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The setting



SGPs and their nodal sets

For d > 1, a centered SGP X on RY is a centered Gaussian process
whose distribution is translation invariant, i.e., Vtj, s € R4

d
(Xt1+57 cee ,th+5) - (th, cee >Xt,,) ~ N(O, zt1,.A.,t,,)-

Spectral measure 1 of X is the unique finite (for us u(RY) = 1) positive
symmetric Borel measure on R s.t.

E[XX:] = k(s —t) =[(s — t) = /]Rd et dp(w).

Nodal/Zero set of X, Z(X) := X~1{0}.
Bulinskaya's lemma = a.s. X has no singular zeros. Hence,
d =1 = every zero has multiplicity 1,

d = 2, Implicit function thm. = Z(X) = | | smooth curves, if X is C>.



Zero count & Nodal length

NI

W\}\/ U\

Nr:=#{[0, T]n Z(X L1 := length{[0, T]? N Z(X)}
lfmeN, Ny =Ny +Nu2+- .. +Nm_1,m, sum of mident. dist. r.v.
Hence E[N,,] = am, where oo = E[Nq].
Stationarity = E[N7] = aT and E[£7] = BT2.

Overcrowding Question: P(N7 > E[N7]) and P(L1 > E[L7])?



SGP + Spectral measure <’ Zero count

Ex1: Let u = 5(572 +(52) + 3(577 +(57) + 5(6,30 +(530), w/a+b+c=1
X = (5 cos2t + 1, sin 2t) 4 (€ cos Tt + npsin 7t) + (& cos 30t + 1 sin 30t),
{&,ns} independent and &, ns ~ N (0, s).

So X is a random superposition of waves w/ frequencies <> supp(x) and
random amplitude, phase <+ mass assigned by .

Zero count: In Ex1, behaviour of X depends on the values of a, b, c.

® If c>> a, b, wh.p. X; &~ Acos(30t + ¢), hence many oscillations and
many zeros.

® If a>> b,c, wh.p. X; =~ Acos(2t + ¢), hence fewer oscillations and
fewer zeros.

Conclusion: Heavy tail of ;4 — many oscillations — possibily many zeros.



Tail of 4 +— zero count of X (for a general p)

® For any u, topological supp(X) = ]-'Lfymm(u), where

Laymm(p) ={f :R = C| f € L*(n), f(-t)=f(t)}.
® Ex2: Let p ~ unif[—14,14].
Naive exp.: Every f € ]-'Lgymm(u) doesn't oscillate as much as sin 14t.

Reality: FL2mm(1) = C(R), but probabilistically ok!

Borel-TIS/Dudley = Tail of [|X""""||;o1 < Tail of N(14", (14")?),

whp. [XPlo1) < 14" > [|(sin 146) g,y = 14"

® For a more general 4, Tail of | X"™V)||0.1) < Tail of N'(Ca, C2), where
Con =[5 Ix|™dp(x).

® Heavy tails of 4+ = possibly many zeros holds here also.



Statistics of N7: Known results

Work of ‘ Conditions on p or k ‘ Result
[ Kac—Rice G < 0 E[N7] = (VG/m)T
Moment Beljaev Cn <0 E[NT] < o0
conditions
Nualart Cp < o0, for somewhat explicit
Wschebor some p > 2m bound for E[N7]
Our results | Cp < 00, Vm & (A1) ‘ Overcrowding estimates
Misi Cuzik k, k" € L*(R) VarN7 =< T
ing-+ Geman condition CLT
moment
conditions BDFZ Supp(p) compact P(INt —E[N7]| > nT)
Je 1k(x)|dx < oo Se '

BDFZ: Basu, Dembo, Feldheim, Zeitouni.



Assumptions on the spectral measure

Mixing/decay of k: Events in well separated intervals are almost
independent and hence N7 = Njg 1) + Ny o) + ... + Nj7_1,77 is
approximately a sum of identically distributed M-dependent r. v.

Decay of k +— Smoothness of the density of p (restrictive condition!).

Example: Result of BDFZ does not apply to p ~ unif[—1,1].

Finiteness of moments of u:

Lighter tails of © = fewer oscillations = fewer zeros.

(A1): du(x) = f(x)dx + dus(x), where f # 0.



Overcrowding estimates in dimension one

Theorem 1: If X is a centered SGP on R with spectral measure p. Then,

i has finite moments — Overcrowding estimates

+ u satisfies (A1)

in terms of moments C,,.

Growth of C, Example of 1 Constraints on | logP(N7 > n)
T and n
G, <q", Any p with n>CT, = —n? log(+)
forg>0 supp(1) € [—q,q] forC>1
C, < n°", w~ N(0,1), n> TY*", for = —n?logn
for o € (0,1) with o = 1/2 k€ (0,1—a)
1w~ N(0,1) n> T2+




Overcrowding of zeros




A deterministic idea to understand overcrowding. ..

Lemma (~ Azais, Nualart, Wschebor)

Let £ :[0,2T] — R be a smooth function. If ||f("||;g 77 < M and
N7(f) > n, then Hf||[T’2T] < M(2T)"/n!.

L/\/\ A\ / |F("] not too large +
AT = |f I
0 T 2T f has many zeros [f] sma

Proof. Since b/w every two zeros of a smooth function, there is a zero of
its derivative, there exist 0 < o, 1 < ... < g < T s.it. f(K(ay) =0.

0 wno1 o T t 2T



0 a,1 ao T t 2T f(k)(ak)zo

We have Vt € [a,_1,2T],

t
F(e) — Fle D) = / F")(s)ds,
[F=1(t)] < M.
For t € [ap—2,2T], we similarly have

t
F0-3(e) - F0Br ) = [ 0D (s)as,

Op—2
t
|F=2(1)| < Ms ds,

Qp—2

< Mt?)2L.

Continuing in a similar manner gives the conclusion.
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. and a corollary to study overcrowding of random zeros

Corollary

Forne N, M, T >0 and any a.s. smooth random function F, we have

PNt >n) < P(|Fllir2n < M%) +  P(IF™ 0,211 > M),

small ball prob. ] Borel-TIS/Dudley’s bound ‘

We will choose M as follows:

® M small enough so that the first term indeed corresponds to a small
ball event.

® M large enough so that event in the second term is unlikely.
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Finiteness of moments of i = tail bounds for || X("||

X is also a smooth centered SGP with spectral density x?"du(x).

Borel-TIS inequality, Dudley integral give tail bounds for ||X(")|

[0,2T]-

The pseudo-metric d, on R, induced by X(") satisfies

dn(t,S) </ Gopao |f—S|.

With this, Dudley's integral and the concentration result, for 2T < n

P(|X™l027) > 1/ Conx) < e,
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(A1) = a small ball probability (SBP) estimate

Most of the known SBP estimates are for non-smooth processes and
rightly so; the sharp turns make it difficult for the process to be confined
to a small ball.

Under assumption (A1), we get SBP estimates.
(A1) : du(x) = f(x)dx + dus(x), where f 0.
Interior of supp(f) # ¢ = topological supp.(X) = FL2,...(1) = C(R).

symm
Hence X comes very close to behaving like a non-smooth process.
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SBP estimate

Lemma (~ Krishnapur—Maddaly)

Let T > 0,m € N. Assume p satisfies (A1), then there is b € (0,1), C > 1
such that if T < bm, we have

2
P([| X 0,71 < m) < (Cm/T)™ n™.

Proof idea. Consider the lattice {jT/m:j € Z}, let Y; = Xj7/m, then Y is a
centered SGP on Z w/ spectral measure v on [—m, 7| satisfying (Al).

o T/m 2T/m -~ T
Let tj := /T /m, then
P Xlo, 7y < m) < P(|Xy] <, V) € [m]),
1 (=T

— ¢
[=nmim (v 2m)m|x[1/2

(2n)" (2n)"
= (VamrIEi = (Vampm




SBP estimate contd.

w/ ¥ = Cov(Xy,,...,Xt,) and X the least eigenvalue of X. Hence it
suffices to get a lower bound for A. For v € R™

(Zv,v) = ZE[thth]VéVn = Z/ e itt=nx) vevy, dr(x),
:/ |z:v,,e7"”x\2 dv(x),

since dv = gdx + dvs, g > 1y, for some § > 0 and J C [—7, 7],
Z/‘Zvne_inXF dX,
J
> / 13" vae ™2 dix = 27 v]2.

Turan's lemma J —7

This gives a lower bound for A since A = inf,_o(Xv, v)/(v,v). O
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Overcrowding estimates

Recall: P(N7 > n) < P(||X]|p,r} < METE) + P(| X0 27 > M),

2

.2 m
P(IXM o211 > 0V Gonx) < e and P(|[X[lo,1y <m) < (7)™ ™
Choosing M = n3\/G,,, term < e~ and (forgetting insignificant terms)
m mZ T n m
<(Z Vv = .
term_(_,_) ( C2n(n))
Ex: If pis s.t. supp(u) € [—q, q] for some g > 1, then C, < g". For m = n/2,
I n2/4 q-,— n2/2 qg-,- n2/4
<(Z2 al _ (9T
term7<T> (n) (n) ’
n? n
< exp vy log 27))

which is useful when n > CT, for some large enough C.
16



Overcrowding of the nodal set
in dimension 2



How to measure nodal length of a random function?

Traditional way to measure length of a curve:
® Parametrize it, v : [0,1] — R?.
e Evaluate [; |[4(t)] dt.

Not useful for random functions.

Crofton’s formula for length:

length(~) = c/ / #{yNL,,} dydv.

St Jvi~R v
We understand (to some extent) zero
count in one dimension, hence this v
might help. But there are infinitely
many lines on which we need to know \
the # of intersections to get len(7). Lyy

oL
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Discretizing Crofton’s formula: Step 1

We discretize Crofton’s formula.
length(~) = c/ / #{yNnL,,} dydv.
st Jvi~R

There are infintely many directions v € S'. We can use area/coarea
formula to reduce to considering just two perpendicular directions

length(v) < C (/ #{YN Loy ¢} dt + / #H{YN Ley t} dt> ,
R R

hence £7(f) < C (/T#{Z(f) Lo i) dt+/T#{Z(f) N Leye} dt> .

Even now, there are infinitely many \

=T

lines on which we need to know the \

zero count.




Discretizing Crofton’s formula: Step 2

then N7 (f) <n

if [fllfr.2m >
K_/% ! [ 1
S

0 T 2T
— _

if Hf(")H[o,zT] <M

(2 T)

Recall the idea for zero count:

Let f:[0,n)> = R and 6 = (2T)"/n!.
Every horizontal line in [0, T]? has < n

zeros if ’ Jl) E

| o=
o HalfH[O,n]z < M/J2, 26
b. (-, )llirar > M3, vt € [0, T]. 7 )
Cond. replace e. amd @l f/\

0 T 2T

c. [|02f o,z < M/2. and d. ||f(-, t)|li7,27) > Mo, Vt € {6,26,..., T/d}.

c.and d. = ||f(-,t)llr.am > M5/2, Vt € [0, T].
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From last slide,
a. HaffH[o’,,]z <MJ/2, c. Hang[o,n]z <MJ2,

d. ||f(7 t)||[T,2T] > M(Sa vt e {57 257 000y T/5}
Hence, a., c., d, and analogous condts for e = L7(f) < nT.

thus, P(L1 2 nT) < P(—a.) + P(—c.) + P(—d.)+

analogous terms from e;.

Terms «— Borel-TIS/Dudley,

term «+— SBP estimates on finitely many lines.
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Overcrowding estimates for nodal length

Theorem 2: Let X be a centered SGP on R? with spectral measure .

i has finite moments + — Overcrowding estimates for

per and pey satisfy (A1) L1 in terms of moments.

Consequence: Similar to one dimesional overcrowding estimates, we get
estimates in this case too.

Ex: For p1 which is compactly supported, 3C > 1 s.t. if £ > CT?

02 !
P(LT >0) Sexp —ﬁlogﬁ .

21



Questions galore. ..

..and here are some of them:

® Compared to one dimension, much less is known about nodal volume
in higher dimensions. We show that the nodal volume in [0, T]? has
light tails, can we establish exponential concentration for nodal volume

in higher dim?

® We show N7 has light tails even without any regularity of k. How
essential is the regularity of covariance k to establish exponential
conct./CLT in one dimension?

Thank Youl!
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