Phase Analysis for a family of Stochastic Reaction-Diffusion Equations

Kunwoo Kim

Joint work with D. Khoshnevisan, C. Mueller and S. Shiu

POSTECH (South Korea)

Bangalore Probability Seminar April 19, 2021

• Consider the following stochastic reaction-diffusion equation

$$\partial_t u = \partial_x^2 u + V(u) + \lambda \sigma(u) \xi, \quad t > 0, x \in \mathbf{T}.$$
 (1)

where $\mathbf{T} = [-1, 1)$ (torus), ξ is space-time white noise, $\lambda > 0$ is a fixed constant, and σ is a globally Lipschitz function.

• u_0 is a non-negative continuous function.

• Consider the following stochastic reaction-diffusion equation

$$\partial_t u = \partial_x^2 u + V(u) + \lambda \sigma(u) \xi, \quad t > 0, x \in \mathbf{T}.$$
 (1)

where $\mathbf{T} = [-1, 1)$ (torus), ξ is space-time white noise, $\lambda > 0$ is a fixed constant, and σ is a globally Lipschitz function.

• u_0 is a non-negative continuous function.

• If V(u) = 0 and $\sigma(u) = u$, (1) is called a parabolic Anderson model.

• Consider the following stochastic reaction-diffusion equation

$$\partial_t u = \partial_x^2 u + V(u) + \lambda \sigma(u) \xi, \quad t > 0, x \in \mathbf{T}.$$
 (1)

where $\mathbf{T} = [-1, 1)$ (torus), ξ is space-time white noise, $\lambda > 0$ is a fixed constant, and σ is a globally Lipschitz function.

- u_0 is a non-negative continuous function.
- If V(u) = 0 and $\sigma(u) = u$, (1) is called a parabolic Anderson model.

• If $V(u) = u - u^2$, (1) is called a stochastic KPP equation.

• Consider the following stochastic reaction-diffusion equation

$$\partial_t u = \partial_x^2 u + V(u) + \lambda \sigma(u) \xi, \quad t > 0, x \in \mathbf{T}.$$
 (1)

where $\mathbf{T} = [-1, 1)$ (torus), ξ is space-time white noise, $\lambda > 0$ is a fixed constant, and σ is a globally Lipschitz function.

- u_0 is a non-negative continuous function.
- If V(u) = 0 and $\sigma(u) = u$, (1) is called a parabolic Anderson model.
- If $V(u) = u u^2$, (1) is called a stochastic KPP equation.
- If $V(u) = u u^3$, (1) is called a stochastic Allen-Cahn equation.

• Consider the following stochastic reaction-diffusion equation

$$\partial_t u = \partial_x^2 u + V(u) + \lambda \sigma(u) \xi, \quad t > 0, x \in \mathbf{T}.$$
 (1)

where $\mathbf{T} = [-1, 1)$ (torus), ξ is space-time white noise, $\lambda > 0$ is a fixed constant, and σ is a globally Lipschitz function.

- u_0 is a non-negative continuous function.
- If V(u) = 0 and $\sigma(u) = u$, (1) is called a parabolic Anderson model.
- If $V(u) = u u^2$, (1) is called a stochastic KPP equation.
- If $V(u) = u u^3$, (1) is called a stochastic Allen-Cahn equation.
- Q) What are the invariant probability measures for (1)? How many? (Zimmerman et al, 2000)

• Consider the following stochastic reaction-diffusion equation

$$\partial_t u = \partial_x^2 u + V(u) + \lambda \sigma(u) \xi, \quad t > 0, x \in \mathbf{T}.$$
 (1)

where $\mathbf{T} = [-1, 1)$ (torus), ξ is space-time white noise, $\lambda > 0$ is a fixed constant, and σ is a globally Lipschitz function.

- u_0 is a non-negative continuous function.
- If V(u) = 0 and $\sigma(u) = u$, (1) is called a parabolic Anderson model.
- If $V(u) = u u^2$, (1) is called a stochastic KPP equation.
- If $V(u) = u u^3$, (1) is called a stochastic Allen-Cahn equation.
- Q) What are the invariant probability measures for (1)? How many? (Zimmerman et al, 2000)

- (PAM) $\partial_t u(t, x) = \partial_x^2 u(t, x) + \lambda u(t, x)\xi(t, x), \quad t > 0, x \in \mathbf{T} := [-1, 1)$ with the periodic boundary condition.
- Particle systems, polymer models, KPZ equation, stochastic Burgers' equation, passive scalar equation, ...

- (PAM) $\partial_t u(t, x) = \partial_x^2 u(t, x) + \lambda u(t, x)\xi(t, x), \quad t > 0, x \in \mathbf{T} := [-1, 1)$ with the periodic boundary condition.
- Particle systems, polymer models, KPZ equation, stochastic Burgers' equation, passive scalar equation, ...
- A mild solution $u(t,x) = \int_{\mathsf{T}} p_t(x-y)u_0(y) \, dy + \lambda \int_{(0,t)\times\mathsf{T}} p_{t-s}(x-y)u(s,y) \,\xi(ds \, dy).$

- (PAM) $\partial_t u(t, x) = \partial_x^2 u(t, x) + \lambda u(t, x)\xi(t, x), \quad t > 0, x \in \mathbf{T} := [-1, 1)$ with the periodic boundary condition.
- Particle systems, polymer models, KPZ equation, stochastic Burgers' equation, passive scalar equation, ...
- A mild solution

 $u(t,x) = \int_{\mathsf{T}} p_t(x-y) u_0(y) \, dy + \lambda \int_{(0,t)\times\mathsf{T}} p_{t-s}(x-y) u(s,y) \, \xi(ds \, dy).$

Intermittency (Carmona-Molchanov '94): u(t, x) is fully intermittent if γ(k)/k is strictly increasing for k ≥ 1 where γ(k) := lim_{t→∞} log E|u(t,x)|^k/t.

- (PAM) $\partial_t u(t, x) = \partial_x^2 u(t, x) + \lambda u(t, x)\xi(t, x), \quad t > 0, x \in \mathbf{T} := [-1, 1)$ with the periodic boundary condition.
- Particle systems, polymer models, KPZ equation, stochastic Burgers' equation, passive scalar equation, ...
- A mild solution

 $u(t,x) = \int_{\mathsf{T}} p_t(x-y) u_0(y) \, dy + \lambda \int_{(0,t)\times\mathsf{T}} p_{t-s}(x-y) u(s,y) \, \xi(ds \, dy).$

- Intermittency (Carmona-Molchanov '94): u(t, x) is *fully* intermittent if $\frac{\gamma(k)}{k}$ is strictly increasing for $k \ge 1$ where $\gamma(k) := \lim_{t \to \infty} \frac{\log E |u(t,x)|^k}{t}$.
- If $\gamma(1) = 0$, $0 < \gamma(2)$ and $\gamma(k) < \infty$ for all $k \ge 2$, then u(t, x) is fully intermittent (Carmona-Molchanov '94).

- (PAM) $\partial_t u(t, x) = \partial_x^2 u(t, x) + \lambda u(t, x)\xi(t, x), \quad t > 0, x \in \mathbf{T} := [-1, 1)$ with the periodic boundary condition.
- Particle systems, polymer models, KPZ equation, stochastic Burgers' equation, passive scalar equation, ...
- A mild solution

 $u(t,x) = \int_{\mathsf{T}} p_t(x-y) u_0(y) \, dy + \lambda \int_{(0,t)\times\mathsf{T}} p_{t-s}(x-y) u(s,y) \, \xi(ds \, dy).$

- Intermittency (Carmona-Molchanov '94): u(t, x) is fully intermittent if ^{γ(k)}/_k is strictly increasing for k ≥ 1 where γ(k) := lim_{t→∞} ^{log E|u(t,x)|^k}/_t.
- If $\gamma(1) = 0$, $0 < \gamma(2)$ and $\gamma(k) < \infty$ for all $k \ge 2$, then u(t, x) is fully intermittent (Carmona-Molchanov '94).
- $\log E|u(t,x)|^2 \approx t$ (Khoshnevisan-K. '15, Foondun-Joseph '14, Foondun-Nualart '16).

- (PAM) $\partial_t u(t, x) = \partial_x^2 u(t, x) + \lambda u(t, x)\xi(t, x), \quad t > 0, x \in \mathbf{T} := [-1, 1)$ with the periodic boundary condition.
- Particle systems, polymer models, KPZ equation, stochastic Burgers' equation, passive scalar equation, ...
- A mild solution

 $u(t,x) = \int_{\mathsf{T}} p_t(x-y) u_0(y) \, dy + \lambda \int_{(0,t)\times\mathsf{T}} p_{t-s}(x-y) u(s,y) \, \xi(ds \, dy).$

- Intermittency (Carmona-Molchanov '94): u(t, x) is *fully* intermittent if $\frac{\gamma(k)}{k}$ is strictly increasing for $k \ge 1$ where $\gamma(k) := \lim_{t \to \infty} \frac{\log E|u(t,x)|^k}{t}$.
- If $\gamma(1) = 0$, $0 < \gamma(2)$ and $\gamma(k) < \infty$ for all $k \ge 2$, then u(t, x) is fully intermittent (Carmona-Molchanov '94).
- $\log E|u(t,x)|^2 \simeq t$ (Khoshnevisan-K. '15, Foondun-Joseph '14, Foondun-Nualart '16).

Simulation of PAM ($\partial_t u = \partial_x^2 u + \lambda u \xi$)

Q.) What will happen as $t \to \infty$?

• Consider the follwoing stochastic heat equation:

 $\partial_t u = \partial_x^2 u + \lambda \sigma(u) \xi, \quad t > 0, x \in \mathbf{T} = [-1, 1]$ (2) with $u_0(x) = 1$ for $x \in \mathbf{T}$.

• $\sigma(u) : \mathbf{R} \to \mathbf{R}$ is a globally Lipschitz function with $0 < L_{\sigma} \leq \frac{\sigma(u)}{u} \leq \text{Lip}_{\sigma}$ for some constants L_{σ} and Lip_{σ} (Foondun-Khoshnevisan '09).

Consider the following stochastic heat equation:

$$\partial_t u = \partial_x^2 u + \lambda \sigma(u) \xi, \quad t > 0, x \in \mathbf{T} = [-1, 1]$$
with $u_0(x) = 1$ for $x \in \mathbf{T}$.
(2)

- $\sigma(u) : \mathbf{R} \to \mathbf{R}$ is a globally Lipschitz function with $0 < L_{\sigma} \leq \frac{\sigma(u)}{u} \leq \operatorname{Lip}_{\sigma}$ for some constants L_{σ} and $\operatorname{Lip}_{\sigma}$ (Foondun-Khoshnevisan '09).
- Without noise $(\lambda = 0)$, u(t, x) = 1 for all $t > 0, x \in T$.

Consider the following stochastic heat equation:

$$\partial_t u = \partial_x^2 u + \lambda \sigma(u) \xi, \quad t > 0, x \in \mathbf{T} = [-1, 1]$$
with $u_0(x) = 1$ for $x \in \mathbf{T}$.
(2)

- $\sigma(u) : \mathbf{R} \to \mathbf{R}$ is a globally Lipschitz function with $0 < L_{\sigma} \leq \frac{\sigma(u)}{u} \leq \text{Lip}_{\sigma}$ for some constants L_{σ} and Lip_{σ} (Foondun-Khoshnevisan '09).
- Without noise $(\lambda = 0)$, u(t, x) = 1 for all $t > 0, x \in T$.
- If $\lambda > 0$, Eu(t, x) = 1 and $E[u(t, x)]^2 \simeq e^{ct}$ (*u* is fully intermittent).

Consider the following stochastic heat equation:

$$\partial_t u = \partial_x^2 u + \lambda \sigma(u) \xi, \quad t > 0, x \in \mathbf{T} = [-1, 1]$$
with $u_0(x) = 1$ for $x \in \mathbf{T}$.
(2)

- σ(u): R → R is a globally Lipschitz function with 0 < L_σ ≤ σ(u)/u ≤ Lip_σ for some constants L_σ and Lip_σ (Foondun-Khoshnevisan '09).
- Without noise $(\lambda = 0)$, u(t, x) = 1 for all $t > 0, x \in \mathbf{T}$.
- If $\lambda > 0$, Eu(t, x) = 1 and $E[u(t, x)]^2 \simeq e^{ct}$ (*u* is fully intermittent).

Theorem (Khoshnevisan-K.-Mueller-Shiu '20)

There exists a constants c > 0 such that with probability 1

$$\log \sup_{x \in \mathbf{T}} u(t, x) \leqslant -c\lambda^2 t.$$

Thus, there is the unique invariant measure which is δ_0 where $\mathbb{O}(x)=0.$

Consider the following stochastic heat equation:

$$\partial_t u = \partial_x^2 u + \lambda \sigma(u) \xi, \quad t > 0, x \in \mathbf{T} = [-1, 1]$$
with $u_0(x) = 1$ for $x \in \mathbf{T}$.
(2)

- σ(u): R → R is a globally Lipschitz function with 0 < L_σ ≤ σ(u)/u ≤ Lip_σ for some constants L_σ and Lip_σ (Foondun-Khoshnevisan '09).
- Without noise ($\lambda = 0$), u(t, x) = 1 for all $t > 0, x \in T$.
- If $\lambda > 0$, Eu(t, x) = 1 and $E[u(t, x)]^2 \simeq e^{ct}$ (*u* is fully intermittent).

Theorem (Khoshnevisan-K.-Mueller-Shiu '20) There exists a constants c > 0 such that with probability 1

$$\log \sup_{x \in \mathbf{T}} u(t, x) \leqslant -c\lambda^2 t.$$

Thus, there is the unique invariant measure which is δ_0 where 0(x) = 0.

• $u(t,x) = \int_{-1}^{1} p_t(x,y) u_0(y) \, dy + \lambda \int_{(0,t] \times [-1,1]} p_{t-s}(x,y) \sigma(u(s,y)) \xi(ds \, dy).$

• $M_t := \int_{-1}^1 u(t,x) \, dx = \int_{-1}^1 u_0(x) \, dx + \lambda \int_{(0,t] \times [-1,1]} \sigma(u(s,y)) \, \xi(ds \, dy).$

- $u(t,x) = \int_{-1}^{1} p_t(x,y) u_0(y) \, dy + \lambda \int_{(0,t] \times [-1,1]} p_{t-s}(x,y) \sigma(u(s,y)) \xi(ds \, dy).$
- $M_t := \int_{-1}^1 u(t,x) \, dx = \int_{-1}^1 u_0(x) \, dx + \lambda \int_{(0,t] \times [-1,1]} \sigma(u(s,y)) \xi(ds \, dy).$
- $\log M_t = \log M_0 \frac{1}{2} \int_0^t M_s^{-2} d\langle M \rangle_s + N_t$ where $N_t := \int_0^t M_s^{-1} dM_s$.

- $u(t,x) = \int_{-1}^{1} p_t(x,y) u_0(y) \, dy + \lambda \int_{(0,t] \times [-1,1]} p_{t-s}(x,y) \sigma(u(s,y)) \xi(ds \, dy).$
- $M_t := \int_{-1}^1 u(t,x) \, dx = \int_{-1}^1 u_0(x) \, dx + \lambda \int_{(0,t] \times [-1,1]} \sigma(u(s,y)) \, \xi(ds \, dy).$
- log $M_t = \log M_0 \frac{1}{2} \int_0^t M_s^{-2} d\langle M \rangle_s + N_t$ where $N_t := \int_0^t M_s^{-1} dM_s$.

• Note $\langle N \rangle_t \ge \lambda^2 L_{\sigma}^2 t$ and $M_t = M_0 \exp(N_t - \langle N \rangle_t/2)$

•
$$u(t,x) = \int_{-1}^{1} p_t(x,y) u_0(y) \, dy + \lambda \int_{(0,t] \times [-1,1]} p_{t-s}(x,y) \sigma(u(s,y)) \xi(ds \, dy).$$

•
$$M_t := \int_{-1}^1 u(t,x) \, dx = \int_{-1}^1 u_0(x) \, dx + \lambda \int_{(0,t] \times [-1,1]} \sigma(u(s,y)) \, \xi(ds \, dy).$$

• log $M_t = \log M_0 - \frac{1}{2} \int_0^t M_s^{-2} d\langle M \rangle_s + N_t$ where $N_t := \int_0^t M_s^{-1} dM_s$.

• Note $\langle N \rangle_t \ge \lambda^2 L_{\sigma}^2 t$ and $M_t = M_0 \exp(N_t - \langle N \rangle_t/2)$

Lemma

Let $X = \{X_t\}_{t \ge 0}$ be a continuous $L^2(\mathbf{P})$ martingale and there is a c > 0 such that $\langle X \rangle_t \ge ct$ for all $t \ge 0$, a.s. Then, for all nonrandom constants $\varepsilon, T > 0$,

 $\mathbb{P}\left\{X_t \ge \varepsilon \langle X \rangle_t \text{ for some } t \ge T\right\} \leqslant \exp\left(-\frac{cT\varepsilon^2}{2}\right).$

•
$$u(t,x) = \int_{-1}^{1} p_t(x,y) u_0(y) \, dy + \lambda \int_{(0,t] \times [-1,1]} p_{t-s}(x,y) \sigma(u(s,y)) \xi(ds \, dy).$$

•
$$M_t := \int_{-1}^1 u(t,x) \, dx = \int_{-1}^1 u_0(x) \, dx + \lambda \int_{(0,t] \times [-1,1]} \sigma(u(s,y)) \, \xi(ds \, dy).$$

• log
$$M_t = \log M_0 - \frac{1}{2} \int_0^t M_s^{-2} d\langle M \rangle_s + N_t$$
 where $N_t := \int_0^t M_s^{-1} dM_s$.

• Note
$$\langle N \rangle_t \ge \lambda^2 L_{\sigma}^2 t$$
 and $M_t = M_0 \exp(N_t - \langle N \rangle_t/2)$

Lemma

Let $X = \{X_t\}_{t \ge 0}$ be a continuous $L^2(P)$ martingale and there is a c > 0 such that $\langle X \rangle_t \ge ct$ for all $t \ge 0$, a.s. Then, for all nonrandom constants $\varepsilon, T > 0$,

$$\mathbb{P}\left\{X_t \ge \varepsilon \langle X \rangle_t \text{ for some } t \ge T\right\} \leqslant \exp\left(-\frac{cT\varepsilon^2}{2}\right).$$

Lemma

For every
$$t, \lambda > 0$$
,

$$P\left\{ \|u(s, \cdot)\|_{L^{1}} \ge \|u_{0}\|_{L^{1}} \exp\left(-\frac{\lambda^{2}L_{\sigma}^{2}s}{8}\right) \text{ for some } s \ge t \right\} \le \exp\left(-\frac{\lambda^{2}L_{\sigma}^{2}t}{16}\right).$$

•
$$u(t,x) = \int_{-1}^{1} p_t(x,y) u_0(y) \, dy + \lambda \int_{(0,t] \times [-1,1]} p_{t-s}(x,y) \sigma(u(s,y)) \xi(ds \, dy).$$

•
$$M_t := \int_{-1}^1 u(t,x) \, dx = \int_{-1}^1 u_0(x) \, dx + \lambda \int_{(0,t] \times [-1,1]} \sigma(u(s,y)) \, \xi(ds \, dy).$$

• log
$$M_t = \log M_0 - \frac{1}{2} \int_0^t M_s^{-2} d\langle M \rangle_s + N_t$$
 where $N_t := \int_0^t M_s^{-1} dM_s$.

• Note
$$\langle N \rangle_t \ge \lambda^2 L_{\sigma}^2 t$$
 and $M_t = M_0 \exp(N_t - \langle N \rangle_t/2)$

Lemma

Let $X = \{X_t\}_{t \ge 0}$ be a continuous $L^2(P)$ martingale and there is a c > 0 such that $\langle X \rangle_t \ge ct$ for all $t \ge 0$, a.s. Then, for all nonrandom constants $\varepsilon, T > 0$,

$$\mathbb{P}\left\{X_t \ge \varepsilon \langle X \rangle_t \text{ for some } t \ge T\right\} \le \exp\left(-\frac{cT\varepsilon^2}{2}\right).$$

Lemma

For every $t, \lambda > 0$, $P\left\{ \|u(s, \cdot)\|_{L^{1}} \ge \|u_{0}\|_{L^{1}} \exp\left(-\frac{\lambda^{2}L_{\sigma}^{2}s}{8}\right) \text{ for some } s \ge t \right\} \le \exp\left(-\frac{\lambda^{2}L_{\sigma}^{2}t}{16}\right).$

• Let $p_t(x, y)$ be the heat kernel. Then, $p_t(x, y) \leq 2 \max\left(\frac{1}{\sqrt{t}}, 1\right)$.

• $\int_{-1}^{1} p_t(x, y) u_0(y) \, dy \lesssim \|u_0\|_{L^{\infty}} \wedge \frac{\|u_0\|_{L^1}}{\sqrt{t}} \leqslant \|u_0\|_{L^{\infty}}^{\varepsilon} \left(\frac{\|u_0\|_{L^1}}{\sqrt{t}}\right)^{1-\varepsilon}$.

- Let $p_t(x, y)$ be the heat kernel. Then, $p_t(x, y) \leq 2 \max\left(\frac{1}{\sqrt{t}}, 1\right)$.
- $\int_{-1}^{1} p_t(x,y) u_0(y) \, dy \lesssim \|u_0\|_{L^{\infty}} \wedge \frac{\|u_0\|_{L^1}}{\sqrt{t}} \leqslant \|u_0\|_{L^{\infty}}^{\varepsilon} \left(\frac{\|u_0\|_{L^1}}{\sqrt{t}}\right)^{1-\varepsilon}$.

Lemma

For any $arepsilon\in(0\,,1)$, there exists constant c>0 such that

$$\sup_{\epsilon \in [-1,1]} \mathbb{E}\left(|u(t,x)|^k \right) \leqslant \frac{4^k k^{k/2}}{t^{k(1-\varepsilon)/2}} \exp\left(\frac{c^2}{\varepsilon^2} k^3 \lambda^4 t\right) \|u_0\|_{L^\infty}^{k\varepsilon} \|u_0\|_{L^1}^{k(1-\varepsilon)},$$

• Let $p_t(x, y)$ be the heat kernel. Then, $p_t(x, y) \leq 2 \max\left(\frac{1}{\sqrt{t}}, 1\right)$.

•
$$\int_{-1}^{1} p_t(x,y) u_0(y) \, dy \lesssim \|u_0\|_{L^{\infty}} \wedge \frac{\|u_0\|_{L^1}}{\sqrt{t}} \leqslant \|u_0\|_{L^{\infty}}^{\varepsilon} \left(\frac{\|u_0\|_{L^1}}{\sqrt{t}}\right)^{1-\varepsilon}$$

Lemma

For any $\varepsilon \in (0, 1)$, there exists constant c > 0 such that

$$\sup_{x\in[-1,1]} \mathbb{E}\left(|u(t,x)|^k\right) \leqslant \frac{4^k k^{k/2}}{t^{k(1-\varepsilon)/2}} \exp\left(\frac{c^2}{\varepsilon^2} k^3 \lambda^4 t\right) \|u_0\|_{L^{\infty}}^{k\varepsilon} \|u_0\|_{L^1}^{k(1-\varepsilon)},$$

Lemma

For every small $\varepsilon > 0$ and $t_0 \ge 1$ there exist a constant C > 0 such that uniformly for all real numbers $\lambda \ge 1$, $k \ge 2$, and $t \ge t_0$,

$$\mathbb{E}\left(\sup_{x}\sup_{s\in[t_0,t]}|u(s,x;\lambda)|^{k}\right)\lesssim (1+|t-t_0|)^{(\frac{\varepsilon k}{2}+1)}\exp\left(\frac{Ck^3\lambda^4t}{\varepsilon^2}\right)\|u_0\|_{L^{\infty}}^{k\varepsilon}\|u_0\|_{L^{1}}^{k(1-\varepsilon)}$$

• Let $p_t(x, y)$ be the heat kernel. Then, $p_t(x, y) \leq 2 \max\left(\frac{1}{\sqrt{t}}, 1\right)$.

•
$$\int_{-1}^{1} p_t(x,y) u_0(y) \, dy \lesssim \|u_0\|_{L^{\infty}} \wedge \frac{\|u_0\|_{L^1}}{\sqrt{t}} \leqslant \|u_0\|_{L^{\infty}}^{\varepsilon} \left(\frac{\|u_0\|_{L^1}}{\sqrt{t}}\right)^{1-\varepsilon}$$

Lemma

For any $\varepsilon \in (0, 1)$, there exists constant c > 0 such that

$$\sup_{x\in[-1,1]} \mathbb{E}\left(|u(t,x)|^k\right) \leqslant \frac{4^k k^{k/2}}{t^{k(1-\varepsilon)/2}} \exp\left(\frac{c^2}{\varepsilon^2} k^3 \lambda^4 t\right) \|u_0\|_{L^{\infty}}^{k\varepsilon} \|u_0\|_{L^1}^{k(1-\varepsilon)},$$

Lemma

For every small $\varepsilon > 0$ and $t_0 \ge 1$ there exist a constant C > 0 such that uniformly for all real numbers $\lambda \ge 1$, $k \ge 2$, and $t \ge t_0$,

$$\operatorname{E}\left(\sup_{x}\sup_{s\in[t_{0},t]}\left|u(s,x;\lambda)\right|^{k}\right)\lesssim(1+|t-t_{0}|)^{\left(\frac{\varepsilon k}{2}+1\right)}\exp\left(\frac{Ck^{3}\lambda^{4}t}{\varepsilon^{2}}\right)\|u_{0}\|_{L^{\infty}}^{k\varepsilon}\|u_{0}\|_{L^{1}}^{k(1-\varepsilon)}$$

• Consider $\partial_t u = \partial_x^2 u + V(u) + \lambda \sigma(u)\xi, \quad t > 0, x \in [-1, 1] =: \mathbf{T}, \quad (3)$ where V(x) = x - F(x) and $F \in C^2(\mathbf{R}_+), F(0) = 0, F' \ge 0$ and $- \limsup_{x \downarrow 0} F'(x) < 1$ and $\lim_{x \to \infty} F'(x) = \infty$; and

- There exists a real number $m_0 > 1$ such that $F(x) = O(x^{m_0})$ as $x \to \infty$.

• In this talk, let $V(u) = u - u^{\alpha}$ for $\alpha > 1$ (e.g. $V(u) = u - u^2$).

- Consider $\partial_t u = \partial_x^2 u + V(u) + \lambda \sigma(u)\xi, \quad t > 0, x \in [-1, 1] =: \mathbf{T},$ (3) where V(x) = x - F(x) and $F \in C^2(\mathbf{R}_+), F(0) = 0, F' \ge 0$ and - $\limsup_{x \downarrow 0} F'(x) < 1$ and $\lim_{x \to \infty} F'(x) = \infty$; and - There exists a real number $m_0 > 1$ such that $F(x) = O(x^{m_0})$ as $x \to \infty$.
- In this talk, let $V(u) = u u^{\alpha}$ for $\alpha > 1$ (e.g. $V(u) = u u^2$).
- Assume σ is Lipschitz with $0 < L_{\sigma} \leq \frac{\sigma(u)}{u} \leq \text{Lip}_{\sigma} (\sigma(0) = 0)$.

- Consider $\partial_t u = \partial_x^2 u + V(u) + \lambda \sigma(u)\xi, \quad t > 0, x \in [-1, 1] =: \mathbf{T},$ (3) where V(x) = x - F(x) and $F \in C^2(\mathbf{R}_+), F(0) = 0, F' \ge 0$ and - lim $\sup_{x\downarrow 0} F'(x) < 1$ and $\lim_{x\to\infty} F'(x) = \infty$; and - There exists a real number $m_0 > 1$ such that $F(x) = O(x^{m_0})$ as $x \to \infty$.
- In this talk, let $V(u) = u u^{\alpha}$ for $\alpha > 1$ (e.g. $V(u) = u u^2$).
- Assume σ is Lipschitz with $0 < L_{\sigma} \leq \frac{\sigma(u)}{u} \leq \text{Lip}_{\sigma} \ (\sigma(0) = 0).$
- Assume $u_0(\cdot) = u(0, \cdot) \ge 0$ is continuous.

- Consider $\partial_t u = \partial_x^2 u + V(u) + \lambda \sigma(u)\xi, \quad t > 0, x \in [-1, 1] =: \mathbf{T},$ (3) where V(x) = x - F(x) and $F \in C^2(\mathbf{R}_+), F(0) = 0, F' \ge 0$ and - lim $\sup_{x \downarrow 0} F'(x) < 1$ and $\lim_{x \to \infty} F'(x) = \infty$; and - There exists a real number $m_0 > 1$ such that $F(x) = O(x^{m_0})$ as $x \to \infty$.
- In this talk, let $V(u) = u u^{\alpha}$ for $\alpha > 1$ (e.g. $V(u) = u u^2$).
- Assume σ is Lipschitz with $0 < L_{\sigma} \leq \frac{\sigma(u)}{u} \leq \text{Lip}_{\sigma} \ (\sigma(0) = 0).$
- Assume $u_0(\cdot) = u(0, \cdot) \ge 0$ is continuous.
- There is a unique mild solution (Cerrai '03) and u(t, x) > 0 (Mueller '91, Shiga '94).

- Consider $\partial_t u = \partial_x^2 u + V(u) + \lambda \sigma(u)\xi, \quad t > 0, x \in [-1, 1] =: \mathbf{T},$ (3) where V(x) = x - F(x) and $F \in C^2(\mathbf{R}_+), F(0) = 0, F' \ge 0$ and - $\limsup_{x \downarrow 0} F'(x) < 1$ and $\lim_{x \to \infty} F'(x) = \infty$; and - There exists a real number $m_0 > 1$ such that $F(x) = O(x^{m_0})$ as $x \to \infty$.
- In this talk, let $V(u) = u u^{\alpha}$ for $\alpha > 1$ (e.g. $V(u) = u u^2$).
- Assume σ is Lipschitz with $0 < L_{\sigma} \leq \frac{\sigma(u)}{u} \leq \text{Lip}_{\sigma} \ (\sigma(0) = 0).$
- Assume $u_0(\cdot) = u(0, \cdot) \ge 0$ is continuous.
- There is a unique mild solution (Cerrai '03) and u(t, x) > 0 (Mueller '91, Shiga '94).

Q.) What are the invariant probability measures for (3)?

- Consider $\partial_t u = \partial_x^2 u + V(u) + \lambda \sigma(u)\xi, \quad t > 0, x \in [-1, 1] =: \mathbf{T},$ (3) where V(x) = x - F(x) and $F \in C^2(\mathbf{R}_+), F(0) = 0, F' \ge 0$ and - $\limsup_{x \downarrow 0} F'(x) < 1$ and $\lim_{x \to \infty} F'(x) = \infty$; and - There exists a real number $m_0 > 1$ such that $F(x) = O(x^{m_0})$ as $x \to \infty$.
- In this talk, let $V(u) = u u^{\alpha}$ for $\alpha > 1$ (e.g. $V(u) = u u^2$).
- Assume σ is Lipschitz with $0 < L_{\sigma} \leq \frac{\sigma(u)}{u} \leq \text{Lip}_{\sigma} \ (\sigma(0) = 0).$
- Assume $u_0(\cdot) = u(0, \cdot) \ge 0$ is continuous.
- There is a unique mild solution (Cerrai '03) and u(t, x) > 0 (Mueller '91, Shiga '94).
- Q.) What are the invariant probability measures for (3)?
 - If $\lambda = 0$ and $V(u) = u u^2$, then $u \equiv 0$ and $u \equiv 1$ are two fixed points.

- Consider $\partial_t u = \partial_x^2 u + V(u) + \lambda \sigma(u)\xi, \quad t > 0, x \in [-1, 1] =: \mathbf{T},$ (3) where V(x) = x - F(x) and $F \in C^2(\mathbf{R}_+), F(0) = 0, F' \ge 0$ and - $\limsup_{x \downarrow 0} F'(x) < 1$ and $\lim_{x \to \infty} F'(x) = \infty$; and - There exists a real number $m_0 > 1$ such that $F(x) = O(x^{m_0})$ as $x \to \infty$.
- In this talk, let $V(u) = u u^{\alpha}$ for $\alpha > 1$ (e.g. $V(u) = u u^2$).
- Assume σ is Lipschitz with $0 < L_{\sigma} \leq \frac{\sigma(u)}{u} \leq \text{Lip}_{\sigma} \ (\sigma(0) = 0).$
- Assume $u_0(\cdot) = u(0, \cdot) \ge 0$ is continuous.
- There is a unique mild solution (Cerrai '03) and u(t, x) > 0 (Mueller '91, Shiga '94).
- Q.) What are the invariant probability measures for (3)?
 - If $\lambda = 0$ and $V(u) = u u^2$, then $u \equiv 0$ and $u \equiv 1$ are two fixed points.
 - If $\lambda > 0$, then δ_0 is an invariant measure where $\mathbb{O}(x) := 0$ for all $x \in \mathbf{T}$.
Stochastic reaction-diffusion equation

- Consider $\partial_t u = \partial_x^2 u + V(u) + \lambda \sigma(u)\xi, \quad t > 0, x \in [-1, 1] =: \mathbf{T},$ (3) where V(x) = x - F(x) and $F \in C^2(\mathbf{R}_+), F(0) = 0, F' \ge 0$ and - $\limsup_{x \downarrow 0} F'(x) < 1$ and $\lim_{x \to \infty} F'(x) = \infty$; and - There exists a real number $m_0 > 1$ such that $F(x) = O(x^{m_0})$ as $x \to \infty$.
- In this talk, let $V(u) = u u^{\alpha}$ for $\alpha > 1$ (e.g. $V(u) = u u^2$).
- Assume σ is Lipschitz with $0 < L_{\sigma} \leq \frac{\sigma(u)}{u} \leq \text{Lip}_{\sigma} \ (\sigma(0) = 0).$
- Assume $u_0(\cdot) = u(0, \cdot) \ge 0$ is continuous.
- There is a unique mild solution (Cerrai '03) and u(t, x) > 0 (Mueller '91, Shiga '94).
- Q.) What are the invariant probability measures for (3)?
 - If $\lambda = 0$ and $V(u) = u u^2$, then $u \equiv 0$ and $u \equiv 1$ are two fixed points.
 - If $\lambda > 0$, then δ_0 is an invariant measure where $\mathbb{O}(x) := 0$ for all $x \in \mathbf{T}$.

Theorem (Khoshnevisan-K.-Mueller-Shiu, '21+)

There exist $\lambda_1 > \lambda_0 > 0$ such that the following are valid:

1. If $\lambda > \lambda_1$, then δ_0 is the only invariant measure. In fact, $\limsup_{t \to \infty} t^{-1} \log \|u(t)\|_{C(\mathbf{T})} < 0$ a.s..

Theorem (Khoshnevisan-K.-Mueller-Shiu, '21+)

There exist $\lambda_1 > \lambda_0 > 0$ such that the following are valid:

1. If $\lambda > \lambda_1$, then δ_0 is the only invariant measure. In fact, $\limsup_{t \to \infty} t^{-1} \log \|u(t)\|_{C(\mathbf{T})} < 0$ a.s..

2. If $\lambda \in (0, \lambda_0)$, then:

Theorem (Khoshnevisan-K.-Mueller-Shiu, '21+)

- 1. If $\lambda > \lambda_1$, then δ_0 is the only invariant measure. In fact, $\limsup_{t \to \infty} t^{-1} \log \|u(t)\|_{C(\mathbf{T})} < 0 \text{ a.s.}.$
- 2. If $\lambda \in (0, \lambda_0)$, then:
 - There exists a unique probability measure μ_+ on $C_+(\mathbb{T})$ that is invariant and $\mu_+\{\mathbb{O}\} = 0$. Moreover, μ_+ charges $C_{>0}(\mathbb{T})$;

Theorem (Khoshnevisan-K.-Mueller-Shiu, '21+)

- 1. If $\lambda > \lambda_1$, then δ_0 is the only invariant measure. In fact, $\limsup_{t \to \infty} t^{-1} \log \|u(t)\|_{C(\mathbf{T})} < 0$ a.s..
- 2. If $\lambda \in (0, \lambda_0)$, then:
 - There exists a unique probability measure μ_+ on $C_+(\mathbf{T})$ that is invariant and $\mu_+\{0\} = 0$. Moreover, μ_+ charges $C_{>0}(\mathbf{T})$;
 - The set of all invariant measures on C₊(T) is the collection of all convex combinations of μ₁ := μ₊ and μ₀ := δ₀;

Theorem (Khoshnevisan-K.-Mueller-Shiu, '21+)

- 1. If $\lambda > \lambda_1$, then δ_0 is the only invariant measure. In fact, $\limsup_{t \to \infty} t^{-1} \log \|u(t)\|_{C(\mathbf{T})} < 0 \text{ a.s.}.$
- 2. If $\lambda \in (0, \lambda_0)$, then:
 - There exists a unique probability measure μ_+ on $C_+(\mathbf{T})$ that is invariant and $\mu_+\{0\} = 0$. Moreover, μ_+ charges $C_{>0}(\mathbf{T})$;
 - The set of all invariant measures on C₊(T) is the collection of all convex combinations of μ₁ := μ₊ and μ₀ := δ₀;
 - For every $\alpha \in (0, 1/2)$, μ_+ is a probability measure on $C^{\alpha}_+(\mathbf{T})$ and $\int \|\omega\|_{C^{\alpha}(\mathbf{T})}^k \mu_+(\mathrm{d}\omega) < \infty \quad \text{for every real number } k \ge 2.$

Theorem (Khoshnevisan-K.-Mueller-Shiu, '21+)

- 1. If $\lambda > \lambda_1$, then δ_0 is the only invariant measure. In fact, $\limsup_{t \to \infty} t^{-1} \log \|u(t)\|_{C(\mathbf{T})} < 0$ a.s..
- 2. If $\lambda \in (0, \lambda_0)$, then:
 - There exists a unique probability measure μ_+ on $C_+(\mathbf{T})$ that is invariant and $\mu_+\{0\} = 0$. Moreover, μ_+ charges $C_{>0}(\mathbf{T})$;
 - The set of all invariant measures on C₊(T) is the collection of all convex combinations of μ₁ := μ₊ and μ₀ := δ₀;
 - For every $\alpha \in (0, 1/2)$, μ_+ is a probability measure on $C^{\alpha}_+(\mathbf{T})$ and $\int \|\omega\|_{C^{\alpha}(\mathbf{T})}^k \mu_+(\mathrm{d}\omega) < \infty \quad \text{for every real number } k \ge 2.$
 - $\mu_+(\bullet) = \lim_{T \to \infty} T^{-1} \int_0^T \mathbb{P}\{u(t) \in \bullet\} dt$, where convergence holds in total variation;

Theorem (Khoshnevisan-K.-Mueller-Shiu, '21+)

- 1. If $\lambda > \lambda_1$, then δ_0 is the only invariant measure. In fact, $\limsup_{t \to \infty} t^{-1} \log \|u(t)\|_{C(\mathbf{T})} < 0$ a.s..
- 2. If $\lambda \in (0, \lambda_0)$, then:
 - There exists a unique probability measure μ_+ on $C_+(\mathbf{T})$ that is invariant and $\mu_+\{0\} = 0$. Moreover, μ_+ charges $C_{>0}(\mathbf{T})$;
 - The set of all invariant measures on C₊(T) is the collection of all convex combinations of μ₁ := μ₊ and μ₀ := δ₀;
 - For every $\alpha \in (0, 1/2)$, μ_+ is a probability measure on $C^{\alpha}_+(\mathbf{T})$ and $\int \|\omega\|_{C^{\alpha}(\mathbf{T})}^k \mu_+(\mathrm{d}\omega) < \infty \quad \text{for every real number } k \ge 2.$
 - $\mu_+(\bullet) = \lim_{T \to \infty} T^{-1} \int_0^T P\{u(t) \in \bullet\} dt$, where convergence holds in total variation;

- Recall $\partial_t u = \partial_x^2 u + u u^2 + \lambda \sigma(u) \xi$ with $u_0 \ge 0$.
- Consider $\partial_t v = \partial_x^2 v + v + \lambda \sigma(v) \xi$ with $v_0 = u_0$.

- Recall $\partial_t u = \partial_x^2 u + u u^2 + \lambda \sigma(u) \xi$ with $u_0 \ge 0$.
- Consider $\partial_t v = \partial_x^2 v + v + \lambda \sigma(v) \xi$ with $v_0 = u_0$.

• Since $u \ge 0$, we have $u \le v$ by the comparison principle (Shiga '94).

- Recall $\partial_t u = \partial_x^2 u + u u^2 + \lambda \sigma(u) \xi$ with $u_0 \ge 0$.
- Consider $\partial_t v = \partial_x^2 v + v + \lambda \sigma(v) \xi$ with $v_0 = u_0$.
- Since $u \ge 0$, we have $u \le v$ by the comparison principle (Shiga '94).

• Let $w(t, x) := e^{-t}v(t, x)$. Then, w is the solution to

 $\partial_t w(t, x) = \partial_x^2 w(t, x) + \lambda \sigma(t, w(t, x)) \xi(t, x),$

where $\sigma(t, w) := e^{-t}\sigma(e^t w)$.

- Recall $\partial_t u = \partial_x^2 u + u u^2 + \lambda \sigma(u) \xi$ with $u_0 \ge 0$.
- Consider $\partial_t v = \partial_x^2 v + v + \lambda \sigma(v) \xi$ with $v_0 = u_0$.
- Since $u \ge 0$, we have $u \le v$ by the comparison principle (Shiga '94).
- Let $w(t, x) := e^{-t}v(t, x)$. Then, w is the solution to

 $\partial_t w(t,x) = \partial_x^2 w(t,x) + \lambda \sigma(t,w(t,x)) \xi(t,x),$

where $\sigma(t, w) := e^{-t}\sigma(e^t w)$.

Dissipation of SHE:

$$\limsup_{t\to\infty} \frac{1}{t} \log \|w(t)\|_{C(\mathsf{T})} \leqslant -c\lambda^2 \qquad \text{a.s.}$$

- Recall $\partial_t u = \partial_x^2 u + u u^2 + \lambda \sigma(u) \xi$ with $u_0 \ge 0$.
- Consider $\partial_t v = \partial_x^2 v + v + \lambda \sigma(v) \xi$ with $v_0 = u_0$.
- Since $u \ge 0$, we have $u \le v$ by the comparison principle (Shiga '94).
- Let $w(t, x) := e^{-t}v(t, x)$. Then, w is the solution to

$$\partial_t w(t, x) = \partial_x^2 w(t, x) + \lambda \sigma(t, w(t, x)) \xi(t, x),$$

where $\sigma(t, w) := e^{-t}\sigma(e^t w)$.

Dissipation of SHE:

$$\limsup_{t\to\infty}\frac{1}{t}\log\|w(t)\|_{\mathcal{C}(\mathsf{T})}\leqslant -c\lambda^2\qquad \text{a.s.}.$$

• Since
$$u \leq v = e^t w$$
, we have
$$\limsup_{t \to \infty} \frac{1}{t} \log \|u(t)\|_{C(\mathsf{T})} \leq 1 + \limsup_{t \to \infty} \frac{1}{t} \log \|w(t)\|_{C(\mathsf{T})} \leq 1 - c\lambda^2.$$

- Recall $\partial_t u = \partial_x^2 u + u u^2 + \lambda \sigma(u) \xi$ with $u_0 \ge 0$.
- Consider $\partial_t v = \partial_x^2 v + v + \lambda \sigma(v) \xi$ with $v_0 = u_0$.
- Since $u \ge 0$, we have $u \le v$ by the comparison principle (Shiga '94).
- Let $w(t, x) := e^{-t}v(t, x)$. Then, w is the solution to

$$\partial_t w(t,x) = \partial_x^2 w(t,x) + \lambda \sigma(t,w(t,x)) \xi(t,x),$$

where
$$\sigma(t, w) := e^{-t}\sigma(e^t w)$$
.

Dissipation of SHE:

$$\limsup_{t\to\infty}\frac{1}{t}\log\|w(t)\|_{\mathcal{C}(\mathsf{T})}\leqslant -c\lambda^2\qquad \text{a.s.}.$$

• Since $u \leq v = e^t w$, we have $\limsup_{t \to \infty} \frac{1}{t} \log \|u(t)\|_{C(\mathsf{T})} \leq 1 + \limsup_{t \to \infty} \frac{1}{t} \log \|w(t)\|_{C(\mathsf{T})} \leq 1 - c\lambda^2.$

Recall: Main Theorem when λ is small

Theorem (The case when λ is small)

If $\lambda \in (0, \lambda_0)$ for some small $\lambda_0 > 0$, then:

- (i) There exists a unique probability measure μ₊ on C₊(T) that is invariant and μ₊{0} = 0. Moreover, μ₊ charges C_{>0}(T);
- (ii) The set of all invariant measures on $C_+(\mathbf{T})$ is the collection of all convex combinations of $\mu_1 := \mu_+$ and $\mu_0 := \delta_0$;

(iii) For every $\alpha \in (0, 1/2)$, μ_+ is a probability measure on $C^{\alpha}_+(\mathbf{T})$ and $\int \|\omega\|_{C^{\alpha}(\mathbf{T})}^k \mu_+(d\omega) < \infty \qquad \text{for every real number } k \ge 2.$ (iv) $\mu_+(\bullet) = \lim_{T \to \infty} T^{-1} \int_0^T P\{u(t) \in \bullet\} dt$, where convergence holds in total

(iv) $\mu_+(\bullet) = \lim_{T \to \infty} T^{-1} \int_0^t P\{u(t) \in \bullet\} dt$, where convergence holds in total variation;

• We focus on the proof of (i): the existence and uniqueness of μ_+ .

Recall: Main Theorem when λ is small

Theorem (The case when λ is small)

If $\lambda \in (0, \lambda_0)$ for some small $\lambda_0 > 0$, then:

- (i) There exists a unique probability measure μ₊ on C₊(T) that is invariant and μ₊{0} = 0. Moreover, μ₊ charges C_{>0}(T);
- (ii) The set of all invariant measures on $C_+(\mathbf{T})$ is the collection of all convex combinations of $\mu_1 := \mu_+$ and $\mu_0 := \delta_0$;

(iii) For every α ∈ (0, 1/2), μ₊ is a probability measure on C^α₊(**T**) and ∫ ||ω||^k_{C^α(**T**)} μ₊(dω) < ∞ for every real number k ≥ 2.
(iv) μ₊(•) = lim_{T→∞} T⁻¹ ∫₀^T P{u(t) ∈ •} dt, where convergence holds in total variation;

• We focus on the proof of (i): the existence and uniqueness of μ_+ .

Let P_t be a Markov semigroup for u(t), i.e., for all Borel sets Γ ⊂ C₊(T) and for every Borel measure ν on C₊(T),

$$(\nu P_t)(\Gamma) := \mathrm{P}_{\nu}\{u(t) \in \Gamma\} = \int_{\mathcal{C}_+(\mathsf{T})} \mathrm{P}_{u_0}\{u(t) \in \Gamma\} \, \nu(\mathrm{d} u_0).$$

• P_t is a Feller Markov semigroup, i.e., $P_t : C_b(C_+(\mathbf{T})) \to C_b(C_+(\mathbf{T}))$.

Let P_t be a Markov semigroup for u(t), i.e., for all Borel sets Γ ⊂ C₊(T) and for every Borel measure ν on C₊(T),

$$(\nu P_t)(\Gamma) := \mathrm{P}_{\nu}\{u(t) \in \Gamma\} = \int_{\mathcal{C}_+(\mathsf{T})} \mathrm{P}_{u_0}\{u(t) \in \Gamma\} \, \nu(\mathrm{d} u_0).$$

• P_t is a Feller Markov semigroup, i.e., $P_t : C_b(C_+(\mathbf{T})) \to C_b(C_+(\mathbf{T}))$.

Lemma (A Krylov–Bogoliubov theorem)

Suppose there exists a probability measure ν on $C_{>0}(\mathbf{T})$ such that the probability measures

$$\left\{\frac{1}{T}\int_0^T (\nu P_s)\,\mathrm{d}s\right\}_{T>0}$$

has a tight infinite subsequence in $C_{>0}(\mathbf{T})$. Then, *u* has an invariant probability measure on $C_{>0}(\mathbf{T})$.

Let P_t be a Markov semigroup for u(t), i.e., for all Borel sets Γ ⊂ C₊(T) and for every Borel measure ν on C₊(T),

$$(
u \mathcal{P}_t)(\Gamma) := \mathrm{P}_{
u}\{u(t) \in \Gamma\} = \int_{\mathcal{C}_+(\mathsf{T})} \mathrm{P}_{u_0}\{u(t) \in \Gamma\} \,
u(\mathrm{d} u_0).$$

• P_t is a Feller Markov semigroup, i.e., $P_t : C_b(C_+(\mathbf{T})) \to C_b(C_+(\mathbf{T}))$.

Lemma (A Krylov–Bogoliubov theorem)

Suppose there exists a probability measure ν on $C_{>0}(\mathbf{T})$ such that the probability measures

$$\left(\frac{1}{T}\int_0^T (\nu P_s)\,\mathrm{d}s\right)_{T>0}$$

has a tight infinite subsequence in $C_{>0}(\mathbf{T})$. Then, *u* has an invariant probability measure on $C_{>0}(\mathbf{T})$.

- Recall $\partial_t u = \partial_x^2 u + u u^2 + \lambda \sigma(u) \xi$ with $u_0 \ge 0$.
- $\sup_{t \ge 1} \mathbb{E}\left(\|u(t)\|_{C^{\alpha}(\mathbf{T})}^{k} \right) < \infty$ for all $k \ge 2$.

- Recall $\partial_t u = \partial_x^2 u + u u^2 + \lambda \sigma(u) \xi$ with $u_0 \ge 0$.
- $\sup_{t \ge 1} \mathbb{E}\left(\|u(t)\|_{\mathcal{C}^{\alpha}(\mathbf{T})}^{k} \right) < \infty$ for all $k \ge 2$.

Proposition

If $u_0 = 1$ and λ is sufficiently small, then we have

$$\lim_{\varepsilon \downarrow 0} \limsup_{T \to \infty} \frac{1}{T} \operatorname{E}_{\mathbb{1}} \left[\int_{0}^{T} \mathbf{1}_{\{\inf_{x \in \mathsf{T}} u(t,x) < \varepsilon\}} \, \mathrm{d}t \right] = 0.$$
(4)

In particular, u has an invariant measure μ_+ on $C_+(\mathsf{T})$ such that $\mu_+\{0\}=0$.

• Recall
$$\partial_t u = \partial_x^2 u + u - u^2 + \lambda \sigma(u) \xi$$
 with $u_0 \ge 0$

•
$$\sup_{t\geq 1} \mathbb{E}\left(\|u(t)\|_{C^{\alpha}(\mathbf{T})}^{k}\right) < \infty$$
 for all $k \geq 2$.

Proposition

If $u_0 = \mathbb{1}$ and λ is sufficiently small, then we have

$$\lim_{\varepsilon \downarrow 0} \limsup_{T \to \infty} \frac{1}{T} \operatorname{E}_{\mathbb{1}} \left[\int_{0}^{T} \mathbf{1}_{\{\inf_{x \in \mathsf{T}} u(t,x) < \varepsilon\}} \, \mathrm{d}t \right] = 0.$$
(4)

In particular, *u* has an invariant measure μ_+ on $C_+(\mathbf{T})$ such that $\mu_+\{0\} = 0$.

• We get (4) if we show the following:

$$P_{\mathbb{1}}\left\{\lim_{\varepsilon \downarrow 0} \limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \mathbf{1}_{\{\inf_{x \in \mathbf{T}} u(t,x) < \varepsilon\}} dt = 0\right\} = 1.$$

• Recall
$$\partial_t u = \partial_x^2 u + u - u^2 + \lambda \sigma(u) \xi$$
 with $u_0 \ge 0$

•
$$\sup_{t\geq 1} \mathbb{E}\left(\|u(t)\|_{C^{\alpha}(\mathbf{T})}^{k}\right) < \infty$$
 for all $k \geq 2$.

Proposition

If $u_0 = \mathbb{1}$ and λ is sufficiently small, then we have

$$\lim_{\varepsilon \downarrow 0} \limsup_{T \to \infty} \frac{1}{T} \operatorname{E}_{\mathbb{1}} \left[\int_{0}^{T} \mathbf{1}_{\{\inf_{x \in \mathsf{T}} u(t,x) < \varepsilon\}} \, \mathrm{d}t \right] = 0. \tag{4}$$

In particular, *u* has an invariant measure μ_+ on $C_+(\mathbf{T})$ such that $\mu_+\{0\} = 0$.

• We get (4) if we show the following:

$$P_{\mathbb{1}}\left\{\lim_{\varepsilon \downarrow 0} \limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \mathbf{1}_{\{\inf_{x \in T} u(t,x) < \varepsilon\}} \, \mathrm{d}t = \mathbf{0}\right\} = \mathbf{1}.$$

- Claim: $P_{\mathbb{1}}\left\{\lim_{\epsilon \downarrow 0} \limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \mathbf{1}_{\{\inf_{x \in \mathsf{T}} u(t,x) < \varepsilon\}} dt = 0\right\} = 1.$
- We will define stopping times $0 = \tau_0 < \tau_1 < \cdots$ and comparison processes v_0, v_1, \ldots such that $u(t) \ge v_n(t)$ for $t \in [\tau_n, \tau_{n+1})$.

- Claim: $P_1\left\{\lim_{\epsilon \downarrow 0} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \mathbf{1}_{\{\inf_{x \in T} u(t,x) < \varepsilon\}} dt = 0\right\} = 1.$
- We will define stopping times $0 = \tau_0 < \tau_1 < \cdots$ and comparison processes v_0, v_1, \ldots such that $u(t) \ge v_n(t)$ for $t \in [\tau_n, \tau_{n+1})$.
- Then, we construct from *v_n* an asymmetric random walk which goes up with higher probability when *u* is small.

- Claim: $P_1\left\{\lim_{\epsilon \downarrow 0} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \mathbf{1}_{\{\inf_{x \in T} u(t,x) < \epsilon\}} dt = 0\right\} = 1.$
- We will define stopping times $0 = \tau_0 < \tau_1 < \cdots$ and comparison processes v_0, v_1, \ldots such that $u(t) \ge v_n(t)$ for $t \in [\tau_n, \tau_{n+1})$.
- Then, we construct from *v_n* an asymmetric random walk which goes up with higher probability when *u* is small.
- Let $L_t(h) := \inf_{x \in T} h(t, x)$ and $U_t(h) := \sup_{x \in T} h(t, x)$ for $h \in C(T)$.

- Claim: $P_1\left\{\lim_{\epsilon \downarrow 0} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \mathbf{1}_{\{\inf_{x \in T} u(t,x) < \epsilon\}} dt = 0\right\} = 1.$
- We will define stopping times $0 = \tau_0 < \tau_1 < \cdots$ and comparison processes v_0, v_1, \ldots such that $u(t) \ge v_n(t)$ for $t \in [\tau_n, \tau_{n+1})$.
- Then, we construct from *v_n* an asymmetric random walk which goes up with higher probability when *u* is small.
- Let $L_t(h) := \inf_{x \in \mathbf{T}} h(t, x)$ and $U_t(h) := \sup_{x \in \mathbf{T}} h(t, x)$ for $h \in \mathbf{C}(\mathbf{T})$.

• If $u \in (0, 1/2)$, then $\frac{u}{2} \leq u - u^2 \leq u$.

- Claim: $P_1\left\{\lim_{\epsilon \downarrow 0} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \mathbf{1}_{\{\inf_{x \in T} u(t,x) < \epsilon\}} dt = 0\right\} = 1.$
- We will define stopping times $0 = \tau_0 < \tau_1 < \cdots$ and comparison processes v_0, v_1, \ldots such that $u(t) \ge v_n(t)$ for $t \in [\tau_n, \tau_{n+1})$.
- Then, we construct from *v_n* an asymmetric random walk which goes up with higher probability when *u* is small.
- Let $L_t(h) := \inf_{x \in \mathbf{T}} h(t, x)$ and $U_t(h) := \sup_{x \in \mathbf{T}} h(t, x)$ for $h \in \mathbf{C}(\mathbf{T})$.
- If $u \in (0, 1/2)$, then $\frac{u}{2} \leq u u^2 \leq u$.

• Let $\tau_0 := 0$ and $v_0(0, x) := 1/8$.

- Claim: $P_1\left\{\lim_{\epsilon \downarrow 0} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \mathbf{1}_{\{\inf_{x \in T} u(t,x) < \epsilon\}} dt = 0\right\} = 1.$
- We will define stopping times $0 = \tau_0 < \tau_1 < \cdots$ and comparison processes v_0, v_1, \ldots such that $u(t) \ge v_n(t)$ for $t \in [\tau_n, \tau_{n+1})$.
- Then, we construct from *v_n* an asymmetric random walk which goes up with higher probability when *u* is small.
- Let $L_t(h) := \inf_{x \in \mathbf{T}} h(t, x)$ and $U_t(h) := \sup_{x \in \mathbf{T}} h(t, x)$ for $h \in \mathbf{C}(\mathbf{T})$.

• If
$$u \in (0, 1/2)$$
, then $\frac{u}{2} \leq u - u^2 \leq u$.

• Let $\tau_0 := 0$ and $v_0(0, x) := 1/8$.

• Consider $\partial_t w_n = \partial_x^2 w_n + \frac{1}{2} L_{\tau_n}(v_n) + \lambda \sigma(w_n(t, x)) \theta_{\tau_n} \xi$

with $w_n(0, x) = L_{\tau_n}(v_n)$.

- Claim: $P_1\left\{\lim_{\epsilon \downarrow 0} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \mathbf{1}_{\{\inf_{x \in T} u(t,x) < \epsilon\}} dt = 0\right\} = 1.$
- We will define stopping times $0 = \tau_0 < \tau_1 < \cdots$ and comparison processes v_0, v_1, \ldots such that $u(t) \ge v_n(t)$ for $t \in [\tau_n, \tau_{n+1})$.
- Then, we construct from *v_n* an asymmetric random walk which goes up with higher probability when *u* is small.
- Let $L_t(h) := \inf_{x \in \mathbf{T}} h(t, x)$ and $U_t(h) := \sup_{x \in \mathbf{T}} h(t, x)$ for $h \in \mathbf{C}(\mathbf{T})$.

• If
$$u \in (0, 1/2)$$
, then $\frac{u}{2} \leq u - u^2 \leq u$.

- Let $\tau_0 := 0$ and $v_0(0, x) := 1/8$.
- Consider $\partial_t w_n = \partial_x^2 w_n + \frac{1}{2} L_{\tau_n}(v_n) + \lambda \sigma(w_n(t, x)) \theta_{\tau_n} \xi$

with $w_n(0, x) = L_{\tau_n}(v_n)$.

- τ_{n+1} to be the smallest $t + \tau_n > \tau_n$ such that
 - $L_t(w_n) = 2L_{\tau_n}(v_n)$

- τ_{n+1} to be the smallest $t + \tau_n > \tau_n$ such that
 - $L_t(w_n) = 2L_{\tau_n}(v_n)$
 - $-L_t(W_n) = \frac{1}{2}L_{\tau_n}(V_n)$

- τ_{n+1} to be the smallest $t + \tau_n > \tau_n$ such that
 - $L_t(w_n) = 2L_{\tau_n}(v_n)$
 - $L_t(w_n) = \frac{1}{2}L_{\tau_n}(v_n)$
 - $U_t(w_n) = 4L_{\tau_n}(v_n).$

- τ_{n+1} to be the smallest $t + \tau_n > \tau_n$ such that
 - $L_t(w_n) = 2L_{\tau_n}(v_n)$
 - $L_t(w_n) = \frac{1}{2}L_{\tau_n}(v_n)$
 - $U_t(w_n) = 4L_{\tau_n}(v_n).$

• If such a *t* does exist, then we let $v_n(\tau_n + t, x) := w_n(t, x)$.

- τ_{n+1} to be the smallest $t + \tau_n > \tau_n$ such that
 - $L_t(w_n) = 2L_{\tau_n}(v_n)$
 - $L_t(w_n) = \frac{1}{2}L_{\tau_n}(v_n)$
 - $U_t(w_n) = 4L_{\tau_n}(v_n).$
- If such a *t* does exist, then we let $v_n(\tau_n + t, x) := w_n(t, x)$.

In case 1, we let

$$V_{n+1}(\tau_{n+1}, x) := egin{cases} 2L_{ au_n}(v_n) & ext{if } L_{ au_n}(v_n) \leqslant 2^{-1}, \ 2^{M-2} & ext{if } L_{ au_n}(v_n) \geqslant 1, \end{cases}$$

- τ_{n+1} to be the smallest $t + \tau_n > \tau_n$ such that
 - $L_t(w_n) = 2L_{\tau_n}(v_n)$
 - $L_t(w_n) = \frac{1}{2}L_{\tau_n}(v_n)$
 - $U_t(w_n) = 4L_{\tau_n}(v_n).$
- If such a *t* does exist, then we let $v_n(\tau_n + t, x) := w_n(t, x)$.
- In case 1, we let

$$v_{n+1}(\tau_{n+1}, x) := egin{cases} 2L_{ au_n}(v_n) & ext{if } L_{ au_n}(v_n) \leqslant 2^{-1}, \ 2^{M-2} & ext{if } L_{ au_n}(v_n) \geqslant 1, \end{cases}$$

In cases 2 and 3, we let

$$V_{n+1}(\tau_{n+1}, X) := \frac{1}{2}L_{\tau_n}(V_n).$$
• τ_{n+1} to be the smallest $t + \tau_n > \tau_n$ such that

$$-L_t(w_n)=2L_{\tau_n}(v_n)$$

$$-L_t(w_n) = \frac{1}{2}L_{\tau_n}(v_n)$$

- $U_t(w_n) = 4L_{\tau_n}(v_n).$
- If such a *t* does exist, then we let $v_n(\tau_n + t, x) := w_n(t, x)$.
- In case 1, we let

$$v_{n+1}(au_{n+1}, x) := egin{cases} 2L_{ au_n}(v_n) & ext{if } L_{ au_n}(v_n) \leqslant 2^{-1}, \ 2^{M-2} & ext{if } L_{ au_n}(v_n) \geqslant 1, \end{cases}$$

In cases 2 and 3, we let

$$V_{n+1}(\tau_{n+1}, x) := \frac{1}{2}L_{\tau_n}(V_n).$$

• Let $X_n = \log_2 L_{\tau_n}(v_n) (X_n - X_{n-1} = \pm 1)$ and $\ell_n = \tau_n - \tau_{n-1}$ for $n \ge 1$.

• τ_{n+1} to be the smallest $t + \tau_n > \tau_n$ such that

$$-L_t(w_n)=2L_{\tau_n}(v_n)$$

$$-L_t(w_n) = \frac{1}{2}L_{\tau_n}(v_n)$$

- $U_t(w_n) = 4L_{\tau_n}(v_n).$
- If such a *t* does exist, then we let $v_n(\tau_n + t, x) := w_n(t, x)$.
- In case 1, we let

$$v_{n+1}(au_{n+1}, x) := egin{cases} 2L_{ au_n}(v_n) & ext{if } L_{ au_n}(v_n) \leqslant 2^{-1}, \ 2^{M-2} & ext{if } L_{ au_n}(v_n) \geqslant 1, \end{cases}$$

In cases 2 and 3, we let

$$\mathbf{V}_{n+1}(\tau_{n+1},\mathbf{X}) := \frac{1}{2}L_{\tau_n}(\mathbf{V}_n).$$

• Let $X_n = \log_2 L_{\tau_n}(v_n) (X_n - X_{n-1} = \pm 1)$ and $\ell_n = \tau_n - \tau_{n-1}$ for $n \ge 1$.

Lemma

If $L_{\sigma} > 0$, then $P_{\mathbb{1}}\{\tau_{n+1} < \infty\} = 1$ for all $n \in \mathbf{Z}_+$.

Lemma

If λ is small, we have

$$\mathbb{P}(X_{n+1} - X_n = +1 \mid X_n) \ge \frac{2}{3} \text{ for all } n \ge 1,$$

and

$$\lim_{k\to\infty}\limsup_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}\mathbf{1}_{\{X_{j+1}<-k\}}=0 \qquad \text{a.s.}$$

Lemma

If $L_{\sigma} > 0$, then $P_{\mathbb{1}}\{\tau_{n+1} < \infty\} = 1$ for all $n \in \mathbf{Z}_+$.

Lemma

If λ is small, we have

$$\mathbb{P}(X_{n+1} - X_n = +1 \mid X_n) \ge \frac{2}{3} \text{ for all } n \ge 1,$$

and

$$\lim_{k\to\infty}\limsup_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}\mathbf{1}_{\{X_{j+1}<-k\}}=0 \qquad \text{a.s.}$$

Lemma

We also have

$$\limsup_{T \to \infty} \frac{1}{T} \int_0^T \mathbf{1}_{\{\inf_{x \in T} u(t,x) < \varepsilon\}} \, \mathrm{d}t \leq \frac{2 \|\bar{\ell}_1\|_2^2}{\|\underline{\ell}_1\|_1^2} \sqrt{\limsup_{m \to \infty} \frac{1}{m} \sum_{j=0}^{m-1} \mathbf{1}_{\{X_{j+1} \leq -|\log_2(8\varepsilon)|\}}}.$$

(5)

Lemma

If $L_{\sigma} > 0$, then $P_{\mathbb{1}}\{\tau_{n+1} < \infty\} = 1$ for all $n \in \mathbf{Z}_+$.

Lemma

If λ is small, we have

$$\mathbb{P}(X_{n+1} - X_n = +1 \mid X_n) \geqslant \frac{2}{3} \quad \text{for all } n \geqslant 1,$$

and

$$\lim_{k\to\infty}\limsup_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}\mathbf{1}_{\{X_{j+1}<-k\}}=0 \qquad \text{a.s.}$$

Lemma

We also have

$$\limsup_{T\to\infty}\frac{1}{T}\int_0^T \mathbf{1}_{\{\inf_{x\in\mathsf{T}}u(t,x)<\varepsilon\}}\,\mathrm{d} t\leqslant \frac{2\|\bar{\ell}_1\|_2^2}{\|\underline{\ell}_1\|_1^2}\sqrt{\limsup_{m\to\infty}\frac{1}{m}\sum_{j=0}^{m-1}\mathbf{1}_{\{X_{j+1}\leqslant -|\log_2(8\varepsilon)|\}}}.$$

(5)

Recall

$\partial_t u = \partial_x^2 u + u - F(u) + \lambda \sigma(u) \xi.$

So far, we showed that if λ is small, then there exists an invariant probability measure μ₊ on C₊(T) such that μ₊{0} = 0.

(6)

$$\partial_t u = \partial_x^2 u + u - F(u) + \lambda \sigma(u) \xi.$$
 (6)

- So far, we showed that if λ is small, then there exists an invariant probability measure μ₊ on C₊(T) such that μ₊{0} = 0.
- Our goal is now to show that µ₊ is unique.

$$\partial_t u = \partial_x^2 u + u - F(u) + \lambda \sigma(u) \xi.$$
 (6)

- So far, we showed that if λ is small, then there exists an invariant probability measure μ₊ on C₊(T) such that μ₊{0} = 0.
- Our goal is now to show that μ_+ is unique.
- Our main technique is the coupling argument by Mueller ('93).

$$\partial_t u = \partial_x^2 u + u - F(u) + \lambda \sigma(u) \xi.$$
 (6)

- So far, we showed that if λ is small, then there exists an invariant probability measure μ₊ on C₊(T) such that μ₊{0} = 0.
- Our goal is now to show that μ_+ is unique.
- Our main technique is the coupling argument by Mueller ('93).
- We construct two solutions u and v with the initial data u₀ and v₀ respectively and show that u and v completely couple in a finite time.

$$\partial_t u = \partial_x^2 u + u - F(u) + \lambda \sigma(u) \xi.$$
 (6)

- So far, we showed that if λ is small, then there exists an invariant probability measure μ₊ on C₊(T) such that μ₊{0} = 0.
- Our goal is now to show that μ_+ is unique.
- Our main technique is the coupling argument by Mueller ('93).
- We construct two solutions u and v with the initial data u₀ and v₀ respectively and show that u and v completely couple in a finite time.
- For simplicity, we assume that u F(u) = 0.

Recall

$$\partial_t u = \partial_x^2 u + u - F(u) + \lambda \sigma(u) \xi.$$
 (6)

- So far, we showed that if λ is small, then there exists an invariant probability measure μ₊ on C₊(T) such that μ₊{0} = 0.
- Our goal is now to show that µ₊ is unique.
- Our main technique is the coupling argument by Mueller ('93).
- We construct two solutions u and v with the initial data u₀ and v₀ respectively and show that u and v completely couple in a finite time.
- For simplicity, we assume that u F(u) = 0.

Q. How to construct u and v?

$$\partial_t u = \partial_x^2 u + u - F(u) + \lambda \sigma(u) \xi.$$
 (6)

- So far, we showed that if λ is small, then there exists an invariant probability measure μ₊ on C₊(T) such that μ₊{0} = 0.
- Our goal is now to show that μ_+ is unique.
- Our main technique is the coupling argument by Mueller ('93).
- We construct two solutions u and v with the initial data u₀ and v₀ respectively and show that u and v completely couple in a finite time.
- For simplicity, we assume that u F(u) = 0.
- Q. How to construct u and v?

• Consider

$$\partial_t u = \partial_x^2 u + \lambda u \xi_1,$$

$$\partial_t v = \partial_x^2 v + \lambda v \left[g \left(u - v \right) \xi_1 + f \left(u - v \right) \xi_2 \right],$$

where $f(y) := \sqrt{|y| \wedge 1}$ and $g(y) := \sqrt{1 - |f(y)|^2} = \sqrt{1 - (|y| \wedge 1)}$, and ξ_1 and ξ_2 are independent space-time white noises.

• Here $g(u-v)\xi_1 + f(u-v)\xi_2$ is another space-time white noise.

Consider

$$\partial_t u = \partial_x^2 u + \lambda u \xi_1,$$

$$\partial_t v = \partial_x^2 v + \lambda v \left[g \left(u - v \right) \xi_1 + f \left(u - v \right) \xi_2 \right],$$

where $f(y) := \sqrt{|y| \wedge 1}$ and $g(y) := \sqrt{1 - |f(y)|^2} = \sqrt{1 - (|y| \wedge 1)}$, and ξ_1 and ξ_2 are independent space-time white noises.

- Here $g(u v)\xi_1 + f(u v)\xi_2$ is another space-time white noise.
- Assume $u_0 \ge v_0$ with $||u_0 v_0||_{\infty} \le \delta$ for small $\delta > 0$.

Consider

$$\partial_t u = \partial_x^2 u + \lambda u \xi_1,$$

$$\partial_t v = \partial_x^2 v + \lambda v \left[g \left(u - v \right) \xi_1 + f \left(u - v \right) \xi_2 \right],$$

where $f(y) := \sqrt{|y| \wedge 1}$ and $g(y) := \sqrt{1 - |f(y)|^2} = \sqrt{1 - (|y| \wedge 1)}$, and ξ_1 and ξ_2 are independent space-time white noises.

- Here $g(u v)\xi_1 + f(u v)\xi_2$ is another space-time white noise.
- Assume $u_0 \ge v_0$ with $||u_0 v_0||_{\infty} \le \delta$ for small $\delta > 0$.

• We have $u(t, x) \ge v(t, x)$ a.s..

Consider

$$\partial_t u = \partial_x^2 u + \lambda u \xi_1,$$

$$\partial_t v = \partial_x^2 v + \lambda v \left[g \left(u - v \right) \xi_1 + f \left(u - v \right) \xi_2 \right],$$

where $f(y) := \sqrt{|y| \wedge 1}$ and $g(y) := \sqrt{1 - |f(y)|^2} = \sqrt{1 - (|y| \wedge 1)}$, and ξ_1 and ξ_2 are independent space-time white noises.

- Here $g(u v)\xi_1 + f(u v)\xi_2$ is another space-time white noise.
- Assume $u_0 \ge v_0$ with $||u_0 v_0||_{\infty} \le \delta$ for small $\delta > 0$.
- We have $u(t, x) \ge v(t, x)$ a.s..

• Let $\Delta(t,x) := u(t,x) - v(t,x) \ge 0$. Then, we have

$$\left[\partial_t \Delta = \partial_x^2 \Delta + \lambda \left(\Delta^2 + 2uv \frac{f^2(\Delta)}{1 + g(\Delta)}\right)^{1/2} \dot{W}\right]$$

subject to $\Delta(0) = u_0 - v_0 \ge 0$

where \dot{W} is another space-time white noise.

Consider

$$\partial_t u = \partial_x^2 u + \lambda u \xi_1,$$

$$\partial_t v = \partial_x^2 v + \lambda v \left[g \left(u - v \right) \xi_1 + f \left(u - v \right) \xi_2 \right],$$

where $f(y) := \sqrt{|y| \wedge 1}$ and $g(y) := \sqrt{1 - |f(y)|^2} = \sqrt{1 - (|y| \wedge 1)}$, and ξ_1 and ξ_2 are independent space-time white noises.

- Here $g(u v)\xi_1 + f(u v)\xi_2$ is another space-time white noise.
- Assume $u_0 \ge v_0$ with $||u_0 v_0||_{\infty} \le \delta$ for small $\delta > 0$.
- We have $u(t, x) \ge v(t, x)$ a.s..

• Let $\Delta(t, x) := u(t, x) - v(t, x) \ge 0$. Then, we have

$$\begin{bmatrix} \partial_t \Delta = \partial_x^2 \Delta + \lambda \left(\Delta^2 + 2uv \frac{f^2(\Delta)}{1 + g(\Delta)} \right)^{1/2} \dot{W}, \\ \text{subject to } \Delta(0) = u_0 - v_0 \ge 0, \end{bmatrix}$$

where \dot{W} is another space-time white noise.

• Let $X_t := \int_{\mathbf{T}} \Delta(t, x) \, \mathrm{d}x = \int_{\mathbf{T}} \left[u(t, x) - v(t, x) \right] \, \mathrm{d}x \ge 0.$

• X_t is a continuous $L^2(P)$ martingale with quadratic variation

$$d\langle X \rangle_t = \lambda^2 \int_{\mathsf{T}} \mathrm{d}x \left[\Delta^2 + 2uv \frac{f^2(\Delta(t, x))}{1 + g(\Delta(t, x))} \right] \mathrm{d}t$$

$$\geqslant \lambda^2 \inf_{x \in \mathsf{T}} v^2(t, x) \int_{\mathsf{T}} \min \left\{ \Delta(t, x), 1 \right\} \mathrm{d}x \mathrm{d}t$$

$$\geqslant c \int_{\mathsf{T}} \Delta(t, x) \mathrm{d}x = X_t \mathrm{d}t.$$

• Let
$$X_t := \int_{\mathbf{T}} \Delta(t, x) \, \mathrm{d}x = \int_{\mathbf{T}} [u(t, x) - v(t, x)] \, \mathrm{d}x \ge 0.$$

• X_t is a continuous $L^2(P)$ martingale with quadratic variation

$$d\langle X \rangle_t = \lambda^2 \int_{\mathsf{T}} \mathrm{d}x \left[\Delta^2 + 2uv \frac{f^2(\Delta(t,x))}{1 + g(\Delta(t,x))} \right] \mathrm{d}t$$

$$\geqslant \lambda^2 \inf_{x \in \mathsf{T}} v^2(t,x) \int_{\mathsf{T}} \min \left\{ \Delta(t,x), 1 \right\} \mathrm{d}x \mathrm{d}t$$

$$\geqslant c \int_{\mathsf{T}} \Delta(t,x) \mathrm{d}x = X_t \mathrm{d}t.$$

 In the last inequality, we use stopping times to get that u and v are both close to u₀ and v₀.

• Let
$$X_t := \int_{\mathbf{T}} \Delta(t, x) \, \mathrm{d}x = \int_{\mathbf{T}} [u(t, x) - v(t, x)] \, \mathrm{d}x \ge 0.$$

• X_t is a continuous $L^2(P)$ martingale with quadratic variation

$$d\langle X \rangle_t = \lambda^2 \int_{\mathsf{T}} \mathrm{d}x \left[\Delta^2 + 2uv \frac{f^2(\Delta(t,x))}{1 + g(\Delta(t,x))} \right] \mathrm{d}t$$

$$\geqslant \lambda^2 \inf_{x \in \mathsf{T}} v^2(t,x) \int_{\mathsf{T}} \min \left\{ \Delta(t,x), 1 \right\} \mathrm{d}x \mathrm{d}t$$

$$\geqslant c \int_{\mathsf{T}} \Delta(t,x) \mathrm{d}x = X_t \mathrm{d}t.$$

 In the last inequality, we use stopping times to get that u and v are both close to u₀ and v₀.

• If Y_t satisfies $dY_t = \sqrt{Y_t} dB_t$ ($d\langle Y \rangle_t = Y_t dt$), Y_t hits 0 in a finite time.

• Let
$$X_t := \int_{\mathbf{T}} \Delta(t, x) \, \mathrm{d}x = \int_{\mathbf{T}} [u(t, x) - v(t, x)] \, \mathrm{d}x \ge 0.$$

• X_t is a continuous $L^2(P)$ martingale with quadratic variation

$$d\langle X \rangle_t = \lambda^2 \int_{\mathsf{T}} \mathrm{d}x \left[\Delta^2 + 2uv \frac{f^2(\Delta(t, x))}{1 + g(\Delta(t, x))} \right] \mathrm{d}t$$

$$\geqslant \lambda^2 \inf_{x \in \mathsf{T}} v^2(t, x) \int_{\mathsf{T}} \min \left\{ \Delta(t, x), 1 \right\} \mathrm{d}x \mathrm{d}t$$

$$\geqslant c \int_{\mathsf{T}} \Delta(t, x) \mathrm{d}x = X_t \mathrm{d}t.$$

- In the last inequality, we use stopping times to get that u and v are both close to u₀ and v₀.
- If Y_t satisfies $dY_t = \sqrt{Y_t} dB_t$ ($d\langle Y \rangle_t = Y_t dt$), Y_t hits 0 in a finite time.

• There exists $t(\delta) > 0$ (deterministic) such that P ($\inf_{s \in (0,t)} X_s = 0$) > 0.

• Let
$$X_t := \int_{\mathbf{T}} \Delta(t, x) \, \mathrm{d}x = \int_{\mathbf{T}} [u(t, x) - v(t, x)] \, \mathrm{d}x \ge 0.$$

• X_t is a continuous $L^2(P)$ martingale with quadratic variation

$$d\langle X \rangle_t = \lambda^2 \int_{\mathbf{T}} \mathrm{d}x \left[\Delta^2 + 2uv \frac{f^2(\Delta(t,x))}{1 + g(\Delta(t,x))} \right] \mathrm{d}t$$

$$\geqslant \lambda^2 \inf_{x \in \mathbf{T}} v^2(t,x) \int_{\mathbf{T}} \min \left\{ \Delta(t,x), 1 \right\} \mathrm{d}x \mathrm{d}t$$

$$\geqslant c \int_{\mathbf{T}} \Delta(t,x) \mathrm{d}x = X_t \mathrm{d}t.$$

- In the last inequality, we use stopping times to get that u and v are both close to u₀ and v₀.
- If Y_t satisfies $dY_t = \sqrt{Y_t} dB_t$ ($d\langle Y \rangle_t = Y_t dt$), Y_t hits 0 in a finite time.
- There exists $t(\delta) > 0$ (deterministic) such that P $(\inf_{s \in (0,t)} X_s = 0) > 0$.

- Suppose our initial data $u_0 \ge 0$ and $v_0 \ge 0$ are not comparable.
- We introduce three independent space-time white noises ξ, ξ₁ and ξ₂ and let w denote the solution to the SPDE,

 $\partial_t w = \partial_x^2 w + \lambda w \xi$, subject to $w_0 = u_0 \vee v_0$.

- Suppose our initial data $u_0 \ge 0$ and $v_0 \ge 0$ are not comparable.
- We introduce three independent space-time white noises ξ, ξ₁ and ξ₂ and let w denote the solution to the SPDE,

 $\partial_t w = \partial_x^2 w + \lambda w \xi$, subject to $w_0 = u_0 \vee v_0$.

 We use ξ and ξ_i to construct the pairwise monotone coupling (w, u) and (w, v) where the initial conditions of u and v are u₀ and v₀ respectively.

- Suppose our initial data $u_0 \ge 0$ and $v_0 \ge 0$ are not comparable.
- We introduce three independent space-time white noises ξ, ξ₁ and ξ₂ and let w denote the solution to the SPDE,

 $\partial_t w = \partial_x^2 w + \lambda w \xi$, subject to $w_0 = u_0 \vee v_0$.

We use ξ and ξ_i to construct the pairwise monotone coupling (w, u) and (w, v) where the initial conditions of u and v are u₀ and v₀ respectively.

If u₀ and v₀ are not close, we wait until they are close to each other:

- Suppose our initial data $u_0 \ge 0$ and $v_0 \ge 0$ are not comparable.
- We introduce three independent space-time white noises ξ, ξ₁ and ξ₂ and let w denote the solution to the SPDE,

 $\partial_t w = \partial_x^2 w + \lambda w \xi$, subject to $w_0 = u_0 \vee v_0$.

- We use ξ and ξ_i to construct the pairwise monotone coupling (w, u) and (w, v) where the initial conditions of u and v are u₀ and v₀ respectively.
- If u_0 and v_0 are not close, we wait until they are close to each other: Proposition

Let $A > A_0 > 0$, and $\alpha \in (0, 1/2)$. Then, for every non-random $u_0 \in C_+(\mathbf{T})$ with $\frac{1}{2}A_0 \leq \inf_{x \in \mathbf{T}} u_0(x) \leq ||u_0||_{C^{\alpha}(\mathbf{T})} \leq A$, there exists $t_0 > 0$ and a strictly positive number $\mathbf{p}_{A,A_0}(t_0, \alpha, \delta)$ such that

$$\mathbb{P}\left\{\sup_{x\in\mathsf{T}}|u(t_0,x)-A_0|\leqslant\delta,\|u(t_0)\|_{C^{\alpha/2}(\mathsf{T})}\leqslant A+1\right\}\geqslant \mathbf{p}_{A,A_0}(t_0,\alpha,\delta).$$

- Suppose our initial data $u_0 \ge 0$ and $v_0 \ge 0$ are not comparable.
- We introduce three independent space-time white noises ξ, ξ₁ and ξ₂ and let w denote the solution to the SPDE,

 $\partial_t w = \partial_x^2 w + \lambda w \xi$, subject to $w_0 = u_0 \vee v_0$.

- We use ξ and ξ_i to construct the pairwise monotone coupling (w, u) and (w, v) where the initial conditions of u and v are u₀ and v₀ respectively.
- If u_0 and v_0 are not close, we wait until they are close to each other: Proposition

Let $A > A_0 > 0$, and $\alpha \in (0, 1/2)$. Then, for every non-random $u_0 \in C_+(\mathbf{T})$ with $\frac{1}{2}A_0 \leq \inf_{x \in \mathbf{T}} u_0(x) \leq ||u_0||_{C^{\alpha}(\mathbf{T})} \leq A$, there exists $t_0 > 0$ and a strictly positive number $\mathbf{p}_{A,A_0}(t_0, \alpha, \delta)$ such that

 $P\left\{\sup_{x\in\mathsf{T}}|u(t_0,x)-A_0|\leqslant\delta,\|u(t_0)\|_{\mathcal{C}^{\alpha/2}(\mathsf{T})}\leqslant A+1\right\}\geqslant \mathsf{p}_{A,A_0}(t_0,\alpha,\delta).$

Thank You!