
Bayesian approach to linear ill-posed inverse problems
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Inverse problems

Let us consider a model

y = G (u),

where u ∈ X1 and G : X1 → X2. The inverse problem consists of
finding u given y . Problems that may occur -

1) There maybe many solutions u corresponding to a single
observation y .

2) The solution maybe very sensitive to the observation. Small
error in observing y may cause large change in estimated
value of u.

3) The error in observation may throw the observation y out of
the range of G .
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Our model

We restrict ourselves to X1 = H1, X2 = H2 where H1 and H2

are separable Hilbert spaces.

G is compact and injective. Only the second and third
problem are relevant here.

Our focus: Statistical, mainly Bayesian approaches to the inverse
problem.
Bayesian approach to inverse problems is still new for infinite
dimensions and even some basic questions in this setup are
unanswered.
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Statistical version of classical inverse problem

Let us consider the case of noisy observations

y = G (u) +
1√
n
η,

where η ∼ N(0, ζ) is the Gaussian noise and n is the parameter
controlling the intensity of noise.

The noise may throw the observation y out of the range of G
almost surely. Infact, the commonly used white noise throws
the observation out of H2 almost surely.

y maybe seen as element of a Banach space, which is possibly
an extension of H2.
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Statistical inverse problem

Definition

Estimators of u are functions of the observation y with values in
H1.

Main concerns about estimators are well-posedness and
consistency.
Setting u0 as the true solution, define

y |u0 ∼ N(G (u0), ζn ) ≡ Qu0,n.

ξû,u0n ≡ ‖û(y)− u0‖L2(Qu0,n)
.

Definition

An estimator û(y) is said to be consistent if

ξû,u0n → 0 as n→∞

But at what rate?
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An estimator û(y) is said to be consistent if
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ξû,u0n → 0 as n→∞

But at what rate?

Bayesian inverse problems



Statistical inverse problem

Definition

Estimators of u are functions of the observation y with values in
H1.

Main concerns about estimators are well-posedness and
consistency.
Setting u0 as the true solution, define

y |u0 ∼ N(G (u0), ζn ) ≡ Qu0,n.
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An estimator û(y) is said to be consistent if
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Minimax rates

Definition

Minimax rates for the model over a set S is given by

ξn(S) ≡ min
û

max
u0∈S

ξû,u0n

NOTE: Minimax rates put a bound on how quickly a posterior can
approximate the true solution as noise goes to zero.
To get exact rates, we need more information concerning the
operator G and the set S .
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Minimax rates

Let {ei , ρ2i } be the eigenpair of GTG . The ill-posedness of the
model is characterised as

when ρ2i ≈ i−2α, the problem is said to be mildly ill posed, e.g
- Deconvolution problems.

when ρ2i ≈ exp(−iβ), the problem is said to be severely ill
posed, e.g - Heat equation.
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Minimax rates

The sets on which the minimax rate is estimated are Sobolev balls
in the basis {ei}. That is,

Hγ(R) ≡ {u :
∑

(iγ〈u, ei 〉)2 ≤ R}

The minimax rates then are given as -

Mildly ill posed problem: ξn = n−
γ

1+2α+2γ

Severely ill posed problem: ξn = (log n)−
γ
β

Cavalier(2007)
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Inverse problems in Bayesian setup: preliminaries
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Bayesian Inverse problem

Recall the model:

y = G (u) +
1√
n
η

Introduce Prior - u ∼ N(0, C
R2
n

) ≡ µn
The solution in the bayesian setup is given by the conditional
random variable u|y ∼ µyn.

The prior allows us to incorporate any prior notions we might
have about the behaviour of the true solution u0.

Functionals of posterior can serve as point estimators.
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Our model

Assumption - G (u) lies almost surely (w.r.t. the prior) in the
Cameron-Martin space of the noise.

As a consequence, the likelihood y |u ∼ Qu,n is absolutely
continuous with respect to the noise measure Q0,n almost surely u.

Likelihood density - Cameron-Martin theorem gives the density as

exp (−Φ(y , u)) = exp
(
−n

2
〈G (u),G (u)〉ζ + n 〈y ,G (u)〉ζ

)
where 〈., .〉ζ is the Cameron-Martin norm. The expression is
defined for almost all y .
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Posterior measure

Posterior density - Bayes’ theorem now gives the posterior density
as

dµyn
dµn

=
exp (−Φ(y , u))∫

H1
exp (−Φ(y , u)) dµn

The denominator is positive and finite for almost all y
(Tonelli’s theorem).

Wellposedness captures the notion that the solution(posterior in
this case) varies continuously with observation. This requires
metrics on the relevant spaces.
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Well-posedness

Definition

Given two probability measures µ and ν and a third probability
measure λ such that µ and ν has densities with respect to λ, then
the Hellinger distance is

d(µ, ν) ≡

√∫ (
dµ

dλ
− dν

dλ

)2

dλ

Definition

Posterior for a model is said to be wellposed if there exists a
Banach space {Y , ‖.‖Y } such that observations y ∈ Y almost
surely and y → µyn is a continuous function from Y to the space of
probability measures on H1.
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Well-posedness

Stuart(2010) : Well-posedness for Bayesian models on
separable Banach spaces under certain sufficient technical
conditions on the potential Φ(u, y) and the gaussian prior.

Agapiou, Larsson and Stuart(2013) : The above result is used
in context of our model to show its wellposedness. To satisfy
the conditions, the authors have put extra conditions on the
operators involved.
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Well-posedness

Our first result shows that well-posedness for our model follows
without any technical assumptions.

Theorem

For the model

y = G (u) +
1√
n
η,

with the terms defined as before, the posterior is well posed if
G (u) lies in the Cameron-Martin space of the noise measure
almost surely with respect to the prior measure.

Note that the only assumption used in the theorem is also the
assumption needed for the Bayesian procedure to work.
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Consistency

The posterior µyn is a random measure on H1 with
randomness coming from y .

Assuming a true solution u0, the distribution of y is
N(G (u0), ζn ).

Posterior is a good representation of the solution only if it
concentrates around the true solution in some appropriate
fashion as the noise goes to 0.

The random variable Xn(ξ, y) ≡ µyn{u : ‖u − u0‖ > ξ} quantifies
the measure that the posterior assigns outside a ξ-ball of the true
solution u0.

Definition

The posterior is said to be consistent when

Xn(ξ, y)→ 0

in probability as n→∞ for all ξ > 0 and u0 ∈ H1.
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Contraction rates

Contraction rates quantify how quickly the posterior converges to
the true solution.

Definition

ξn → 0 (as n→∞) is said to be a contraction rate for the
posterior at u0 if

Xn(ξn, y)→ 0

in probability as n→∞

As with minimax rates, contraction rates which are common over
Sobolev balls are of interest. The discussion on contraction rates
takes two main directions.

Try to get contraction rates for a large class of priors

Try to improve the rates by changing the parameters of the
prior depending on the level of noise and even the observation
y .
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The parameters

Operator : Let {ei , ρ2i } be the eigenpair of GTG

Mildly ill-posed :ρ2i ≈ i−2α

severely ill posed : ρ2i ≈ exp(−iβ)

True solution : Let the Sobolev space for the true solution be
defined on the basis {φ1i }.∑

i2γ〈u0, φ
1
i 〉2 <∞

Prior : Let the eigenpair for the covariance operator of prior
be {φ2i ,

λi
R2
n
} with λi = i−1−2δ.

The specifics of the noise occur in conjunction with the operator,
the details of which we will specify later.

Very little is known about contraction rates when the eigenbasis
involved are not simultaneously diagonalizable.
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Mildly ill-posed problems in the diagonal case

Assume that φ1i = φ2i ≡ φi = ei .
Knapik, van der Vaart, Zanten(2011)

ξn = n−
γ∧δ

1+2α+2δ

when Rn = 1.

ξn = n−
γ

1+2α+2γ

when γ ≤ 1 + 2δ + 2α and Rn = n
γ−δ

1+2α+2γ

The rate is sub optimal when γ > 1 + 2δ + 2α. We note here
that even when γ ≤ 1 + 2δ + 2α, the scale depends on the
smoothness of true solution.

The paper also deals with credible sets and contraction rates
for linear functionals of the posterior.
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Mildly ill-posed problems in the diagonal case

Knapik, Szabo, van der Vaart, Zanten(2013) :

Maximum likelihood estimator γ̂(y) is used for the parameter
δ in attempt to improve the rates.

γ̂(y) approximates γ if the true solution is regular.

Contraction rate achieved is

ξn = n−
γ

1+2α+2γ (log n)2(log log n)
1
2

The paper also uses this method to get optimal contraction
rates for analytic priors.
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Severely ill-posed problems in the diagonal case

φi = ei

Knapik, Van der vaart, Zanten(2013) : Deals with β = 2 and
white noise.

Agapiou, Stuart, Zhang(2013) : Deals with general β and
coloured noise with same eigenbasis as ei .

The contraction rates are -

ξn = (log n)−
γ∧δ
β

when Rn = 1.

ξn = (log n)−
γ
β

when (log n)
γ−δ
β ≤ Rn ≤ n

1
2
−σ for some 0 < σ < 1

2 .

Minimax rates are achieved using scalable priors with scales
independent of smoothness of true solution.
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Minimax rates in non-diagonal case

It is enough to calculate minimax rates for linear estimators in
case of additive Gaussian noise.

Standard minimax rates are calculated when ei = φi and
depends on 1

ρi
and γ. However, it can be shown that minimax

rates depend on ‖(G−1)Tφi‖ and γ whenever (G−1)Tφi
exists.

Bayesian contraction rates shall be calculated under the same
assumptions.
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Contraction rates in non-diagonal case

Ray(2013) :

A test function approach based on Ghosh et.al.(2000) is used
to prove a general lemma about contraction rates assuming
that for each i, 〈φi , ej〉 is 0 for all except finitely many j .

The lemma applies to non-Gaussian priors as well. In effect,
prior should be the distribution of random element

∑
κiφi

where κi are real valued random variables.

The lemma reduces finding contraction rates to verifying
certain technical conditions.

In case of Gaussian priors, the author verifies the conditions
only for the diagonal case for both mildly and severely-ill
posed problems for non scalable priors.
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Contraction rates in non-diagonal case

Ray(2013)(continued)

The rate for mildly ill-posed problem matches that of Knapik
et.al. (non-empirical, non scalable prior). The method gives
sub optimal rates for severely ill posed problems -

ξn = (log n)−
γ∧(δ−β2 )

β
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Contraction rates for mildly-ill posed problems in
non-diagonal case

Agapiou, Larsson, Stuart(2013) :

Using discretization and tools from functional analysis,
authors have found contraction rates for mildly ill-posed
problems in certain class of non diagonal problems.

The authors work with the more relaxed assumption that
G (u) lies almost surely in the Cameron-Martin space of the
noise. The authors also allow for coloured noise.

The operators G , C and ζ are related via several technical
assumptions. Heuristically, they reflect the idea that the
operators are equivalent to powers of each other on certain
spaces. The method does not apply to severely ill-posed
problems.

The rate was not found for true solutions lying outside the
Cameron-Martin space of prior that is, when γ < 1

2 + δ.
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Contraction rates for mildly-ill posed problems in
non-diagonal case

Agapiou, Larsson, Stuart(continued) The class of problems for
which the contraction rates were found are of the kind

All the operators are defined on L2(Ω)

G = (C−l +Mq)−1

ζ = (C−
β
2 +Mr )−2 where C ≡ ∆−θ is the covariance

operator of prior and Mq and Mr are multiplication
operators with bounded, positive functions q and r which are
smooth enough (q, r ∈W θ,∞(Ω)).

2l − β > 0− 1.

In this setup, the authors show that effectively, the contraction
rates are for an operator with ill-posedness of order l − β

2 .

Contraction rates are obtained for γ ≥ θ.

Rates arbitrarily close to minimax rates are obtained using
scalable priors (which depend on γ) upto an for the range
θ + κ ≥ γ ≥ θ for some κ with κ < (2l − β + 1)θ.
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Our work

We weaken the assumptions in the general lemma proved by Ray
and further generalise it.

We require only that ‖(G−1)Tφi‖ is finite for all φi .
Alternatively, ∑(

〈ej , φi 〉
ρj

)2

<∞.

We assume that G (u) lies in the Cameron-Martin space of the
noise almost surely with respect to the prior. We also allow
for coloured noise.

We apply the lemma to non-diagonal problems and get
contraction rates for all γ. Our class of examples is strictly
larger than the one used by Agapiou et.al..
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Our work

Consider the following models

Let the noise be white and the eigenpairs of GTG and C be
{ei , ρ2i } and {φi , i−1−2δ} respectively.
〈φi , ej〉 = 0 for all i , j such that j /∈ [k1i , k2i ] for some
k1, k2 > 0
ρi ≈ i−α

G = (C−l +Mq)−1

ζ = (C−
β
2 +Mr )

−2 where C ≡ ∆−θ is the covariance operator
of prior and Mq and Mr are multiplication operators with
bounded, positive functions q and r such that

q ∈W θ((l− β
2 )∧0),∞.

2l − β > 0− 1
Put 2θ = 1 + 2δ and θ(l − β

2 ) = α
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Theorem

The contraction rates ξn for the above models are given by the
following expressions.

ξn =

n−
γ

1+2α+2γ 2γ ≤ 1 + 2δ,Rn = n
γ−δ

1+2α+2γ

n
− 2δ+1

4(1+α+δ) 2γ > 1 + 2δ,Rn = 1
4(1+α+δ)

For severely ill-posed problems defined in similar fashion, we get

the minimax rates ξn = (log n)−
γ
β for scalable priors with scales

which are independent of the smoothness of true solution.
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Future problems

To extend the Bayesian empirical method to non-diagonal
setting in the mildly ill-posed case.

To get minimax rates for true solutions with smoothness
defined on arbitrary bases.

To get contraction rates for true solutions with smoothness
defined on arbitrary bases. In particular, find the orientation
of the prior for which the best rates are achieved.

We can get some contraction rates using the fact that φi
allowed as eigenbases are dense on the unit ball but we dont
know how they relate to optimal rates.

Find an empirical method to estimate the basis of the prior for
which we get optimal rates.
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