Disordered Monomer-Dimer Model on Cylinder Graphs

Kesav Krishnan

UIUC

February 2022

Joint with Partha S. Dey

Kesav Krishnan (UIUC)

Bangalore Probability Seminar

What is a Monomer-Dimer Configuration?

• Origins are in Physics, to study adsorption of diatomic molecules onto a crystal lattice.

- Origins are in Physics, to study adsorption of diatomic molecules onto a crystal lattice.
- A monomer dimer configuration on a graph G = (V, E) is a collection of non overlapping edges, better known as a *matching*.

- Origins are in Physics, to study adsorption of diatomic molecules onto a crystal lattice.
- A monomer dimer configuration on a graph G = (V, E) is a collection of non overlapping edges, better known as a *matching*.

Definition (Matching)

A matching is a subset $\mathfrak{m} \subset E$ such that no two edges in \mathfrak{m} have a common vertex, and is called perfect if it covers V.

- Origins are in Physics, to study adsorption of diatomic molecules onto a crystal lattice.
- A monomer dimer configuration on a graph G = (V, E) is a collection of non overlapping edges, better known as a *matching*.

Definition (Matching)

A matching is a subset $\mathfrak{m} \subset E$ such that no two edges in \mathfrak{m} have a common vertex, and is called perfect if it covers V.

• We will denote the collection of all matchings by \mathcal{M} .

• We may associate an "energy" to monomer-dimer configurations.

- We may associate an "energy" to monomer-dimer configurations.
- This is done by weighting the vertices and edges.

- We may associate an "energy" to monomer-dimer configurations.
- This is done by weighting the vertices and edges.

 $\nu: V \to \mathbb{R} \text{ and } \omega: E \to \mathbb{R}.$

- We may associate an "energy" to monomer-dimer configurations.
- This is done by weighting the vertices and edges.

 $\nu: V \to \mathbb{R} \text{ and } \omega: E \to \mathbb{R}.$

$$\mathcal{H}(\mathfrak{m}) := \sum_{v \notin \mathfrak{m}} \nu_v + \sum_{e \in \mathfrak{m}} \omega_e.$$

- We may associate an "energy" to monomer-dimer configurations.
- This is done by weighting the vertices and edges.

 $\nu: V \to \mathbb{R} \text{ and } \omega: E \to \mathbb{R}.$

$$\mathcal{H}(\mathfrak{m}) := \sum_{v \notin \mathfrak{m}} \nu_v + \sum_{e \in \mathfrak{m}} \omega_e.$$

• With these weights, we may define a Gibbs probability measure on \mathcal{M} :

$$\mu(\mathfrak{m}) := \frac{1}{Z} \exp(\mathcal{H}(\mathfrak{m}))$$

- We may associate an "energy" to monomer-dimer configurations.
- This is done by weighting the vertices and edges.

 $\nu: V \to \mathbb{R} \text{ and } \omega: E \to \mathbb{R}.$

$$\mathcal{H}(\mathfrak{m}) := \sum_{v \notin \mathfrak{m}} \nu_v + \sum_{e \in \mathfrak{m}} \omega_e.$$

• With these weights, we may define a Gibbs probability measure on \mathcal{M} :

$$\mu(\mathfrak{m}) := \frac{1}{Z} \exp(\mathcal{H}(\mathfrak{m}))$$

• Statistics of interest are typical number of edges or typical number of unpaired vertices, denoted U.

Monomer Dimer Configurations

Figure 1: Matching vs. non matching

• Early analysis spearheaded by Hielmann and Lieb (1972).

- Early analysis spearheaded by Hielmann and Lieb (1972).
- Let G = (V, E) be a weighted graph, let Z_G denote the monomer-dimer partition function.

- Early analysis spearheaded by Hielmann and Lieb (1972).
- Let G = (V, E) be a weighted graph, let Z_G denote the monomer-dimer partition function.
- With $u, v \in V$, let G^u and $G^{u,v}$ denote principal subgraphs obtained on sequential removal of u and v.

- Early analysis spearheaded by Hielmann and Lieb (1972).
- Let G = (V, E) be a weighted graph, let Z_G denote the monomer-dimer partition function.
- With $u, v \in V$, let G^u and $G^{u,v}$ denote principal subgraphs obtained on sequential removal of u and v.

$$Z_G = \exp\left(\nu_u\right) Z_{G^u} + \sum_{v \sim u} \exp\left(\omega_{(u,v)}\right) Z_{G^{u,v}}.$$

- Early analysis spearheaded by Hielmann and Lieb (1972).
- Let G = (V, E) be a weighted graph, let Z_G denote the monomer-dimer partition function.
- With $u, v \in V$, let G^u and $G^{u,v}$ denote principal subgraphs obtained on sequential removal of u and v.

$$Z_G = \exp\left(\nu_u\right) Z_{G^u} + \sum_{v \sim u} \exp\left(\omega_{(u,v)}\right) Z_{G^{u,v}}.$$

• The recurrence can be used to prove the absence of phase transition, as well as exact computation of the partition function in special cases (line graph, complete graph, regular trees).

• Partition function admits a representation in terms of moments of auxiliary Gaussian random variables.

- Partition function admits a representation in terms of moments of auxiliary Gaussian random variables.
- Let $\{\zeta_v\}_{v \in V}$ be Gaussian, with covariance $\exp(\omega_{(u,v)})$. The diagonal entries are arbitrary, positive, chosen so that the matrix is positive definite.

- Partition function admits a representation in terms of moments of auxiliary Gaussian random variables.
- Let $\{\zeta_v\}_{v\in V}$ be Gaussian, with covariance $\exp(\omega_{(u,v)})$. The diagonal entries are arbitrary, positive, chosen so that the matrix is positive definite.

$$Z_G = \mathbb{E}_{\zeta} \left(\prod_{v \in V} (\zeta_v + \exp(\nu_v)) \right)$$

- Partition function admits a representation in terms of moments of auxiliary Gaussian random variables.
- Let $\{\zeta_v\}_{v \in V}$ be Gaussian, with covariance $\exp(\omega_{(u,v)})$. The diagonal entries are arbitrary, positive, chosen so that the matrix is positive definite.

$$Z_G = \mathbb{E}_{\zeta} \left(\prod_{v \in V} (\zeta_v + \exp(\nu_v)) \right)$$

• Hielmann-Lieb recursion can be recovered via Gaussian integration by parts.

- When convergence of limiting free energy can be established, can be shown that it is an analytic function in the weights. No phase transitions
- Phase transitions can be induced in certain situations:
 - Introduction of imitative potential. Studied by Alberici and Contucci.
 - Monomer weight $\nu_v = -\infty$. Widely studied on planar and other surface graphs. Kasteleyn, Kenyon, etc..
- Key task therefore to establish free energy convergence.

- Statistical physics, either equivalent or related to several models of interest such as Ising Models with external field, Random Assignment Problems, etc..
- Computing the partition function with constant weights is equivalent to the computation of the permanent of a {0,1} valued matrix (#P class). Quick probabilistic algorithms are thus of interest.

• What happens when $\{\nu_v\}_{v\in V}$ and $\{\omega_e\}_{e\in E}$ are random variables?

- What happens when $\{\nu_v\}_{v\in V}$ and $\{\omega_e\}_{e\in E}$ are random variables?
- The partition function and free energy $\log Z_n$ can have non trivial limiting behavior.

- What happens when $\{\nu_v\}_{v\in V}$ and $\{\omega_e\}_{e\in E}$ are random variables?
- The partition function and free energy $\log Z_n$ can have non trivial limiting behavior.
- For statistics like U, we have environmental and ensemble contributions to fluctuations, need to distinguish.

• Alberici, Contucci and Mignione (2015) analyse the monomer dimer model on the complete graph with i.i.d random vertex weights, and establish an exact solution for the limiting free energy

- Alberici, Contucci and Mignione (2015) analyse the monomer dimer model on the complete graph with i.i.d random vertex weights, and establish an exact solution for the limiting free energy
- Partition function expressed with Gaussian Representation. Enables Saddle point argument, fixed point solution for partition function.

- Alberici, Contucci and Mignione (2015) analyse the monomer dimer model on the complete graph with i.i.d random vertex weights, and establish an exact solution for the limiting free energy
- Partition function expressed with Gaussian Representation. Enables Saddle point argument, fixed point solution for partition function.
- Alberici and Contucci (2014) also analyse the monomer dimer model on locally tree like graphs, such as the Erdös-Renyi graph, establish exact solution via fixed point argument.

- Alberici, Contucci and Mignione (2015) analyse the monomer dimer model on the complete graph with i.i.d random vertex weights, and establish an exact solution for the limiting free energy
- Partition function expressed with Gaussian Representation. Enables Saddle point argument, fixed point solution for partition function.
- Alberici and Contucci (2014) also analyse the monomer dimer model on locally tree like graphs, such as the Erdös-Renyi graph, establish exact solution via fixed point argument.
- Methods suited for mean field situation, similar to the cavity method in the study of spin glasses.

Definition (Cylinder Graph)

Let $H = (V_H, E_H)$ be a fixed graph with $|V_H| = h$ and G_n be the line graph on *n* vertices with vertex set [n]. A cylinder graph \mathcal{G}_n is given by the graph Cartesian product

$$\mathcal{G}_n := G_n \times H$$

Definition (Cylinder Graph)

Let $H = (V_H, E_H)$ be a fixed graph with $|V_H| = h$ and G_n be the line graph on *n* vertices with vertex set [n]. A cylinder graph \mathcal{G}_n is given by the graph Cartesian product

$$\mathcal{G}_n := G_n \times H$$

• We will work with i.i.d families $\{\nu\}_{v\in V}$ and $\{\omega_e\}_{e\in E}$, though not necessarily with same distribution.

Definition (Cylinder Graph)

Let $H = (V_H, E_H)$ be a fixed graph with $|V_H| = h$ and G_n be the line graph on *n* vertices with vertex set [n]. A cylinder graph \mathcal{G}_n is given by the graph Cartesian product

$$\mathcal{G}_n := G_n \times H$$

- We will work with i.i.d families $\{\nu\}_{v\in V}$ and $\{\omega_e\}_{e\in E}$, though not necessarily with same distribution.
- We will require $\mathbb{E}|\nu|^{2+\epsilon} + \mathbb{E}|\omega|^{2+\epsilon} < \infty$ for some $\epsilon > 0$.

- Let $\mathcal{G}_{[k:l]}$ denote the principal subgraph of \mathcal{G}_n generated by the vertices with G_n components in the interval [k, l].
- Let $Z_{[k:l]}$ denote the partition function of the monomer-dimer model on $\mathcal{G}_{[k:l]}$.
- Let $U_{[k,l]}$ denote the number of unpaired vertices of a matching \mathfrak{m} on \mathcal{G}_n contained in the section $\mathcal{G}_{[k:l]}$.

Theorem (Dey, K. 2021)

Assume that $E(|\nu_v|^{2+\varepsilon} + |\omega_e|^{2+\varepsilon})$ is finite for some $\varepsilon > 0$. We have $f \in \mathbb{R}$ and $\sigma_F > 0$ depending only on the distributions of ν and ω such that

Theorem (Dey, K. 2021)

Assume that $E(|\nu_v|^{2+\varepsilon} + |\omega_e|^{2+\varepsilon})$ is finite for some $\varepsilon > 0$. We have $f \in \mathbb{R}$ and $\sigma_F > 0$ depending only on the distributions of ν and ω such that

$$n^{-1} \cdot \log Z_n \xrightarrow{\mathrm{P}} f \text{ as } n \to \infty$$
Theorem (Dey, K. 2021)

Assume that $E(|\nu_v|^{2+\varepsilon} + |\omega_e|^{2+\varepsilon})$ is finite for some $\varepsilon > 0$. We have $f \in \mathbb{R}$ and $\sigma_F > 0$ depending only on the distributions of ν and ω such that

$$n^{-1} \cdot \log Z_n \xrightarrow{\mathrm{P}} f \text{ as } n \to \infty$$

and

$$n^{-1/2} \cdot (\log Z_n - \mathbb{E} \log Z_n) \xrightarrow{(d)} \mathcal{N}(0, \sigma_F^2) \text{ as } n \to \infty.$$

Theorem (Dey, K. 2021)

Recall the definition of $U_{[k,l]}$. Let $t \in [0,1]$ and let

 $\theta_n(t) = U_{[1:\lfloor nt \rfloor]}.$

Theorem (Dey, K. 2021)

Recall the definition of $U_{[k,l]}$. Let $t \in [0,1]$ and let

 $\theta_n(t) = U_{[1:\lfloor nt \rfloor]}.$

Then as $n \to \infty$, $\exists u > 0$ and $\sigma > 0$

$$\left(\frac{\theta_n(t) - ntu}{\sqrt{n}}\right)_{t \in [0,1]} \xrightarrow{(\mathrm{d})} (\sigma B_t)_{t \in [0,1]}$$

in probability, in the sense of finite dimensional distributions, B_t is standard Brownian Motion.

• This situation is essentially one dimensional, Hielmann and Lieb recursion can be recast into a form allowing application of a subadditive theorem.

- This situation is essentially one dimensional, Hielmann and Lieb recursion can be recast into a form allowing application of a subadditive theorem.
- The new form of the recursion also enables us to write the free energy and the number of unpaired vertices as a sum of i.i.d random variables, with an error term.

- This situation is essentially one dimensional, Hielmann and Lieb recursion can be recast into a form allowing application of a subadditive theorem.
- The new form of the recursion also enables us to write the free energy and the number of unpaired vertices as a sum of i.i.d random variables, with an error term.
- We can show that the error vanishes in all relevant limits.

Splitting the Graph

Figure 2: First step of the subdivision

• Let k be fixed, and let \mathcal{E}_k denote the layer of edges joining $\mathcal{G}_{[1:k]}$ and $\mathcal{G}_{[k+1:n]}$.

- Let k be fixed, and let \mathcal{E}_k denote the layer of edges joining $\mathcal{G}_{[1:k]}$ and $\mathcal{G}_{[k+1:n]}$.
- Edges of \mathcal{E}_k may be enumerated as $e_{k,i}$ where $i = 1, 2 \dots h$. The vertices adjacent to $e_{k,i}$ are denoted $v_{k,i}$ and $v_{k+1,i}$ respectively.

- Let k be fixed, and let \mathcal{E}_k denote the layer of edges joining $\mathcal{G}_{[1:k]}$ and $\mathcal{G}_{[k+1:n]}$.
- Edges of \mathcal{E}_k may be enumerated as $e_{k,i}$ where $i = 1, 2 \dots h$. The vertices adjacent to $e_{k,i}$ are denoted $v_{k,i}$ and $v_{k+1,i}$ respectively.
- With $A \subset \mathcal{E}_k$, we denote by $Z_{(.)}^A$ to be a restricted partial function on the principal subgraph with all vertices adjacent to A removed.

- Let k be fixed, and let \mathcal{E}_k denote the layer of edges joining $\mathcal{G}_{[1:k]}$ and $\mathcal{G}_{[k+1:n]}$.
- Edges of \mathcal{E}_k may be enumerated as $e_{k,i}$ where i = 1, 2...h. The vertices adjacent to $e_{k,i}$ are denoted $v_{k,i}$ and $v_{k+1,i}$ respectively.
- With $A \subset \mathcal{E}_k$, we denote by $Z_{(.)}^A$ to be a restricted partial function on the principal subgraph with all vertices adjacent to A removed.

$$\log Z_n = \log Z_{[1:k]} + \log Z_{[k+1:n]} + R_{n,k}$$

- Let k be fixed, and let \mathcal{E}_k denote the layer of edges joining $\mathcal{G}_{[1:k]}$ and $\mathcal{G}_{[k+1:n]}$.
- Edges of \mathcal{E}_k may be enumerated as $e_{k,i}$ where i = 1, 2...h. The vertices adjacent to $e_{k,i}$ are denoted $v_{k,i}$ and $v_{k+1,i}$ respectively.
- With $A \subset \mathcal{E}_k$, we denote by $Z_{(.)}^A$ to be a restricted partial function on the principal subgraph with all vertices adjacent to A removed.

$$\log Z_n = \log Z_{[1:k]} + \log Z_{[k+1:n]} + R_{n,k}$$

$$R_{n,k} = \log\left(\sum_{A\subseteq\mathcal{E}}\prod_{i:e_{k,i}\in A} e^{\omega_{k,i}-\nu_{k,i}-\nu_{k+1,i}} \cdot \frac{Z_{[1:k]}^A}{Z_{[1:k]}} \cdot \frac{Z_{[k+1:n]}^A}{Z_{[k+1:n]}}\right)$$

• With moment condition as assumed, there is a constant depending only on distributions of ω and ν such that

$$\mathbb{E}|R_{n,k}|^{2+\epsilon} \leqslant C$$

• With moment condition as assumed, there is a constant depending only on distributions of ω and ν such that

$$\mathbb{E}|R_{n,k}|^{2+\epsilon} \leqslant C$$

Theorem (Hammersley 1962)

Let a_n and b_n be sequences such that $a_{n+m} \leq a_n + a_m + b_{n+m}$. A sufficient condition for a_n/n to converge to limit $\ell < \infty$ is

$$\sum_{n \ge 1} \frac{|b_n|}{n^2} \leqslant \infty.$$

• With moment condition as assumed, there is a constant depending only on distributions of ω and ν such that

$$\mathbb{E}|R_{n,k}|^{2+\epsilon} \leqslant C$$

Theorem (Hammersley 1962)

Let a_n and b_n be sequences such that $a_{n+m} \leq a_n + a_m + b_{n+m}$. A sufficient condition for a_n/n to converge to limit $\ell < \infty$ is

$$\sum_{n \ge 1} \frac{|b_n|}{n^2} \leqslant \infty.$$

• Directly applicable to $\mathbb{E} \log Z_n$ and $\operatorname{Var} \log Z_n$.

• With moment condition as assumed, there is a constant depending only on distributions of ω and ν such that

$$\mathbb{E}|R_{n,k}|^{2+\epsilon} \leqslant C$$

Theorem (Hammersley 1962)

Let a_n and b_n be sequences such that $a_{n+m} \leq a_n + a_m + b_{n+m}$. A sufficient condition for a_n/n to converge to limit $\ell < \infty$ is

$$\sum_{n \ge 1} \frac{|b_n|}{n^2} \leqslant \infty.$$

- Directly applicable to $\mathbb{E} \log Z_n$ and $\operatorname{Var} \log Z_n$.
- Central Limit Theorem follows from the Lyapunov condition.

• "Complete" the underlying line graph to the n + 1 cycle, to bring in translation invariance. Partition functions differ at most by a constant. Partition function here will be denoted W_n .

- "Complete" the underlying line graph to the n + 1 cycle, to bring in translation invariance. Partition functions differ at most by a constant. Partition function here will be denoted W_n .
- Pick a horizontal layer of edges, and consider

$$\mathcal{F}_n := \sigma\{\omega_1, \omega_2, \dots, \omega_n\}$$

- "Complete" the underlying line graph to the n + 1 cycle, to bring in translation invariance. Partition functions differ at most by a constant. Partition function here will be denoted W_n .
- Pick a horizontal layer of edges, and consider

$$\mathcal{F}_n := \sigma\{\omega_1, \omega_2, \dots, \omega_n\}$$

$$\mathcal{F}_j := \sigma\{\omega_1, \omega_2, \dots, \omega_j\}$$

- "Complete" the underlying line graph to the n + 1 cycle, to bring in translation invariance. Partition functions differ at most by a constant. Partition function here will be denoted W_n .
- Pick a horizontal layer of edges, and consider

$$\mathcal{F}_n := \sigma\{\omega_1, \omega_2, \dots, \omega_n\}$$

$$\mathcal{F}_j := \sigma\{\omega_1, \omega_2, \dots, \omega_j\}$$

 $\operatorname{Var}(\log W_n) \ge \operatorname{Var}(\mathbb{E}(\log W_n \mid \mathcal{F}_n)) = \sum_{j=1}^n \operatorname{Var}(\mathbb{E}(\log W_n \mid \mathcal{F}_j))$

- "Complete" the underlying line graph to the n + 1 cycle, to bring in translation invariance. Partition functions differ at most by a constant. Partition function here will be denoted W_n .
- Pick a horizontal layer of edges, and consider

$$\mathcal{F}_n := \sigma\{\omega_1, \omega_2, \dots, \omega_n\}$$

$$\mathcal{F}_j := \sigma\{\omega_1, \omega_2, \dots, \omega_j\}$$

 $\operatorname{Var}(\log W_n) \ge \operatorname{Var}(\mathbb{E}(\log W_n \mid \mathcal{F}_n)) = \sum_{j=1}^n \operatorname{Var}(\mathbb{E}(\log W_n \mid \mathcal{F}_j))$

$$\geq \sum_{j=1}^{n} \operatorname{Var}(\mathbb{E}(\log W_n \mid \omega_j))$$

• Standard trick, exponential tilting. Replace ν_v by $\nu_v + x$ where $x \in \mathbb{R}$.

- Standard trick, exponential tilting. Replace ν_v by $\nu_v + x$ where $x \in \mathbb{R}$.
- Gibbs average of U, denoted $\langle U \rangle$ can be calculated by $\partial_x \log Z_n(x)$.

- Standard trick, exponential tilting. Replace ν_v by $\nu_v + x$ where $x \in \mathbb{R}$.
- Gibbs average of U, denoted $\langle U \rangle$ can be calculated by $\partial_x \log Z_n(x)$.
- For the same error decomposition as the free energy, we need to control $\partial_x R_{n,k}$

- Standard trick, exponential tilting. Replace ν_v by $\nu_v + x$ where $x \in \mathbb{R}$.
- Gibbs average of U, denoted $\langle U \rangle$ can be calculated by $\partial_x \log Z_n(x)$.
- For the same error decomposition as the free energy, we need to control $\partial_x R_{n,k}$
- In particular, need to control $\partial_x Z^A_{(.)}/Z_{(.)}$, which is equivalent to bounding $\partial_x \log Z^A_{(.)} \partial_x \log Z_{(.)}$.

• $Z_n(x)$ is a polynomial in e^x , with purely imaginary roots, which we denote as $\{\sqrt{-1}\lambda_i\}_{i=1}^N, \{\lambda_i\}$ are enumerated in order.

- $Z_n(x)$ is a polynomial in e^x , with purely imaginary roots, which we denote as $\{\sqrt{-1}\lambda_i\}_{i=1}^N, \{\lambda_i\}$ are enumerated in order.
- The Hielmann-Lieb recurrence implies interlacing for the zeroes.

- $Z_n(x)$ is a polynomial in e^x , with purely imaginary roots, which we denote as $\{\sqrt{-1}\lambda_i\}_{i=1}^N, \{\lambda_i\}$ are enumerated in order.
- The Hielmann-Lieb recurrence implies interlacing for the zeroes.
- Let \mathcal{G}^{v} denote the principal subgraph obtained on removal of vertex v from \mathcal{G} . Let $\{\lambda_{i}^{v}\}_{i=1}^{N_{1}}$ denote the Lee-Yang zeroes of $Z_{\mathcal{G}^{v}}(x)$.

- $Z_n(x)$ is a polynomial in e^x , with purely imaginary roots, which we denote as $\{\sqrt{-1}\lambda_i\}_{i=1}^N, \{\lambda_i\}$ are enumerated in order.
- The Hielmann-Lieb recurrence implies interlacing for the zeroes.
- Let \mathcal{G}^v denote the principal subgraph obtained on removal of vertex v from \mathcal{G} . Let $\{\lambda_i^v\}_{i=1}^{N_1}$ denote the Lee-Yang zeroes of $Z_{\mathcal{G}^v}(x)$. We have

 $\lambda_i \leqslant \lambda_i^v \leqslant \lambda_{i+1}.$

• All quantities will be evaluated at x = 0.

Interlacing Hierarchy

Figure 3: Interlacing shown for the first 5 levels

• The average number of unpaired vertices may be expressed as

$$\langle U \rangle = \partial_x \log Z_{\mathcal{G}}(x) = \sum_{i=1}^N \frac{e^{2x}}{e^{2x} + (\lambda_i)^2}.$$

• The average number of unpaired vertices may be expressed as

$$\langle U \rangle = \partial_x \log Z_{\mathcal{G}}(x) = \sum_{i=1}^N \frac{e^{2x}}{e^{2x} + (\lambda_i)^2}.$$

• Using interlacing, we can show that there is C(x, i) such that

$$\left|\partial_x^i \log Z_{\mathcal{G}} - \partial_x^i \log Z_{\mathcal{G}^v}\right| \leqslant C$$

• The average number of unpaired vertices may be expressed as

$$\langle U \rangle = \partial_x \log Z_{\mathcal{G}}(x) = \sum_{i=1}^N \frac{e^{2x}}{e^{2x} + (\lambda_i)^2}.$$

• Using interlacing, we can show that there is C(x, i) such that

$$\left|\partial_x^i \log Z_{\mathcal{G}} - \partial_x^i \log Z_{\mathcal{G}^v}\right| \leqslant C$$

• This can be finitely iterated to yield a constant order bound for $\partial_x R_{n,k}$

• The average number of unpaired vertices may be expressed as

$$\langle U \rangle = \partial_x \log Z_{\mathcal{G}}(x) = \sum_{i=1}^N \frac{e^{2x}}{e^{2x} + (\lambda_i)^2}.$$

• Using interlacing, we can show that there is C(x, i) such that

$$\left|\partial_x^i \log Z_{\mathcal{G}} - \partial_x^i \log Z_{\mathcal{G}^v}\right| \leqslant C$$

- This can be finitely iterated to yield a constant order bound for $\partial_x R_{n,k}$
- Subadditive lemma then applies to $\langle U \rangle_n$, we denote $u := \lim_{n \to \infty} n^{-1} \cdot \langle U \rangle_n$

Empirical Measure of Zeroes

• To the roots $\{\lambda_i\}_{i=1}^N$ we associate a probability measure on \mathbb{R}

$$\rho_n = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i}$$

• To the roots $\{\lambda_i\}_{i=1}^N$ we associate a probability measure on \mathbb{R}

$$\rho_n = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i}$$

• Free energy may be written as

$$n^{-1} \cdot \log Z_n = \frac{1}{n} \sum_{v \in V} \nu_v + \frac{1}{2} \int_{\mathbb{R}} \log(e^{2x} + \lambda^2) d\rho_n(\lambda)$$
• To the roots $\{\lambda_i\}_{i=1}^N$ we associate a probability measure on \mathbb{R}

$$\rho_n = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i}$$

• Free energy may be written as

$$n^{-1} \cdot \log Z_n = \frac{1}{n} \sum_{v \in V} \nu_v + \frac{1}{2} \int_{\mathbb{R}} \log(e^{2x} + \lambda^2) d\rho_n(\lambda)$$
$$n^{-1} \cdot \langle U \rangle_n = \int_{\mathbb{R}} \frac{e^{2x}}{e^{2x} + \lambda^2} d\rho_n(\lambda)$$

• Tightness of the random variable $X = \exp(\omega) - \exp(\nu_1) - \exp(\nu_2)$ implies tightness in probability of the sequence $\{\rho_n\}_{n\in\mathbb{N}}$

- Tightness of the random variable X = exp(ω) − exp(ν₁) − exp(ν₂) implies tightness in probability of the sequence {ρ_n}_{n∈N}
- Convergence of $n^{-1}\langle U \rangle_n$ implies weak convergence in probability of ρ_n .

- Tightness of the random variable X = exp(ω) − exp(ν₁) − exp(ν₂) implies tightness in probability of the sequence {ρ_n}_{n∈N}
- Convergence of $n^{-1}\langle U \rangle_n$ implies weak convergence in probability of ρ_n .
- Weak convergence of ρ_n implies convergence of all quenched moments of $n^{-1}U$, we denote limiting variance as σ_Q^2

- Tightness of the random variable X = exp(ω) − exp(ν₁) − exp(ν₂) implies tightness in probability of the sequence {ρ_n}_{n∈N}
- Convergence of $n^{-1}\langle U \rangle_n$ implies weak convergence in probability of ρ_n .
- Weak convergence of ρ_n implies convergence of all quenched moments of $n^{-1}U$, we denote limiting variance as σ_Q^2
- The boundedness of the third cumulant of $n^{-1}U$ is particularly useful.

• We have size of fluctuations of U about $\langle U \rangle_n$, can characterize them as well. Let $\widehat{U} := U - \langle U \rangle$.

- We have size of fluctuations of U about $\langle U \rangle_n$, can characterize them as well. Let $\widehat{U} := U \langle U \rangle$.
- Consider quenched generating function of $n^{-1/2}\hat{U}$, i.e.

$$M_n(\xi) := \langle \exp(\xi \cdot n^{-1/2}U) \rangle$$

- We have size of fluctuations of U about $\langle U \rangle_n$, can characterize them as well. Let $\widehat{U} := U \langle U \rangle$.
- Consider quenched generating function of $n^{-1/2}\hat{U}$, i.e.

$$M_n(\xi) := \langle \exp(\xi \cdot n^{-1/2}U) \rangle$$

• Easy to show that

$$\log M_n(\xi) = \log Z_n(x + n^{-1/2}\xi) - \log Z_n(x) - n^{1/2}\xi\partial_x \log Z_n(x).$$

- We have size of fluctuations of U about $\langle U \rangle_n$, can characterize them as well. Let $\widehat{U} := U \langle U \rangle$.
- Consider quenched generating function of $n^{-1/2}\hat{U}$, i.e.

$$M_n(\xi) := \langle \exp(\xi \cdot n^{-1/2}U) \rangle$$

• Easy to show that

$$\log M_n(\xi) = \log Z_n(x + n^{-1/2}\xi) - \log Z_n(x) - n^{1/2}\xi\partial_x \log Z_n(x).$$

• Taylor's theorem shows that $\log M(\xi) = \sigma_Q^2 \xi^2/2$ is the limit.

• $\langle U \rangle_n$ is itself a random variable, environmental fluctuations should play a role. Let $\overline{\langle U \rangle} := \langle U \rangle - \mathbb{E} \langle U \rangle$.

- $\langle U \rangle_n$ is itself a random variable, environmental fluctuations should play a role. Let $\overline{\langle U \rangle} := \langle U \rangle \mathbb{E} \langle U \rangle$.
- Efron-Stein Inequality shows that $\operatorname{Var}\langle U \rangle \leq Cn$ for some constant C.

- $\langle U \rangle_n$ is itself a random variable, environmental fluctuations should play a role. Let $\overline{\langle U \rangle} := \langle U \rangle \mathbb{E} \langle U \rangle$.
- Efron-Stein Inequality shows that $\operatorname{Var}\langle U \rangle \leq Cn$ for some constant C.
- Approximate subadditivity shows that $n^{-1}Var\langle U\rangle$ converges, we denote limit by σ_A^2 .

- $\langle U \rangle_n$ is itself a random variable, environmental fluctuations should play a role. Let $\overline{\langle U \rangle} := \langle U \rangle \mathbb{E} \langle U \rangle$.
- Efron-Stein Inequality shows that $\operatorname{Var}\langle U \rangle \leqslant Cn$ for some constant C.
- Approximate subadditivity shows that n^{-1} Var $\langle U \rangle$ converges, we denote limit by σ_A^2 .
- CLT for the free energy can be adapted to establish CLT for $n^{-1/2}\overline{\langle U \rangle}$.

- Let $t \in (0,1)$ and $k = \lfloor tn \rfloor$
- For disjoint sections [1,k] and [k+1:n], $\langle U \rangle_{[1:k]}$ and $\langle U \rangle_{[k+1:n]}$ are independent.

- Let $t \in (0,1)$ and $k = \lfloor tn \rfloor$
- For disjoint sections [1,k] and [k+1:n], $\langle U \rangle_{[1:k]}$ and $\langle U \rangle_{[k+1:n]}$ are independent. In particular

$$n^{-1/2}(\overline{\langle U_{[1,k]} \rangle}, \overline{\langle U_{[k+1:n]} \rangle}) \xrightarrow{(\mathrm{d})} \mathcal{N}(0, \sigma_A^2 \cdot \mathrm{Diag}(t, 1-t)).$$

- Let $t \in (0,1)$ and $k = \lfloor tn \rfloor$
- For disjoint sections [1,k] and [k+1:n], $\langle U \rangle_{[1:k]}$ and $\langle U \rangle_{[k+1:n]}$ are independent. In particular

$$n^{-1/2}(\overline{\langle U_{[1,k]}\rangle},\overline{\langle U_{[k+1:n]}\rangle}) \xrightarrow{(\mathrm{d})} \mathcal{N}(0,\sigma_A^2 \cdot \mathrm{Diag}(t,1-t)).$$

• Exponential tilting argument can be adapted to tilt the vertices in [1, k] by x_1 and those in section [k + 1 : n] by x_2 .

- Let $t \in (0,1)$ and $k = \lfloor tn \rfloor$
- For disjoint sections [1,k] and [k+1:n], $\langle U \rangle_{[1:k]}$ and $\langle U \rangle_{[k+1:n]}$ are independent. In particular

$$n^{-1/2}(\overline{\langle U_{[1,k]}\rangle},\overline{\langle U_{[k+1:n]}\rangle}) \xrightarrow{(\mathrm{d})} \mathcal{N}(0,\sigma_A^2 \cdot \mathrm{Diag}(t,1-t)).$$

• Exponential tilting argument can be adapted to tilt the vertices in [1, k] by x_1 and those in section [k + 1 : n] by x_2 . Quenched CLT method can be used to show that

$$n^{-1/2}(\widehat{U}_{[1:k]}, \widehat{U}_{[k+1:n]}) \xrightarrow{(\mathrm{d})} \mathcal{N}\left(0, \sigma_Q^2 \cdot \mathrm{Diag}(t, 1-t)\right)$$

in probability.

February 2022

- Let $t \in (0,1)$ and $k = \lfloor tn \rfloor$
- For disjoint sections [1,k] and [k+1:n], $\langle U \rangle_{[1:k]}$ and $\langle U \rangle_{[k+1:n]}$ are independent. In particular

$$n^{-1/2}(\overline{\langle U_{[1,k]}\rangle},\overline{\langle U_{[k+1:n]}\rangle}) \xrightarrow{(\mathrm{d})} \mathcal{N}(0,\sigma_A^2 \cdot \mathrm{Diag}(t,1-t)).$$

• Exponential tilting argument can be adapted to tilt the vertices in [1, k] by x_1 and those in section [k + 1 : n] by x_2 . Quenched CLT method can be used to show that

$$n^{-1/2}(\widehat{U}_{[1:k]}, \widehat{U}_{[k+1:n]}) \xrightarrow{(\mathrm{d})} \mathcal{N}\left(0, \sigma_Q^2 \cdot \mathrm{Diag}(t, 1-t)\right)$$

in probability.

• Quenched and Annealed fluctuations are independent in the limit.

• We can now characterize limiting behavior of matching, in other words the "height function" $\theta_n(t) := U_{[1:\lfloor nt \rfloor]}$.

- We can now characterize limiting behavior of matching, in other words the "height function" $\theta_n(t) := U_{[1:|nt|]}$.
- We can prove that $|\mathbb{E}\langle U\rangle_n nu| \leq C$, implying that $n^{-1}\theta_n(t) \xrightarrow{\mathbf{P}} u \cdot t$.

- We can now characterize limiting behavior of matching, in other words the "height function" $\theta_n(t) := U_{[1:|nt|]}$.
- We can prove that $|\mathbb{E}\langle U\rangle_n nu| \leq C$, implying that $n^{-1}\theta_n(t) \xrightarrow{\mathbf{P}} u \cdot t$.
- Joint CLT is sufficient to establish independent Gaussian increments, thus establishing convergence of $\hat{\theta}_n(t)$ to $\sigma^2 B_t$ in distribution sense.

- We can now characterize limiting behavior of matching, in other words the "height function" $\theta_n(t) := U_{[1:|nt|]}$.
- We can prove that $|\mathbb{E}\langle U\rangle_n nu| \leq C$, implying that $n^{-1}\theta_n(t) \xrightarrow{\mathbf{P}} u \cdot t$.
- Joint CLT is sufficient to establish independent Gaussian increments, thus establishing convergence of $\hat{\theta}_n(t)$ to $\sigma^2 B_t$ in distribution sense.
- Process level convergence yet to be shown.

• Here, we take H to be a single vertex.

- Here, we take H to be a single vertex.
- Hielmann-Lieb recurrence becomes two step, suggesting expression in terms of determinant of tridiagonal matrix.

- Here, we take H to be a single vertex.
- Hielmann-Lieb recurrence becomes two step, suggesting expression in terms of determinant of tridiagonal matrix.

$$\boldsymbol{A}_{n} := \begin{pmatrix} \sqrt{-1}e^{\nu_{1}} & e^{\omega_{1}/2} & \dots & 0\\ e^{\omega_{1}/2} & \ddots & \ddots & \vdots\\ \vdots & \ddots & \sqrt{-1}e^{\nu_{n-1}} & e^{\omega_{n-1}/2}\\ 0 & \dots & e^{\omega_{n-1}/2} & \sqrt{-1}e^{\nu_{n}} \end{pmatrix}$$

- Here, we take H to be a single vertex.
- Hielmann-Lieb recurrence becomes two step, suggesting expression in terms of determinant of tridiagonal matrix.

$$\boldsymbol{A}_{n} := \begin{pmatrix} \sqrt{-1}e^{\nu_{1}} & e^{\omega_{1}/2} & \dots & 0\\ e^{\omega_{1}/2} & \ddots & \ddots & \vdots\\ \vdots & \ddots & \sqrt{-1}e^{\nu_{n-1}} & e^{\omega_{n-1}/2}\\ 0 & \dots & e^{\omega_{n-1}/2} & \sqrt{-1}e^{\nu_{n}} \end{pmatrix}$$

• Recurrence for determinant yields $Z_n = |\det A_n|$.

- Here, we take H to be a single vertex.
- Hielmann-Lieb recurrence becomes two step, suggesting expression in terms of determinant of tridiagonal matrix.

$$\boldsymbol{A}_{n} := \begin{pmatrix} \sqrt{-1}e^{\nu_{1}} & e^{\omega_{1}/2} & \dots & 0\\ e^{\omega_{1}/2} & \ddots & \ddots & \vdots\\ \vdots & \ddots & \sqrt{-1}e^{\nu_{n-1}} & e^{\omega_{n-1}/2}\\ 0 & \dots & e^{\omega_{n-1}/2} & \sqrt{-1}e^{\nu_{n}} \end{pmatrix}$$

- Recurrence for determinant yields $Z_n = |\det A_n|$.
- Lee Yang zeroes are eigenvalues.

- Here, we take H to be a single vertex.
- Hielmann-Lieb recurrence becomes two step, suggesting expression in terms of determinant of tridiagonal matrix.

$$\boldsymbol{A}_{n} := \begin{pmatrix} \sqrt{-1}e^{\nu_{1}} & e^{\omega_{1}/2} & \dots & 0\\ e^{\omega_{1}/2} & \ddots & \ddots & \vdots\\ \vdots & \ddots & \sqrt{-1}e^{\nu_{n-1}} & e^{\omega_{n-1}/2}\\ 0 & \dots & e^{\omega_{n-1}/2} & \sqrt{-1}e^{\nu_{n}} \end{pmatrix}$$

- Recurrence for determinant yields $Z_n = |\det A_n|$.
- Lee Yang zeroes are eigenvalues.
- Convergence of free energy analogous to Thouless formula.

Thanks!