Overcrowding estimates for nodal volume of centered SGPs

Lakshmi Priya

arXiv:2012.10857

Department of Mathematics Indian Institute of Science, Bangalore

Plan of the talk

- Introduction.
- Overcrowding in dimension one.
- Overcrowding in higher dimensions.

The setting

SGPs and their nodal sets

For $d \geq 1$, a **centered SGP** X on \mathbb{R}^d is a centered Gaussian process whose distribution is translation invariant, i.e., $\forall t_j, s \in \mathbb{R}^d$

$$(X_{t_1+s},\ldots,X_{t_n+s})\stackrel{d}{=}(X_{t_1},\ldots,X_{t_n})\sim \mathcal{N}(0,\Sigma_{t_1,\ldots,t_n}).$$

Spectral measure μ of X is the unique finite (for us $\mu(\mathbb{R}^d) = 1$) positive symmetric Borel measure on \mathbb{R}^d s.t.

$$\mathbb{E}[X_sX_t] =: k(s-t) = \widehat{\mu}(s-t) = \int_{\mathbb{R}^d} e^{-i\langle s-t,w\rangle} d\mu(w).$$

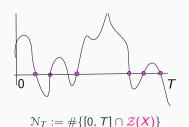
Nodal/Zero set of X, $\mathcal{Z}(X) := X^{-1}\{0\}$.

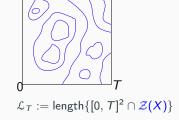
Bulinskaya's lemma \Rightarrow a.s. X has **no singular zeros**. Hence,

 $d=1\Rightarrow$ every zero has multiplicity 1,

d=2, Implicit function thm. $\Rightarrow \mathcal{Z}(X)=\bigsqcup$ smooth curves, if X is C^{∞} .

Zero count & Nodal length





If
$$m \in \mathbb{N}$$
, $\mathfrak{N}_m = \mathfrak{N}_{[0,1]} + \mathfrak{N}_{[1,2]} + \ldots + \mathfrak{N}_{[m-1,m]}$, sum of m ident. dist. r.v. Hence $\mathbb{E}[\mathfrak{N}_m] = \alpha m$, where $\alpha = \mathbb{E}[\mathfrak{N}_1]$.

Stationarity $\Rightarrow \mathbb{E}[\mathcal{N}_T] = \alpha T$ and $\mathbb{E}[\mathcal{L}_T] = \beta T^2$.

Overcrowding Question: $\mathbb{P}(\mathcal{N}_T \gg \mathbb{E}[\mathcal{N}_T])$ and $\mathbb{P}(\mathcal{L}_T \gg \mathbb{E}[\mathcal{L}_T])$?

$\mathsf{SGP} \overset{?}{\longleftrightarrow} \mathsf{Spectral\ measure} \overset{?}{\longleftrightarrow} \mathsf{Zero\ count\ }$

$$\begin{split} \textbf{Ex1: Let } \mu &= \tfrac{a}{2} (\delta_{-2} + \delta_2) + \tfrac{b}{2} (\delta_{-7} + \delta_7) + \tfrac{c}{2} (\delta_{-30} + \delta_{30}), \text{ w/ } a + b + c = 1 \\ X_t &= (\xi_a \cos 2t + \eta_a \sin 2t) + (\xi_b \cos 7t + \eta_b \sin 7t) + (\xi_c \cos 30t + \eta_c \sin 30t), \\ \{\xi_s, \eta_s\} \text{ independent and } \xi_s, \eta_s &\sim \mathcal{N}(0, s). \end{split}$$

So X is a random superposition of waves w/ frequencies \leftrightarrow supp (μ) and random amplitude, phase \leftrightarrow mass assigned by μ .

Zero count: In Ex1, behaviour of X depends on the values of a, b, c.

- If $c \gg a, b$, w.h.p. $X_t \approx A\cos(30t + \phi)$, hence many oscillations and many zeros.
- If $a \gg b, c$, w.h.p. $X_t \approx A\cos(2t + \phi)$, hence fewer oscillations and fewer zeros.

Conclusion: Heavy tail of $\mu \to \text{many oscillations} \to \text{possibily many zeros}$.

Tail of $\mu \stackrel{?}{\longleftrightarrow}$ zero count of X (for a general μ)

- For any μ , topological supp $(X) = \mathcal{F}L^2_{\text{symm}}(\mu)$, where $L^2_{\text{symm}}(\mu) = \{f : \mathbb{R} \to \mathbb{C} \mid f \in L^2(\mu), \ f(-t) = \overline{f(t)}\}.$
- Ex2: Let $\mu \sim \text{unif}[-14, 14]$.

Naive exp.: Every $f \in \mathcal{F}L^2_{\text{symm}}(\mu)$ doesn't oscillate as much as $\sin 14t$.

Reality:
$$\mathcal{F}L^2_{\mathsf{symm}}(\mu) = C(\mathbb{R})$$
, but probabilistically ok!

Borel-TIS/Dudley
$$\Rightarrow$$
 Tail of $\|X^{(n-1)}\|_{[0,1]} \ll$ Tail of $\mathcal{N}(14^n, (14^n)^2)$, w.h.p. $\|X^{(n)}\|_{[0,1]} \lesssim n14^n \longleftrightarrow \|(\sin 14t)^{(n)}\|_{[0,1]} = 14^n$

- For a more general μ , Tail of $\|X^{(n-1)}\|_{[0,1]} \ll \text{Tail}$ of $\mathcal{N}(C_n, C_n^2)$, where $C_m := \int_{\mathbb{D}} |x|^m d\mu(x)$.
- Heavy tails of $\mu \Rightarrow$ possibly many zeros holds here also.

Statistics of N_T : Known results

	Work of	Conditions on μ or k	Result
Moment conditions	Kac–Rice	$C_2 < \infty$	$\mathbb{E}[\mathbb{N}_T] = (\sqrt{C_2}/\pi)T$
	Beljaev	$C_m < \infty$	$\mathbb{E}[\mathcal{N}_T^m] < \infty$
	Nualart	$C_{p}<\infty$, for	somewhat explicit
	Wschebor	some $p > 2m$	bound for $\mathbb{E}[\mathbb{N}_T^m]$
Mixing+ moment conditions	Our results	$C_m < \infty$, $\forall m \& (A1)$	Overcrowding estimates
	Cuzik	$k,k''\in L^2(\mathbb{R})$	$Var \mathcal{N}_T \asymp T$
		Geman condition	CLT
	BDFZ	$Supp(\mu)$ compact $\int_{\mathbb{R}} k(x) dx < \infty$	$\mathbb{P}(\mathcal{N}_{T} - \mathbb{E}[\mathcal{N}_{T}] > \eta T)$ $\lesssim e^{-c_{\eta} T}$

BDFZ: Basu, Dembo, Feldheim, Zeitouni.

Assumptions on the spectral measure

Mixing/decay of k: Events in well separated intervals are *almost independent* and hence $\mathcal{N}_T = \mathcal{N}_{[0,1]} + \mathcal{N}_{[1,2]} + \ldots + \mathcal{N}_{[T-1,T]}$ is approximately a sum of identically distributed M-dependent r. v.

Decay of $k \longleftrightarrow \mathsf{Smoothness}$ of the density of μ (restrictive condition!).

Example: Result of BDFZ does **not** apply to $\mu \sim \text{unif}[-1,1]$.

Finiteness of moments of μ :

Lighter tails of $\mu \Rightarrow$ fewer oscillations \Rightarrow fewer zeros.

(A1):
$$d\mu(x) = f(x)dx + d\mu_s(x)$$
, where $f \not\equiv 0$.

Overcrowding estimates in dimension one

Theorem 1: If X is a centered SGP on \mathbb{R} with spectral measure μ . Then,

 μ has finite moments \implies Overcrowding estimates $+ \mu$ satisfies (A1)

in terms of moments C_n .

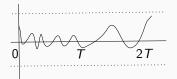
Growth of C_n	Example of μ	Constraints on T and n	$\log \mathbb{P}(\mathcal{N}_T \geq n)$
$C_n \leq q^n$, for $q > 0$	Any μ with $supp(\mu) \subseteq [-q,q]$	$n \geq CT$, for $C \gg 1$	$ \asymp -n^2 \log(\frac{n}{T}) $
$C_n \leq n^{\alpha n},$ for $\alpha \in (0,1)$	$\mu \sim \mathcal{N}(0,1),$ with $lpha = 1/2$ $\mu \sim \mathcal{N}(0,1)$	$n \geq T^{1/\kappa}$, for $\kappa \in (0, 1-lpha)$ $n \geq T^{2+\epsilon}$	$ \asymp -n^2 \log n $

Overcrowding of zeros

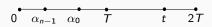
A deterministic idea to understand overcrowding...

Lemma (~ Azais, Nualart, Wschebor)

Let $f : [0, 2T] \to \mathbb{R}$ be a smooth function. If $||f^{(n)}||_{[0, 2T]} \le M$ and $\mathcal{N}_T(f) \ge n$, then $||f||_{[T, 2T]} \le M(2T)^n/n!$.



Proof. Since b/w every two zeros of a smooth function, there is a zero of its derivative, there exist $0 \le \alpha_{n-1} \le \ldots \le \alpha_0 \le T$ s.t. $f^{(k)}(\alpha_k) = 0$.



$$0 \stackrel{\bullet}{\alpha_{n-1}} \stackrel{\bullet}{\alpha_0} \stackrel{\bullet}{T} \qquad t \qquad 2T \qquad f^{(k)}(\alpha_k) = 0$$

We have $\forall t \in [\alpha_{n-1}, 2T]$,

$$f^{(n-1)}(t) - \underbrace{f^{(n-1)}(\alpha_{n-1})}_{f^{(n-1)}(t)| \leq Mt.} f^{(n)}(s) ds,$$

For $t \in [\alpha_{n-2}, 2T]$, we similarly have

$$f^{(n-2)}(t) - \underbrace{f^{(n-2)}(\alpha_{n-2})}_{\alpha_{n-2}} = \int_{\alpha_{n-2}}^{t} f^{(n-1)}(s) ds,$$
$$|f^{(n-2)}(t)| \le \int_{\alpha_{n-2}}^{t} Ms \ ds,$$
$$\le Mt^{2}/2!.$$

Continuing in a similar manner gives the conclusion.

... and a corollary to study overcrowding of random zeros

Corollary

For $n \in \mathbb{N}$, M, T > 0 and any a.s. smooth random function F, we have $\mathbb{P}(\mathcal{N}_T > n) \leq \mathbb{P}(\|F\|_{[T,2T]} \leq M \frac{(2T)^n}{n!}) + \mathbb{P}(\|F^{(n)}\|_{[0,2T]} \geq M),$

small ball prob.

Borel-TIS/Dudley's bound

We will choose M as follows:

- M small enough so that the first term indeed corresponds to a small ball event.
- *M* large enough so that event in the second term is unlikely.

Finiteness of moments of $\mu \Rightarrow \text{tail bounds for } \|X^{(n)}\|$

 $X^{(n)}$ is also a smooth centered SGP with spectral density $x^{2n}d\mu(x)$.

Borel–TIS inequality, Dudley integral give tail bounds for $||X^{(n)}||_{[0,2T]}$.

The pseudo-metric d_n on \mathbb{R} , induced by $X^{(n)}$ satisfies

$$d_n(t,s) \leq \sqrt{C_{2n+2}} \ |t-s|.$$

With this, Dudley's integral and the concentration result, for $2T \le n$

$$\mathbb{P}(\|X^{(n)}\|_{[0,2T]} \ge n\sqrt{C_{2n}}x) \le e^{-x^2}.$$

$(A1) \Rightarrow$ a small ball probability (SBP) estimate

Most of the known SBP estimates are for non-smooth processes and rightly so; the *sharp turns* make it difficult for the process to be confined to a small ball.

Under assumption (A1), we get SBP estimates.

(A1):
$$d\mu(x) = f(x)dx + d\mu_s(x)$$
, where $f \not\equiv 0$.

Interior of supp $(f) \neq \phi \Rightarrow$ topological supp. $(X) = \mathcal{F}L^2_{\text{symm}}(\mu) = C(\mathbb{R})$. Hence X comes very close to behaving like a non-smooth process.

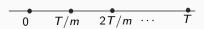
SBP estimate

Lemma (\sim Krishnapur–Maddaly)

Let T>0, $m\in\mathbb{N}$. Assume μ satisfies (A1), then there is $b\in(0,1)$, C>1 such that if $T\leq bm$, we have

$$\mathbb{P}(\|X\|_{[0,T]} \leq \eta) \leq (Cm/T)^{m^2} \eta^m.$$

Proof idea. Consider the lattice $\{jT/m: j\in \mathbb{Z}\}$, let $Y_j=X_{jT/m}$, then Y is a centered SGP on \mathbb{Z} w/ spectral measure ν on $[-\pi,\pi]$ satisfying (A1).



Let $t_j := jT/m$, then

$$\begin{split} \mathbb{P}(\|X\|_{[0,T]} \leq \eta) &\leq \mathbb{P}(|X_{t_j}| \leq \eta, \forall j \in [m]), \\ &= \int_{[-\eta,\eta]^m} \frac{1}{(\sqrt{2\pi})^m |\Sigma|^{1/2}} e^{-\frac{\langle \Sigma^{-1}_{x,x} \rangle}{2}} dx, \\ &\leq \frac{(2\eta)^m}{(\sqrt{2\pi})^m |\Sigma|^{1/2}} \leq \frac{(2\eta)^m}{(\sqrt{2\pi})^m |\lambda|^{m/2}}, \end{split}$$

SBP estimate contd.

w/ $\Sigma = \text{Cov}(X_{t_1}, \dots, X_{t_m})$ and λ the least eigenvalue of Σ . Hence it suffices to get a lower bound for λ . For $v \in \mathbb{R}^m$

$$\begin{split} \langle \Sigma v, v \rangle &= \sum \mathbb{E}[X_{t_{\ell}} X_{t_{n}}] v_{\ell} v_{n} = \sum \int_{-\pi}^{\pi} e^{-i\langle \ell - n, x \rangle} v_{\ell} v_{n} \ d\nu(x), \\ &= \int_{-\pi}^{\pi} |\sum v_{n} e^{-inx}|^{2} \ d\nu(x), \end{split}$$

since $d\nu=gdx+d\nu_s$, $g\geq\delta\mathbb{1}_{\mathfrak{I}}$, for some $\delta>0$ and $\mathfrak{I}\subseteq[-\pi,\pi]$,

$$\gtrsim \int_{\mathbb{J}} |\sum v_n e^{-inx}|^2 dx,$$

$$\gtrsim \int_{-\pi}^{\pi} |\sum v_n e^{-inx}|^2 dx = 2\pi ||v||^2.$$
Turan's lemma

This gives a lower bound for λ since $\lambda = \inf_{v \neq 0} \langle \Sigma v, v \rangle / \langle v, v \rangle$.

Overcrowding estimates

$$\begin{cases} \text{Recall: } \mathbb{P}(\mathbb{N}_T > n) \leq \mathbb{P}(\|X\|_{[0,T]} \leq M \frac{(2T)^n}{n!}) + \mathbb{P}(\|X^{(n)}\|_{[0,2T]} \geq M), \\ \mathbb{P}(\|X^{(n)}\|_{[0,2T]} \geq n \sqrt{C_{2n}} x) \leq e^{-x^2} \text{ and } \mathbb{P}(\|X\|_{[0,T]} \leq \eta) \leq \left(\frac{Cm}{T}\right)^{m^2} \eta^m. \end{cases}$$

Choosing $M = n^3 \sqrt{C_{2n}}$, term $\leq e^{-n^4}$ and (forgetting insignificant terms)

$$\mathsf{term} \leq \left(\frac{m}{T}\right)^{m^2} \left(\sqrt{C_{2n}} \left(\frac{T}{n}\right)^n\right)^m.$$

Ex: If μ is s.t. $supp(\mu) \subseteq [-q,q]$ for some q>1, then $C_n \leq q^n$. For m=n/2,

$$\operatorname{term} \le \left(\frac{n}{T}\right)^{n^2/4} \left(\frac{qT}{n}\right)^{n^2/2} = \left(\frac{q^2T}{n}\right)^{n^2/4},$$
$$\le \exp\left(-\frac{n^2}{4}\log\left(\frac{n}{q^2T}\right)\right),$$

which is useful when $n \ge CT$, for some large enough C.

Overcrowding of the nodal set

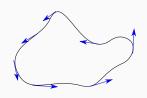
in dimension 2

How to measure nodal length of a random function?

Traditional way to measure length of a curve:

- Parametrize it, $\gamma:[0,1]\to\mathbb{R}^2$.
- Evaluate $\int_0^1 \|\dot{\gamma}(t)\| dt$.

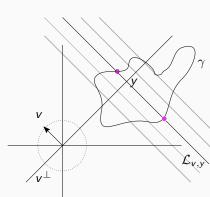
Not useful for random functions.



Crofton's formula for length:

$$\operatorname{length}(\gamma) = c \int_{\mathbb{S}^1} \int_{v^{\perp} \simeq \mathbb{R}} \# \{ \gamma \cap \mathcal{L}_{v,y} \} \ dy dv.$$

We understand (to some extent) zero count in one dimension, hence this might help. But there are infinitely many lines on which we need to know the # of intersections to get len(γ).



Discretizing Crofton's formula: Step 1

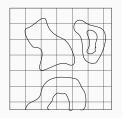
We discretize Crofton's formula.

$$\operatorname{length}(\gamma) = c \int_{\mathbb{S}^1} \int_{\mathbf{v}^{\perp} \simeq \mathbb{R}} \# \{ \gamma \cap \mathcal{L}_{\mathbf{v}, y} \} \, \, dy d\mathbf{v}.$$

There are infintely many directions $v \in \mathbb{S}^1$. We can use area/coarea formula to reduce to considering just two perpendicular directions

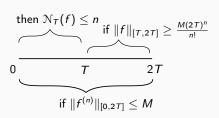
$$\begin{split} & \mathsf{length}(\gamma) \leq \mathit{C}\left(\int_{\mathbb{R}} \#\{\gamma \cap \mathcal{L}_{e_1,t}\} \ \mathit{d}t + \int_{\mathbb{R}} \#\{\gamma \cap \mathcal{L}_{e_2,t}\} \ \mathit{d}t\right), \\ & \mathsf{hence} \ \mathcal{L}_{\mathit{T}}(f) \leq \mathit{C}\left(\int_{0}^{T} \#\{\mathcal{Z}(f) \cap \mathcal{L}_{e_1,t}\} \ \mathit{d}t + \int_{0}^{T} \#\{\mathcal{Z}(f) \cap \mathcal{L}_{e_2,t}\} \ \mathit{d}t\right). \end{split}$$

Even now, there are infinitely many lines on which we need to know the zero count.



Discretizing Crofton's formula: Step 2

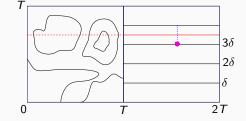
Recall the idea for zero count:



Let $f:[0,n]^2\to\mathbb{R}$ and $\delta=(2T)^n/n!$. Every horizontal line in $[0,T]^2$ has $\leq n$ zeros if

- a. $\|\partial_1^n f\|_{[0,n]^2} \leq M/2$,
- b. $||f(\cdot,t)||_{[T,2T]} \geq M\delta$, $\forall t \in [0,T]$.

Cond. $\stackrel{\text{replace}}{\longleftrightarrow} c$. and d.



c.
$$\|\partial_2 f\|_{[0,n]^2} \le M/2$$
. and d. $\|f(\cdot,t)\|_{[T,2T]} \ge M\delta$, $\forall t \in \{\delta, 2\delta, \dots, T/\delta\}$.
c. and d. $\Rightarrow \|f(\cdot,t)\|_{[T,2T]} \ge M\delta/2$, $\forall t \in [0,T]$.

From last slide,

a.
$$\|\partial_1^n f\|_{[0,n]^2} \le M/2$$
, c. $\|\partial_2 f\|_{[0,n]^2} \le M/2$,

$$d. \|f(\cdot,t)\|_{[T,2T]} \geq M\delta, \ \forall t \in \{\delta,2\delta,\ldots,T/\delta\}.$$

Hence, a., c., d, and analogous condts for $e_2 \ \Rightarrow \mathcal{L}_T(f) \lesssim nT$.

thus,
$$\mathbb{P}(\mathcal{L}_T \gtrsim nT) \leq \mathbb{P}(\neg a.) + \mathbb{P}(\neg c.) + \mathbb{P}(\neg d.) +$$

analogous terms from e_2 .

Overcrowding estimates for nodal length

Theorem 2: Let X be a centered SGP on \mathbb{R}^2 with spectral measure μ .

$$\mu$$
 has finite moments $+$ \implies Overcrowding estimates for μe_1 and μe_2 satisfy (A1) \mathcal{L}_T in terms of moments.

Consequence: Similar to one dimesional overcrowding estimates, we get estimates in this case too.

Ex: For μ which is compactly supported, $\exists C \gg 1$ s.t. if $\ell \geq CT^2$

$$\mathbb{P}(\mathcal{L}_T \ge \ell) \lesssim \exp\left(-\frac{\ell^2}{T^2}\log\frac{\ell}{T^2}\right).$$

Questions galore...

- ...and here are some of them:
- Compared to one dimension, much less is known about nodal volume in higher dimensions. We show that the nodal volume in [0, T]^d has light tails, can we establish exponential concentration for nodal volume in higher dim?
- We show N_T has light tails even without any regularity of k. How essential is the regularity of covariance k to establish exponential conct./CLT in one dimension?

Thank You!