
Tracy-Widom distribution.

[Ledoux, Rider ’10]: For all y < δn2/3 and for all large n,

P(G (n)− 4n > yn1/3) ≤ C1e
−c1y3/2

,

P(G (n)− 4n > yn1/3) ≥ C3e
−c3y3/2

,

P(G (n)− 4n < −yn1/3) ≤ C2e
−c2y3

.

[Basu, Ganguly, Hegde, Krishnapur ’19] Lower tail lower bound

P(G (n)− 4n < −yn1/3) ≥ C4e
−c4y3

.

Works for all directions away from the boundaries.

Optimal in the exponent.
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Exponential LPP: Transversal Fluctuations

Let Aα be the event that the geodesic for G (n) stays in a strip of
width α about the line {x = y}.
[Johansson ’99] P(An2/3+ε)→ 1 and P(An2/3−ε)→ 0 as n→∞.

[Basu, Sidoravicius, Sly ’16] P((Arn2/3)c) ≤ C1e
−c1r3 .

[Hammond, Sarkar ’18] P((Arn2/3)c) ≥ C2e
−c2r3 .

Manan Bhatia (IISc) July 29, 2020 8 / 20



Exponential LPP: Transversal Fluctuations
How far does the geodesic for G (n) venture from the line {x = y}?.
By the limit shape result, for px = (n/2− x , n/2 + x),

EG ((1, 1), px) + EG (px , (n, n)) ∼ 4n − C
x2

n
.

For typical transversal fluctutations, heuristically x2

n ∼ n1/3 and thus

x ∼ n2/3.

px

(n/2, n/2)

(n, n)

(1, 1)
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Exponential LPP: Transversal Fluctuations

Notation G̃ (n) = G (n)−EG (n).

An upper bound on the
probability of Bx : the event that
px = (n/2− x , n/2 + x) lies on
the geodesic.

An application of the
point-to-point moderate
deviation estimates. Here
x = rn2/3.

px

(n/2, n/2)

(n, n)

(1, 1)

P (Bx) = P(G ((1, 1), px)) + G (px , (n, n)) = G (n))

≤ P
(
G̃ ((1, 1), px)) ≥ C

4
r2n1/3

)
+ P

(
G̃ (px , (n, n)) ≥ C

4
r2n1/3

)
+ P

(
G̃ (n) ≤ −C

2
r2n1/3

)
≤ e−c1r

3
+ e−c2r

3
+ e−c3r

6 ≤ e−cr
3
.
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Exponential LPP: Transversal fluctuations

By technical results, can obtain

P
(

max
x∈(−n2/3,n2/3)

{G̃ (px)} ≥ yn1/3
)
≤ e−cy

3/2
.

(n/2, n/2)

(n, n)

(1, 1)

n2/3

Summing up over r would give an e−cr
3

bound for the geodesic going
a distance more than rn2/3 transversally at the midpoint.
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The TASEP

Totally Asymmetric Exclusion Process.

Start with a configuration of particles and holes on Z + 1
2 .

Vertices have i.i.d. Exp(1) clocks which signal the respective particle
to attempt a jump to its right.

A jump is successful if there is a hole to the right of a particle.
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Connection between TASEP and exponential LPP

Start the TASEP with the step initial
condition: all particles to the left of 0
and all holes to the right of 0.

If a particle moves from i + 1
2 to

(i + 1) + 1
2 , then flip the wedge on the

line {x = i + 1}.
The time taken for the particle at
−m + 1

2 to jump n steps to the right
has the same distribution as G (m, n).

Both satisfy the same recusion:

G ((m, n)) =

max {G ((m − 1, n)),G ((m, n − 1))}+ w(m,n).
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Other initial conditions for the TASEP: Flat

The flat initial condition:
particles at (i + 1

2) for all odd i .

Time taken to add (m, n) is
distributed as the point-to-line
passage time G`(m, n) from
{x + y = 0} to (m, n) in
exponential LPP.

[Baik, Rains] Same as the
distribution of 1

2λ2n+1 where
λ2n+1 is the largest eigenvalue
of XTX , and X is a
(2n + 2)× (2n + 1) matrix of
i.i.d. standard normal variables.
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Other initial conditions for the TASEP: Stationary

[Liggett ’76] Product Ber(%)
measures are the extremal
stationary measures for the
TASEP.

Corresponds to the point-to-line
passage time from a random line
fluctuating about the
deterministic line {y = − %

1−%x}.
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Stationary LPP

Start the TASEP with a particle at
0 + 1

2 , a hole at −1 + 1
2 and a

product Ber(%) measure elsewhere.

Burke Property: Interpreting
particles as servers and holes as
customers, the particle at 0 + 1

2
moves according to a Poisson
process of jump rate (1− %).

(0, 0)

P0H0H
−1P1P2 H1

P
−1 H2

Figure from [Bálazs, Cator, Seppäläinen ’06].
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Stationary LPP

[Bálazs, Cator, Seppäläinen ’06]
Time for the nth particle to the left
of 0 crossing the mth hole to the
right of 0 is distributed according to
the passage time Gstat(m, n).

Time has same distribution on the
boundaries. For the interior, the
recursion is the same.

(0, 0)

P0H0H
−1P1P2 H1

P
−1 H2

Figure from [Bálazs, Cator, Seppäläinen ’06].
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The characteristic direction

A first order calculation
indicates that the geodesic in
the direction ((1− %)2, %2)
spends a negligible amount of
time on the boundary.

Finding the vector (θ1, θ2) such
that x

1−% + (
√
θ1 − x +

√
θ2)2

and x
% + (

√
θ1 +

√
θ2 − x)2 are

maximized at x = 0.
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Exit time

A general point in the
characteristic direction
vn = ((1− %)2n, %2n).

Exit time: Zn the point at
which the geodesic for Gstat(vn)
exits the coordinate axes.

Exp(1− ̺)

Exp(̺)

vn

(Zn, 0)

Exp(1− ̺)

Exp(̺)

vn

(0,−Zn)
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Upcoming

Zn: the exit time in the characteristic direction fluctuates at the scale
n2/3.

Deviation estimates for the exit time at the correct scale.
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Expected weight of geodesics with exit time x

vn = ((1− %)2n, %2n), a generic point in the characteristic direction.

Recall that x
1−% + (

√
θ1 − x +

√
θ2)2 and x

% + (
√
θ1 +

√
θ2 − x)2 are

maximised at x = 0 for the characteristic direction
(θ1, θ2) = ((1− %)2, %2).

Taylor expansion:

x

1− %
+ (
√
θ1n − x +

√
θ2n)2 ∼ n − 4%

(1− %)3
x2

n

For % = 1/2, the above is n − x2

n .

For typical exit times, heuristically x2

n ∼ n1/3 and thus x ∼ n2/3.
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Exit time tail estimates

Upper tail estimates?

[Bálazs, Cator, Seppäläinen ’06] Power law tail: P(|Zn| ≥ rn2/3) ≤ C
r3

.

[Ferrari, Occelli ’18] P(|Zn| ≥ rn2/3) ≤ Ce−cr
2
.

[Seppäläinen, Shen ’19] P(|Zn| ≥ rn2/3) ≥ Ce−cr
3
.

Lower tail: [Seppäläinen, Shen ’19] P(|Zn| ≤ δn2/3) ≤ Cδ| log δ|2/3.

[???] P(|Zn| ≤ δn2/3) ≥ Cδ.

Theorem ([B. ’20],[Emrah, Janjigian, Seppäläinen ’20])

P(|Zn| ≥ rn2/3) ≤ Ce−cr
3
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[Bálazs, Cator, Seppäläinen ’06] Power law tail: P(|Zn| ≥ rn2/3) ≤ C
r3

.

[Ferrari, Occelli ’18] P(|Zn| ≥ rn2/3) ≤ Ce−cr
2
.
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Technical estimates
Recall that for all x < δn2/3,

P(G (n)− 4n > xn2/3) ≤ C1e
−c1x3/2 .

[Basu, Sidoravicius, Sly ’16]

P
(

max
u∈A,v∈B

G (u, v) ≥ 4n + xn1/3
)
≤ C2e

−c2x3/2 .

Works with uniform constants as long as the long sides are bounded
away from being horizontal/vertical.
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Upper tail for the exit time

Take % = 1/2.

Will show P(Zn ∈
(rn2/3, (r + 1)n2/3) ≤ Ce−cr

3

with uniform constants as long

as 0 < r < (1− ε)n1/32 .

The case Zn ≥ (1− ε)n1/32 can
be handled separately. We skip
it.

Then P(Zn ≥ rn2/3) ≤∑∞
r e−cx

3 ∼ e−cr
3
.

(0, 0)

vn = (n/2, n/2)

rn2/3 (r + 1)n2/3
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Bounding P(Z n ∈ (rn2/3, (r + 1)n2/3)

Let wr denote (rn2/3, 0). For x in (wr ,wr+1), we have
E (Gstat(x) + G (x, vn)) ≤ n − r2n1/3.

P(Zn ∈ (wr ,wr+1)) = P( max
x∈(wr ,wr+1)

{Gstat(x) + G (x, vn)} = Gstat(vn))

≤ P(Gstat(vn) < n − r2n1/3

2
) + P(max{Gstat(x) + G (x, vn)} > n − r2n1/3

2
)

≤ P(max
{
G̃ (x, vn)

}
≥ r2n1/3

4
) + P(max

{
G̃stat(x)

}
≥ r2n1/3

4
)

≤ e−cr
3

+ ().

Notice that
Gstat(vn) ≥ G ((1, 1), vn).

Moderate deviations for
exponential LPP gives e−cr

6

upper bound for the red term.

(0, 0)

vn = (n/2, n/2)

rn2/3 (r + 1)n2/3
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The term coming from the boundary weights

A random walk estimate.

P

(
Gstat(wr )− 2wr√

rn1/3
≥ r3/2

4

)
≤ e−cr

3
.

(0, 0)

vn = (n/2, n/2)

rn2/3 (r + 1)n2/3
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Moderate deviations for the stationary passage time

Bounding the tails

P(Gstat(vn)− n ≥ yn1/3),

P(Gstat(vn)− n ≤ −yn1/3).

First, compare to tails of exponential LPP.
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Tails for exponential LPP

[Ledoux, Rider ’10]: For all y < δn2/3 and for all large n,

P(G (n)− 4n > yn1/3) ≤ C1e
−c1y3/2

,

P(G (n)− 4n > yn1/3) ≥ C3e
−c3y3/2

,

P(G (n)− 4n < −yn1/3) ≤ C2e
−c2y3

.

[Basu, Ganguly, Hegde, Krishnapur ’19] Lower tail lower bound

P(G (n)− 4n < −yn1/3) ≥ C4e
−c4y3

.

Works for Laguerre ensembles generally:

P(G`(n)− 4n < −yn1/3) ≥ C5e
−c5y3

.

Recall that G`(m, n) is the line-to-point passage time from
{x + y = 0} to (m, n) and G`(n) = G`(n, n).
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Upper tail in stationary LPP

Theorem ([B. ’20],[Emrah, Janjigian, Seppäläinen ’20])

For all y < δn2/3 and n large enough,

C1e
−c1y3/2 ≤ P(Gstat(vn)− n ≥ yn1/3) ≤ C2e

−c2y3/2
.

Gstat(vn) ≥ G ((1, 1), vn) gives lower bound.

Do % = 1/2 for convenience. Recall vn = (n/2, n/2).

Need to bound P(maxx∈(−n/2,n/2){Gstat(x) + G (x, vn)} ≥ n + yn1/3).

Paths with large exit times can be handled. Reduces to bounding
P(maxx∈(−n/4,n/4){Gstat(x) + G (x, vn)} ≥ n + yn1/3).
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Upper tail in stationary LPP

Recall wr = (rN2/3, 0) and that for x in (wr ,wr+1), we have
E (Gstat(x) + G (x, vn)) ≤ n − r2n1/3.

P( max
x∈(wr ,wr+1)

{Gstat(x) + G (x, vn)} ≥ n + yn1/3) ≤ Ce−c(y+r2)3/2 .

∑∞
r=−∞ e−c(y+r2)3/2 ∼ e−cy

3/2
.

(0, 0)

vn = (n/2, n/2)

rn2/3 (r + 1)n2/3
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Lower tail in stationary LPP

Theorem ([B. ’20])

For % = 1/2 and all y < δn2/3 and n large enough,

C1e
−c1y3 ≤ P(Gstat(vn)− n ≤ −yn1/3) ≤ C2e

−c2y3
.

Gstat(vn) ≥ G ((1, 1), vn) gives the upper bound for all %.

For the lower bound, we will use

P(G`(n)− 4n < −yn1/3) ≥ Ce−cy
3
.

(0, 0)

(n, n)
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Strong Burke property of stationary LPP

The increments along any down-right path are
independent. The vertical and horizontal
increments are distributed as Exp(%) and
Exp(1− %) respectively.

Increment stationarity of the model:
G x
stat(·)− G x

stat(z) is distributed as G z
stat(·).

Gives a coupling where G z
stat(·) is computed by

using boundary weights given by I xz+·e1 and
Jxz+·e2 .

I xz+ie1
= G x

stat(ie1)−G x
stat((i − 1)e1): horizontal

increments of G x
stat(·) on the line z + Ze1.

Jxz+ie2
= G x

stat(ie2)− G x
stat((i − 1)e2): vertical

increments of G x
stat(·) on the line z + Ze2.

a is the unique point maximising
G x
stat(a) + G (a, y) or equivalently

G x
stat(a)− G x

stat(z) + G (a, y).

(0, 0)

P0H0H
−1P1P2 H1

P
−1 H2
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An equivalent stationary LPP model

G
(−n,−n)
stat (p)− G

(−n,−n)
stat (0) = G0

stat(p)
using I ,J as boundary weights.

Also,
G

(−n,−n)
stat (p)− G

(−n,−n)
stat (0) = G0

stat(p).
Hence G0

stat(p) = G0
stat(p).

e3 = e1 − e2.

Define T (t) =
∑t

j=0 K
(−n,−n)
0+ie3

.

G0
stat(p) = maxt {T (t) + G (te3, p)}.

Each K
(−n,−n)
0+te3

= Xi − Yi where Xi and
Yi are all mutually independent with
marginals Exp(1/2). Hence each

K
(−n,−n)
0+te3

has mean zero.

Similar exit-time result: Geodesic leaves
line outside (−xn2/3, xn2/3) with
probability at most e−cx

3
.

(0, 0)

(n, n)

(−n,−n)

I
(−n,−n)
0+·e1

J
(−n,−n)
0+·e2

K
(−n,−n)
0+·e3

p

(0, 0)

t

Exp(1/2)
−

Exp(1/2)

(n, n)
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stat (p)− G

(−n,−n)
stat (0) = G0

stat(p)
using I ,J as boundary weights.

Also,
G

(−n,−n)
stat (p)− G

(−n,−n)
stat (0) = G0

stat(p).
Hence G0

stat(p) = G0
stat(p).

e3 = e1 − e2.

Define T (t) =
∑t

j=0 K
(−n,−n)
0+ie3

.

G0
stat(p) = maxt {T (t) + G (te3, p)}.

Each K
(−n,−n)
0+te3

= Xi − Yi where Xi and
Yi are all mutually independent with
marginals Exp(1/2). Hence each

K
(−n,−n)
0+te3

has mean zero.

Similar exit-time result: Geodesic leaves
line outside (−xn2/3, xn2/3) with
probability at most e−cx

3
.

(0, 0)

(n, n)

(−n,−n)

I
(−n,−n)
0+·e1

J
(−n,−n)
0+·e2

K
(−n,−n)
0+·e3

p

(0, 0)

t

Exp(1/2)
−

Exp(1/2)

(n, n)
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Lower tail lower bound

Only works for % = 1/2. Recall vn = (n/2, n/2).

P(G0
stat(vn) ≤ n − yn1/3) = P

(
max
t
{T (t) + G (te3, vn)} ≤ n − yn1/3

)
By exit-time result, the stationary geodesic exits the line {x + y = 0}
in t /∈ [−y2n2/3, y2n2/3] with probability at most e−cy

6
.

Need to lower bound
P
(

maxt∈(−y2n2/3,y2n2/3) {T (t) + G (te3, vn)} ≤ n − yn1/3
)

.
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Lower tail lower bound

P
(

max
t∈(−y2n2/3,y2n2/3)

{T (t) + G (te3, vn)} ≤ n − yn1/3
)

≥ P

(
max

t∈(−y2n2/3,y2n2/3)
T (t) ≤ −yn1/3

2

)
P

(
max {G (te3, vn)} ≤ n − yn1/3

2

)

≥ C1P

(
G`(vn) ≤ n − yn1/3

2

)
≥ Ce−cy

3
.

First term: a Brownian motion estimate. Second term: point-to-line
LPP lower tail lower bound.
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Some remarks

We use the random matrix estimates for exponential LPP.

Since we only used the point-to-point moderate deviations, the same
method should give bounds for other models like stationary versions
of geometric and Poissonian LPP.

The work by [Emrah, Janjigian, Seppäläinen ’20] uses the Burke
property of stationary LPP to derive an exact formula for the l.m.g.f.
of Gstat(m, n) which is used to give the exit-time bounds.
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Questions?
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