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The setting



SGPs and their zero sets

A centered SGP F on R is a centered Gaussian process whose
distribution is translation invariant, i.e., ∀tj , s ∈ R

(Ft1+s , . . . ,Ftn+s)
d
= (Ft1 , . . . ,Ftn) ∼ N (0,Σt1,...,tn).

Spectral measure µ of F (an a.s. continuous SGP) is the unique finite
(for us µ(R) = 1) positive symmetric Borel measure on R s.t.

E[FsFt ] =: k(s − t) = µ̂(s − t) =

∫
R
e−i〈s−t,w〉dµ(w).

Nodal/Zero set of F , Z(F ) := F−1{0}.

We will always consider F which is C∞ (⇔ all moments of µ are finite).

Bulinskaya’s lemma ⇒ a.s. F has no singular zeros. Hence, every zero
has multiplicity 1.
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The zero count NT

0 T

NT := #{[0,T ] ∩ Z(F )}

Stationarity ⇒ E[NT ] = α
πT , where α =

√∫
R x2dµ(x).

Heuristic: sin(αx) has α
πT many zeros in [0,T ]. The zero set of F ↔

zero set of sin(αx).

Grand plan: To understand NT (i.e., its expectaion, variance, higher
moments, concentration properties) in terms of the spectral measure µ.

Our interest: Overcrowding event := {NT � E[NT ]}.
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SGP ?←→ Spectral measure

Ex: Let µ = a
2 (δ−2 + δ2) + b

2 (δ−7 + δ7) + c
2 (δ−30 + δ30), w/ a+ b+ c = 1.

F (t) = (ξa cos 2t + ηa sin 2t) + (ξb cos 7t + ηb sin 7t) + (ξc cos 30t + ηc sin 30t),

{ξs , ηs} independent and ξs , ηs ∼ N (0, s).

So F is a random superposition of waves w/ frequencies ↔ supp(µ) and
random amplitude, phase ↔ mass assigned by µ.

More generally, for any spectral measure µ, F can be written as follows.
Let {fn}n∈N be an ONB for L2

symm(µ), then

F (t) = ξ1 f̂1(t) + ξ2 f̂2(t) + · · · , w/ ξn
iid∼ N (0, 1),

where f̂ (t) :=
∫
R e−its f (s)dµ(s).
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Spectral measure µ ?←→ Zero count NT

In principle, µ contains all the information about F , and hence its zero count
NT . The following are some properties of µ which influence NT .

Moments of µ: Define Cm :=
∫
R |x |

mdµ(x).

Borel–TIS ⇒ Tail of ‖F (n−1)‖[0,n] �Tail of N (Cn,C
2
n ).

Higher derivatives of f ←→ Oscillations of f ←→ Zero count of f .

∴ Higher moments of µ ←→ Zero count of F .

Absolutely continuous part µac of µ:

Typically overcrowding in an interval I ⇒ ‖F‖L∞(I ) � 1.

µac 6= 0⇒ ‖F‖L∞(I ) � 1 (∼ small ball estimates), and hence overcrowding, is
very unlikely .

Existence of a smooth density ⇒ the covariance k decays and the zero count
in well separated intervals is quasi-independent.

Since the zero count in a large interval is the sum of zero counts in smaller
intervals, we can regard NT (approximately) as a sum of M−dependent r.v.
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Statistics of NT : Known results

Work of Conditions on µ or k Result

Moment
conditions



Kac–Rice C2 <∞ E[NT ] = (
√
C2/π)T

Beljaev C2m <∞ E[Nm
T ] <∞

Nualart Cp <∞, for somewhat explicit
Wschebor some p > 2m bound for E[Nm

T ]

LP Cm <∞, ∀m & µac 6= 0 Overcrowding estimates

Mixing+
moment
conditions


Cuzik k, k ′′ ∈ L2(R) VarNT � T

Geman condition CLT

BDFZ Supp(µ) compact P(|NT − E[NT ]| > ηT )∫
R |k(x)|dx <∞ . e−cηT

BDFZ: Basu, Dembo, Feldheim, Zeitouni.
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Our results



(i) Overcrowding estimates

Theorem
If F is a centered SGP on R with spectral measure µ. Then,

µ has finite moments =⇒ Overcrowding estimates

+ µac 6= 0 in terms of moments Cn.

Growth of Cn Example of µ Constraints on log P(NT ≥ n)

T and n

Cn ≤ An, Any µ with n ≥ CT , � −n2 log( n
T
)

for A > 0 supp(µ) ⊆ [−A,A] for C � 1

Cn ≤ nαn, µ ∼ N (0, 1), n ≥ T 1/κ, for � −n2 log n

for α ∈ (0, 1) with α = 1/2 κ ∈ (0, 1− α)

µ ∼ N (0, 1) n ≥ T 2+ε
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Two results of interest to us . . .

Exponential concentration: If supp(µ) is compact &
∫
R |k(x)|dx <∞,

P(NT > (απ + ε)T ) ≤ e−CεT , ∀ε > 0.

Overcrowding estimates: If supp(µ) is compact and µac 6= 0, then

e−CT
2
≤ P(NT > (απ + ε)T ) ≤ e−cT

2
, ∀ε� 1.

Question: Either estimate is not sharp, or P(NT ≥ ηT ) undergoes a
transition in its behaviour as η increases. So which one is it?

Ans: If µ has sufficient mass around points ±b ∈ R, we can show that

P(NT ≥ b
πT ) ≥ e−cT ,

and hence estimate is sharp for small η, and there is a transition!

Question: How does this transition occur?

Ans: There is a sharp transition at ηc = A/π, where A is the edge of the
spectrum.
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(ii) Transition in the overcrowding probability

Theorem (w/ Naomi Feldheim & Ohad Feldheim)

Suppose A > 0 is the smallest number such that supp(µ) ⊆ [−A,A],
and µac 6= 0. Then

(1) P
(
NT ≥

A

π
T + εT

)
≤ exp(−CεT 2).

(2) P
(
NT ≥

A

π
T − εT

)
≥ exp(−cεT ).

In (1), we can let ε ∈ [b1
√

logT/T , b2]; and Cε = ε4. Hence for
3/4 ≤ β < 1, we have

P
(
NT ≥

A

π
T + Tβ

)
≤ exp(−T 4β−2).
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(iii) Transition in the undercrowding probability

Theorem (w/ Naomi Feldheim & Ohad Feldheim)

Let 0 < B < A, and let B be the largest and A the smallest number
such that supp(µ) ⊆ [−A,−B] ∪ [B,A]. If µac 6= 0, then

P
(
NT ≤

B

π
T − εT

)
≤ exp(−CεT 2),

P
(
NT ≤

B

π
T + εT

)
≥ exp(−cεT ).

Hence for the process F (as in the above theorem) to imitate a sine or
cosine function with frequency smaller than B, it is very difficult.
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Some heuristics



Transition: Why A/π?

Higher derivatives of F :

Borel–TIS ⇒ ‖F (n)‖L∞[0,n] . An, with a very high probability.

Growth of F :

Borel–TIS ⇒ a.s. |F (t)| ≤ C
√

log(1 + |t|) on R. (Very slow growth!)

Both these conditions remind us of sin(Ax), whose zero density is A/π . . .

Formally: Since F is R-analytic, extend F : C→ C to be C-analytic, a.s.

I F is an entire function of exponential type at most A,

I F belongs to the Cartwright’s class C.
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Cartwright’s class C

Cartwright’s class C consists of entire functions f : C→ C such that:

• f is of exponential type, i.e., ∃ σ,B > 0 s.t. |f (z)| ≤ Beσ|z|,

• Slow growth on the R axis:∫
R

log+ |f (t)|
1 + t2

dt <∞.

Ex: When |f (t)| ≤ exp(|t|0.9) on R (or more generally, whenever
|f (t)| � exp(|t|)), then this condition holds.

Prototypical example: f (z) = sin(Az) and f (z) = cos(Az).
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Speciality of C: asymptotic behaviour of |f | & their zeros

• Zeros of functions f ∈ C have been studied extensively and their zero
set has been shown to be very regular.

What makes it possible to study zeros of functions in C is the following
asymptotic behaviour:

• If f ∈ C is of exponential type A, then we have the following on C,
except on a small exceptional set:

for z = (x , y), log |f (z)| = A|y |+ o(|z |).

Ex: Consider f (z) = sin(Az), then

sin(Az) =
e iAz − e−iAz

2i
=

e−Aye iAx − eAye−iAx

2i
,

∴ log | sin(Az)| = A|y |+ O(1).
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Asymptotics of log |f | + Jensen’s formula ?
 Zero count of f

A simple calculation: Asymptotics of log |f | along with Jensen’s
formula gives useful information about the zero count of f . Jensen’s
formula gives:∫ r

0

nf (t)

t
dt =

1
2π

∫ 2π

0
log |f (re iθ)|dθ − log |f (0)|,

=
1
π

∫ π

0
Ar sin θ dθ + o(|r |)− log |f (0)|,

=
A

π
· 2r + rem.

Here nf (t) = ] zeros of f in the disc D(0, t) ⊆ C.

Asymptotic zero count [Levinson–Cartwright]: If f ∈ C of exponential
type A, then

nf (R)

R
−→ 2A

π
as R →∞.
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Global regularity vs. Local variability

Global regularity [Levinson–Cartwright]: If f ∈ C is of exponential type
A, then its asymptotic real zero density is at most A/π.

]{zeros of f in [−R,R]}
R

≤ nf (R)

R
R →∞−→ 2A

π
.

We will show that a.s. F ∈ C and it is of exponential type at most A.
Hence the above statement holds a.s. for F .

On the other hand, we have:

Local variability: If µac 6= 0, then on any compact interval
I = [−M,M], up to a cosine factor, F can imitate any continuous
function. That is, there is b > 0 such that for any continuous g on I , we
have with a positive probability:

F (x) ≈ cos(bx) · g(x) on I .
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Sketch of the proof



A.s. F is of exp. type ≤ A, and F ∈ C

I F (n)(0) ∼ N (0,C2n), where Ck :=
∫
[−A,A] |x |

kdµ(x). Note that:

• Ck ≤ Ak , and hence P(|F (n)(0)| ≥ nAn) ≤ e−n
2
,

• Writing a Taylor series expansion for F around 0 gives

F (z) =
∑
n≥0

F (n)(0)

n!
zn, and hence |F (z)| . e(A+ε)|z|.

I It follows from Borel–TIS that F has very slow growth on R:
|F (t)| .

√
1 + log |t| and hence satisfies∫

R

log+ |F (t)|
1 + t2

dt <∞.
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A bound for log |f | when f ∈ C

A Phragmén–Lindelöf result: If f : C→ C is an entire function of
exponential type A and |f | ≤ M on R, then for z = (x , y) we have

|f (z)| ≤ MeA|y |, and hence log |f (z)| ≤ A|y |+ logM.

Analogous result: Let f be an entire function of exponential type A and∫
R

log+ |f (t)|
1+t2 dt <∞. (That is, f ∈ C and is of exponential type A), then

log |f (z)| ≤ A|y |+ |y |
∫
R

log+ |f (t)|
|t − z |2

dt.

Hence the following holds a.s.:

log |F (z)| ≤ A|y |+ |y |
∫
R

log+ |F (t)|
|t − z |2

dt,

and w.p. ≥ (1− e−R
2
), term is O(logR), ∀|z | ≤ R.
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log |F (z)| ≤ A|y |+ O(log |z |) + Jensen’s formula ?
 zero count

• w.p. ≥ (1− e−R
2
): ∀b ∈ [−R,R], ∀r ≤ R:

log |F (b + re iθ)| ≤ Ar | sin θ|+ logR,

1
2π

∫
[0,2π]

log |F (b + re iθ)|dθ ≤ 2r
A

π
+ logR.

−R R

r

b

• Hence, by Jensen’s formula:

∴
∫ r

0

nF (t; b)

t
dt =

1
2π

∫
[0,2π]

log |F (b + re iθ)|dθ − log |F (b)|,

≤ 2r
A

π
+ logR − log |F (b)|.

• Q: We have a lot of local information about the zero count, how to get
information about N[−R,R] from here?
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A rough calculation: Local zero count info ?
 Total zero count

W.p. ≥ (1− e−R
2
):

If we forget the logR − log |F (b)| term, and let b ∈ Z ∩ [−R,R], we get∫ r

0

nF (t; b)

t
dt ≤ 2r

A

π
.

−R R

r

b
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Here Z = {z ∈ [−R,R] : F (z) = 0}. 18



A rough calculation: Local zero count info ?
 Total zero count

W.p. ≥ (1− e−R
2
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b∈Z∩[−R,R]

∫ r

0

nF (t; b)

t
dt ≤

∑
b∈Z∩[−R,R]

2r
A

π
.

∫ r

0

∑
b nF (t; b)

t
dt ≤ 2R · 2r · A

π
,∫ r

0

∑
z∈Z 2t
t

dt ≤ 2R · 2r · A
π
.

−R R

r

b

Here Z = {z ∈ [−R,R] : F (z) = 0}. 18



A rough calculation: Local zero count info ?
 Total zero count

W.p. ≥ (1− e−R
2
):

If we forget the logR − log |F (b)| term, and let b ∈ Z ∩ [−R,R], we get∑
b∈Z∩[−R,R]

∫ r

0

nF (t; b)

t
dt ≤

∑
b∈Z∩[−R,R]

2r
A

π
.

∫ r

0

∑
b nF (t; b)

t
dt ≤ 2R · 2r · A

π
,

N[−R,R](F ) ·��2r ≤
∫ r

0

∑
z∈Z 2t
t

dt ≤ 2R ·��2r ·
A

π
.

−R R

r

b

Here Z = {z ∈ [−R,R] : F (z) = 0}. 18



A rough calculation: Local zero count info ?
 Total zero count

W.p. ≥ (1− e−R
2
):

If we forget the logR − log |F (b)| term, and let b ∈ Z ∩ [−R,R], we get∑
b∈Z∩[−R,R]

∫ r

0
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0
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,

N[−R,R](F ) ·��2r ≤
∫ r

0

∑
z∈Z 2t
t

dt ≤ 2R ·��2r ·
A

π
.

∴ N[−R,R](F ) ≤ A

π
· 2R.

−R R
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Fixing the calculation

If − log |F (b)| & R (i.e., |F (b)| ≤ e−R), then the above calculation does
not work.
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Fixing the calculation

If − log |F (b)| & R (i.e., |F (b)| ≤ e−R), then the above calculation does
not work. Hence we need to carefully pick points b, to almost form a
lattice and where |F | is not too small.

−R αR R
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Fixing the calculation

If − log |F (b)| & R (i.e., |F (b)| ≤ e−R), then the above calculation does
not work. Hence we need to carefully pick points b, to almost form a
lattice and where |F | is not too small.

Small ball prob.: P(∃ a good point in every subinterval) ≥ (1− eCεR
2
)

−R αR R

Good point is where |F | ≥ e−ε
2R ; α = ε2; Cε = ε4.
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Fixing the calculation

If − log |F (b)| & R (i.e., |F (b)| ≤ e−R), then the above calculation does
not work. Hence we need to carefully pick points b, to almost form a
lattice and where |F | is not too small.

Small ball prob.: P(∃ a good point in every subinterval) ≥ (1− eCεR
2
)

−R αR R

r

Good point is where |F | ≥ e−ε
2R ; α = ε2; Cε = ε4, r = εR.

Conclusion: P(NR ≥ A
πR + εR) ≤ exp(−CεR2).
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An event on which the NT ≥ A
π
T

• Assume that dµ(x) = f (x)dx + dµs(x), where f ≥ c > 0 near ±A. Say
c = 1, for simplicity. Define f1 ∈ L2

symm(µ) by

f1 :=
1√
2δ
1[−A,−A+δ]∪[A−δ,A],

then, f̂1(x) ' C
√
δ · cos

(
(A− δ

2 )x
)
.

• We write F as the following, with δ = 1/T :

F (x) = ξ1 f̂1 ⊕ G(x), w/ G is a centered GP, ξ1 ∼ N (0, 1),

' ξ1
C√
T

cos
(
(A− 1

2T )x
)
⊕ G(x).

+10

−10

+1/2

−1/2

|ξ1| &
√
T & ‖G‖L∞[0,T ] ≤ 1

2 ⇒ NT ≥ A
π
T .
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Conclusion

• Since ξ1 and G are independent, we have

P(|ξ1| &
√
T & ‖G‖L∞[0,T ] ≤ 1

2 ) = P(|ξ1| &
√
T ) · P(‖G‖L∞[0,T ] ≤ 1

2 ),

≥ e−T · e−T = e−cT .

• Hence we have

P
(
NT ≥

A

π
T

)
≥ e−cT .
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Phase transition in the undercrowding probability

Assume that supp(µ) ⊆ [−A,−B] ∪ [A,B] and µ assigns non-trivial mass
near ±A and ±B.

−A A−B B0

Measure µ

Consider µ̃ and the corresponding centered SGP F̃ .

−(A− B) A− B0

Measure µ̃
22



Phase transition in the undercrowding probability

• Suppose {f0, f1, . . .} is an ONB for L2
symm(µ), using this we get

{f̃0, f̃1, . . .} which is an ONB for L2
symm(µ̃).

• Using these bases to get a series representation for F and F̃ , we get

F̃ (x) = cos(Ax)F (x)− sin(Ax)H(x),

where H is some centered GP. Note that ∀k ∈ Z, we have

F̃ ( kπ
A ) = (−1)kF ( kπ

A ).

0 π
A

2π
A

3π
A

z1 z2 z3

T

Lattice π
A
Z & zeros of F

• Let z1 < z2 < · · · < zn be the zeros of F in [0,T ]. Between zi and
zi+1, F does not change sign. Hence F̃ has d(zi+1 − zi )A/πe many zeros
in (zi , zi+1). 23



• We have

F̃ ( kπ
A ) = (−1)kF ( kπ

A ).

0 π
A

2π
A

3π
A

z1 z2 z3

T

Lattice π
A
Z & zeros of F

• Between zi and zi+1, F does not change sign. Hence F̃ has
d(zi+1 − zi )A/πe many zeros in (zi , zi+1). Thus

NT (F̃ ) + NT (F ) ≥ AT

π
.

• Recall that the edge of the support of µ̃ is ±(A− B).

From our analysis of the OC event, w.h.p. NT (F̃ ) ≤ (A− B + ε)T/π,

hence w.h.p. NT (F ) ≥ (B − ε)T
π

.
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More questions . . .

Pertaining to transition: the finer details of how the transition occurs?

More generally: With merely some weak assumptions on µ, it is possible
to obtain a lot of information about the zero count. So probably strong
assumptions (like existence and smoothness of density) are not essential
to get exponential concentration of zeros?

And specifically, exponential concentration for NT when µ ∼ Unif[−1, 1]?

Thank You!
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