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Main Problem

Consider the following stochastic reaction-diffusion equation

∂tu = ∂2
x u + V (u) + λσ(u)ξ, t > 0, x ∈ T. (1)

where T = [−1 ,1) (torus), ξ is space-time white noise, λ > 0 is a fixed
constant, and σ is a globally Lipschitz function.

u0 is a non-negative continuous function.

If V (u) = 0 and σ(u) = u, (1) is called a parabolic Anderson model.

If V (u) = u − u2, (1) is called a stochastic KPP equation.

If V (u) = u − u3, (1) is called a stochastic Allen-Cahn equation.

Q) What are the invariant probability measures for (1)? How many?
(Zimmerman et al, 2000)
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Parabolic Anderson model

(PAM) ∂tu(t , x) = ∂2
x u(t , x) + λu(t , x)ξ(t , x), t > 0, x ∈ T := [−1,1) with

the periodic boundary condition.

Particle systems, polymer models, KPZ equation, stochastic Burgers’
equation, passive scalar equation, . . .

A mild solution
u(t , x) =

∫
T pt (x − y)u0(y) dy + λ

∫
(0,t)×T pt−s(x − y)u(s, y) ξ(ds dy).

Intermittency (Carmona-Molchanov ’94): u(t , x) is fully intermittent if γ(k)k

is strictly increasing for k > 1 where γ(k) := limt→∞
log E|u(t,x)|k

t .

If γ(1) = 0, 0 < γ(2) and γ(k) <∞ for all k > 2, then u(t , x) is fully
intermittent (Carmona-Molchanov ’94).

log E|u(t , x)|2 � t (Khoshnevisan-K. ’15, Foondun-Joseph ’14,
Foondun-Nualart ’16).
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Simulation of PAM (∂tu = ∂2
x u + λu ξ)

Q.) What will happen as t →∞?

4 / 21



Dissipation of SHE

Consider the follwoing stochastic heat equation:

∂tu = ∂2
x u + λσ(u) ξ, t > 0, x ∈ T = [−1,1] (2)

with u0(x) = 1 for x ∈ T.

σ(u) : R→ R is a globally Lipschitz function with 0 < Lσ 6 σ(u)
u 6 Lipσ for

some constants Lσ and Lipσ (Foondun-Khoshnevisan ’09).

Without noise (λ = 0), u(t , x) = 1 for all t > 0, x ∈ T.

If λ > 0, Eu(t , x) = 1 and E[u(t , x)]2 � ect (u is fully intermittent).

Theorem (Khoshnevisan-K.-Mueller-Shiu ’20)

There exists a constants c > 0 such that with probability 1

log sup
x∈T

u(t , x) 6 −cλ2t .

Thus, there is the unique invariant measure which is δ0 where 0(x) = 0.
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Dissipation of Total Mass

u(t , x) =
∫ 1
−1 pt (x , y)u0(y) dy + λ

∫
(0,t]×[−1,1] pt−s(x , y)σ(u(s, y))ξ(ds dy).

Mt :=
∫ 1
−1 u(t , x) dx =

∫ 1
−1 u0(x) dx + λ

∫
(0,t]×[−1,1] σ(u(s, y)) ξ(ds dy).

log Mt = log M0 − 1
2

∫ t
0 M−2

s d〈M〉s + Nt where Nt :=
∫ t

0 M−1
s dMs.

Note 〈N〉t > λ2L2
σt and Mt = M0 exp (Nt − 〈N〉t/2)

Lemma

Let X = {Xt}t>0 be a continuous L2(P) martingale and there is a c > 0 such
that 〈X 〉t > ct for all t > 0, a.s. Then, for all nonrandom constants ε,T > 0,

P {Xt > ε〈X 〉t for some t > T} 6 exp
(
−cTε2

2

)
.

Lemma

For every t , λ > 0,

P
{
‖u(s, ·)‖L1 > ‖u0‖L1 exp

(
−λ

2L2
σs

8

)
for some s > t

}
6 exp

(
−λ

2L2
σt

16

)
.
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Moment estimates via Interpolation

Let pt (x , y) be the heat kernel. Then, pt (x , y) 6 2 max
(

1√
t
,1
)

.∫ 1
−1 pt (x , y)u0(y) dy . ‖u0‖L∞ ∧ ‖u0‖L1√

t
6 ‖u0‖εL∞

(
‖u0‖L1√

t

)1−ε
.

Lemma

For any ε ∈ (0 ,1), there exists constant c > 0 such that

sup
x∈[−1,1]

E
(
|u(t , x)|k

)
6

4k kk/2

tk(1−ε)/2 exp
(

c2

ε2 k3λ4t
)
‖u0‖kε

L∞‖u0‖k(1−ε)
L1 ,

Lemma
For every small ε > 0 and t0 > 1 there exist a constant C > 0 such that
uniformly for all real numbers λ > 1, k > 2, and t > t0,

E

(
sup

x
sup

s∈[t0,t]
|u(s , x ;λ)|k

)
. (1+|t−t0|)(

εk
2 +1) exp

(
Ck3λ4t
ε2

)
‖u0‖kε

L∞‖u0‖k(1−ε)
L1 .
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Stochastic reaction-diffusion equation

Consider
∂tu = ∂2

x u + V (u) + λσ(u)ξ, t > 0, x ∈ [−1,1] =: T, (3)

where V (x) = x − F (x) and F ∈ C2(R+), F (0) = 0, F ′ > 0 and
- lim supx↓0 F ′(x) < 1 and limx→∞ F ′(x) =∞; and
- There exists a real number m0 > 1 such that F (x) = O(xm0) as x →∞.

In this talk, let V (u) = u − uα for α > 1 (e.g. V (u) = u − u2).

Assume σ is Lipschitz with 0 < Lσ 6 σ(u)
u 6 Lipσ (σ(0) = 0).

Assume u0(·) = u(0, ·) > 0 is continuous.

There is a unique mild solution (Cerrai ’03) and u(t , x) > 0 (Mueller ’91,
Shiga ’94).

Q.) What are the invariant probability measures for (3)?

If λ = 0 and V (u) = u − u2, then u ≡ 0 and u ≡ 1 are two fixed points.

If λ > 0, then δ0 is an invariant measure where 0(x) := 0 for all x ∈ T.
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Main Theorem (∂tu = ∂2
x u + u − F (u) + λσ(u)ξ)

Theorem (Khoshnevisan-K.-Mueller-Shiu, ’21+)

There exist λ1 > λ0 > 0 such that the following are valid:

1. If λ > λ1, then δ0 is the only invariant measure. In fact,
lim supt→∞ t−1 log ‖u(t)‖C(T) < 0 a.s..

2. If λ ∈ (0 , λ0), then:

- There exists a unique probability measure µ+ on C+(T) that is invariant and
µ+{0} = 0. Moreover, µ+ charges C>0(T);

- The set of all invariant measures on C+(T) is the collection of all convex
combinations of µ1 := µ+ and µ0 := δ0;

- For every α ∈ (0 , 1/2), µ+ is a probability measure on Cα
+(T) and∫

‖ω‖k
Cα(T) µ+(dω) <∞ for every real number k > 2.

- µ+(•) = limT→∞ T−1 ∫ T
0 P{u(t) ∈ •} dt , where convergence holds in total

variation;
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Proof of Case 1 (when λ is large)

Recall ∂tu = ∂2
x u + u − u2 + λσ(u)ξ with u0 > 0.

Consider ∂tv = ∂2
x v + v + λσ(v)ξ with v0 = u0.

Since u > 0, we have u 6 v by the comparison principle (Shiga ’94).

Let w(t , x) := e−tv(t , x). Then, w is the solution to

∂tw(t , x) = ∂2
x w(t , x) + λσ(t ,w(t , x))ξ(t , x),

where σ(t ,w) := e−tσ
(
etw
)
.

Dissipation of SHE:

lim sup
t→∞

1
t

log ‖w(t)‖C(T) 6 −cλ2 a.s..

Since u 6 v = etw , we have

lim sup
t→∞

1
t

log ‖u(t)‖C(T) 6 1 + lim sup
t→∞

1
t

log ‖w(t)‖C(T) 6 1− cλ2.
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Recall: Main Theorem when λ is small

Theorem (The case when λ is small)

If λ ∈ (0 , λ0) for some small λ0 > 0, then:

(i) There exists a unique probability measure µ+ on C+(T) that is invariant
and µ+{0} = 0. Moreover, µ+ charges C>0(T);

(ii) The set of all invariant measures on C+(T) is the collection of all convex
combinations of µ1 := µ+ and µ0 := δ0;

(iii) For every α ∈ (0 ,1/2), µ+ is a probability measure on Cα
+(T) and∫

‖ω‖k
Cα(T) µ+(dω) <∞ for every real number k > 2.

(iv) µ+(•) = limT→∞ T−1
∫ T

0 P{u(t) ∈ •} dt , where convergence holds in total
variation;

We focus on the proof of (i): the existence and uniqueness of µ+.
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Existence of a nontrivial invariant probability measure

Let Pt be a Markov semigroup for u(t), i.e., for all Borel sets Γ ⊂ C+(T)

and for every Borel measure ν on C+(T),

(νPt )(Γ) := Pν{u(t) ∈ Γ} =

∫
C+(T)

Pu0{u(t) ∈ Γ} ν(du0).

Pt is a Feller Markov semigroup, i.e., Pt : Cb(C+(T))→ Cb(C+(T)).

Lemma (A Krylov–Bogoliubov theorem)

Suppose there exists a probability measure ν on C>0(T) such that the
probability measures {

1
T

∫ T

0
(νPs) ds

}
T>0

has a tight infinite subsequence in C>0(T). Then, u has an invariant
probability measure on C>0(T).
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Existence of a nontrivial invariant probability measure

Recall ∂tu = ∂2
x u + u − u2 + λσ(u)ξ with u0 > 0.

supt>1 E
(
‖u(t)‖k

Cα(T)

)
<∞ for all k > 2.

Proposition

If u0 = 1 and λ is sufficiently small, then we have

lim
ε↓0

lim sup
T→∞

1
T

E1

[∫ T

0
1{infx∈T u(t,x)<ε} dt

]
= 0. (4)

In particular, u has an invariant measure µ+ on C+(T) such that µ+{0} = 0.

We get (4) if we show the following:

P1

{
lim
ε↓0

lim sup
T→∞

1
T

∫ T

0
1{infx∈T u(t,x)<ε} dt = 0

}
= 1.
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A Random Walk Argument (u̇ = u′′ + u − u2 + λσ(u)ξ)

Claim: P1

{
limε↓0 lim supT→∞

1
T

∫ T
0 1{infx∈T u(t,x)<ε} dt = 0

}
= 1.

We will define stopping times 0 = τ0 < τ1 < · · · and comparison
processes v0, v1, . . . such that u(t) > vn(t) for t ∈ [τn , τn+1).

Then, we construct from vn an asymmetric random walk which goes up
with higher probability when u is small.

Let Lt (h) := infx∈T h(t , x) and Ut (h) := supx∈T h(t , x) for h ∈ C(T).

If u ∈ (0,1/2), then u
2 6 u − u2 6 u.

Let τ0 := 0 and v0(0, x) := 1/8.

Consider
∂twn = ∂2

x wn + 1
2 Lτn (vn) + λσ(wn(t , x))θτnξ

with wn(0 , x) = Lτn (vn).
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A Random Walk Argument (u̇ = u′′ + u − u2 + λσ(u)ξ)

τn+1 to be the smallest t + τn > τn such that
- Lt(wn) = 2Lτn (vn)

- Lt(wn) =
1
2 Lτn (vn)

- Ut(wn) = 4Lτn (vn).

If such a t does exist, then we let vn(τn + t , x) := wn(t , x).

In case 1, we let

vn+1(τn+1, x) :=

2Lτn (vn) if Lτn (vn) 6 2−1,

2M−2 if Lτn (vn) > 1,

In cases 2 and 3, we let

vn+1(τn+1, x) := 1
2 Lτn (vn).

Let Xn = log2 Lτn (vn) (Xn − Xn−1 = ±1) and `n = τn − τn−1 for n > 1.
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A Random Walk Argument (u̇ = u′′ + u − u2 + λσ(u)ξ)

Lemma

If Lσ > 0, then P1{τn+1 <∞} = 1 for all n ∈ Z+.

Lemma
If λ is small, we have

P(Xn+1 − Xn = +1 | Xn) > 2
3 for all n > 1,

and

lim
k→∞

lim sup
n→∞

1
n

n−1∑
j=0

1{Xj+1<−k} = 0 a.s. (5)

Lemma
We also have

lim sup
T→∞

1
T

∫ T

0
1{infx∈T u(t,x)<ε} dt 6

2‖¯̀1‖2
2

‖`1‖2
1

√√√√lim sup
m→∞

1
m

m−1∑
j=0

1{Xj+16−| log2(8ε)|}.

16 / 21



A Random Walk Argument (u̇ = u′′ + u − u2 + λσ(u)ξ)

Lemma

If Lσ > 0, then P1{τn+1 <∞} = 1 for all n ∈ Z+.

Lemma
If λ is small, we have

P(Xn+1 − Xn = +1 | Xn) > 2
3 for all n > 1,

and

lim
k→∞

lim sup
n→∞

1
n

n−1∑
j=0

1{Xj+1<−k} = 0 a.s. (5)

Lemma
We also have

lim sup
T→∞

1
T

∫ T

0
1{infx∈T u(t,x)<ε} dt 6

2‖¯̀1‖2
2

‖`1‖2
1

√√√√lim sup
m→∞

1
m

m−1∑
j=0

1{Xj+16−| log2(8ε)|}.

16 / 21



A Random Walk Argument (u̇ = u′′ + u − u2 + λσ(u)ξ)

Lemma

If Lσ > 0, then P1{τn+1 <∞} = 1 for all n ∈ Z+.

Lemma
If λ is small, we have

P(Xn+1 − Xn = +1 | Xn) > 2
3 for all n > 1,

and

lim
k→∞

lim sup
n→∞

1
n

n−1∑
j=0

1{Xj+1<−k} = 0 a.s. (5)

Lemma
We also have

lim sup
T→∞

1
T

∫ T

0
1{infx∈T u(t,x)<ε} dt 6

2‖¯̀1‖2
2

‖`1‖2
1

√√√√lim sup
m→∞

1
m

m−1∑
j=0

1{Xj+16−| log2(8ε)|}.

16 / 21



Uniqueness of a nontrivial invariant probability
measure

Recall
∂tu = ∂2

x u + u − F (u) + λσ(u)ξ. (6)

So far, we showed that if λ is small, then there exists an invariant
probability measure µ+ on C+(T) such that µ+{0} = 0.

Our goal is now to show that µ+ is unique.

Our main technique is the coupling argument by Mueller (’93).

We construct two solutions u and v with the initial data u0 and v0

respectively and show that u and v completely couple in a finite time.

For simplicity, we assume that u − F (u) = 0.

Q. How to construct u and v?
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Pairwise monotone (PM) coupling

Consider
∂tu = ∂2

x u + λuξ1,

∂tv = ∂2
x v + λv [g (u − v) ξ1 + f (u − v) ξ2] ,

where f (y) :=
√
|y | ∧ 1 and g(y) :=

√
1− |f (y)|2 =

√
1− (|y | ∧ 1), and

ξ1 and ξ2 are independent space-time white noises.

Here g (u − v) ξ1 + f (u − v) ξ2 is another space-time white noise.

Assume u0 > v0 with ‖u0 − v0‖∞ 6 δ for small δ > 0.

We have u(t , x) > v(t , x) a.s..

Let ∆(t , x) := u(t , x)− v(t , x) > 0. Then, we have ∂t ∆ = ∂2
x ∆ + λ

(
∆2 + 2uv

f 2(∆)

1 + g(∆)

)1/2

Ẇ ,

subject to ∆(0) = u0 − v0 > 0,

where Ẇ is another space-time white noise.

18 / 21



Pairwise monotone (PM) coupling

Consider
∂tu = ∂2

x u + λuξ1,

∂tv = ∂2
x v + λv [g (u − v) ξ1 + f (u − v) ξ2] ,

where f (y) :=
√
|y | ∧ 1 and g(y) :=

√
1− |f (y)|2 =

√
1− (|y | ∧ 1), and

ξ1 and ξ2 are independent space-time white noises.

Here g (u − v) ξ1 + f (u − v) ξ2 is another space-time white noise.

Assume u0 > v0 with ‖u0 − v0‖∞ 6 δ for small δ > 0.

We have u(t , x) > v(t , x) a.s..

Let ∆(t , x) := u(t , x)− v(t , x) > 0. Then, we have ∂t ∆ = ∂2
x ∆ + λ

(
∆2 + 2uv

f 2(∆)

1 + g(∆)

)1/2
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Pairwise monotone (PM) coupling

Let Xt :=
∫

T ∆(t , x) dx =
∫

T [u(t , x)− v(t , x)] dx > 0.

Xt is a continuous L2(P) martingale with quadratic variation

d〈X 〉t = λ2
∫

T
dx
[

∆2 + 2uv
f 2(∆(t , x))

1 + g(∆(t , x))

]
dt

> λ2 inf
x∈T

v2(t , x)

∫
T

min {∆(t , x),1} dx dt

> c
∫

T
∆(t , x) dx = Xt dt .

In the last inequality, we use stopping times to get that u and v are both
close to u0 and v0.

If Yt satisfies dYt =
√

YtdBt (d〈Y 〉t = Yt dt), Yt hits 0 in a finite time.

There exists t(δ) > 0 (deterministic) such that P
(
infs∈(0,t) Xs = 0

)
> 0.
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Anchored monotone (AM) coupling

Suppose our initial data u0 > 0 and v0 > 0 are not comparable.

We introduce three independent space-time white noises ξ, ξ1 and ξ2 and
let w denote the solution to the SPDE,

∂tw = ∂2
x w + λw ξ, subject to w0 = u0 ∨ v0.

We use ξ and ξi to construct the pairwise monotone coupling (w , u) and
(w , v) where the initial conditions of u and v are u0 and v0 respectively.

If u0 and v0 are not close, we wait until they are close to each other:

Proposition

Let A > A0 > 0, and α ∈ (0 ,1/2). Then, for every non-random u0 ∈ C+(T)

with 1
2 A0 6 infx∈T u0(x) 6 ‖u0‖Cα(T) 6 A, there exists t0 > 0 and a strictly

positive number pA,A0 (t0 , α , δ) such that

P
{

sup
x∈T
|u(t0 , x)− A0| 6 δ , ‖u(t0)‖Cα/2(T) 6 A + 1

}
> pA,A0 (t0 , α , δ).
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Thank You!
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