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What is a Monomer-Dimer Configuration?

Origins are in Physics, to study adsorption of diatomic molecules
onto a crystal lattice.

A monomer dimer configuration on a graph G = (V,E) is a
collection of non overlapping edges, better known as a matching.

Definition (Matching)

A matching is a subset m ⊂ E such that no two edges in m have a
common vertex, and is called perfect if it covers V .

We will denote the collection of all matchings by M.
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What is the Monomer-Dimer Model?

We may associate an “energy” to monomer-dimer configurations.

This is done by weighting the vertices and edges.

ν : V → R and ω : E → R.

H(m) :=
∑
v/∈m

νv +
∑
e∈m

ωe.

With these weights, we may define a Gibbs probability measure on
M:

µ(m) :=
1

Z
exp(H(m))

Statistics of interest are typical number of edges or typical number
of unpaired vertices, denoted U .
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Monomer Dimer Configurations

Figure 1: Matching vs. non matching
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Hielmann-Lieb Recursion

Early analysis spearheaded by Hielmann and Lieb (1972).

Let G = (V,E) be a weighted graph, let ZG denote the
monomer-dimer partition function.

With u, v ∈ V , let Gu and Gu,v denote principal subgraphs
obtained on sequential removal of u and v.

ZG = exp (νu)ZGu +
∑
v∼u

exp
(
ω(u,v)

)
ZGu,v .

The recurrence can be used to prove the absence of phase
transition, as well as exact computation of the partition function
in special cases (line graph, complete graph, regular trees).
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Gaussian Representation

Partition function admits a representation in terms of moments of
auxiliary Gaussian random variables.

Let {ζv}v∈V be Gaussian, with covariance exp(ω(u,v)). The
diagonal entries are arbitrary, positive, chosen so that the matrix
is positive definite.

ZG = Eζ

(∏
v∈V

(
ζv + exp(νv)

))

Hielmann-Lieb recursion can be recovered via Gaussian integration
by parts.
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Absence of Phase Transition

When convergence of limiting free energy can be established, can
be shown that it is an analytic function in the weights. No phase
transitions

Phase transitions can be induced in certain situations:

Introduction of imitative potential. Studied by Alberici and
Contucci.
Monomer weight νv = −∞. Widely studied on planar and other
surface graphs. Kasteleyn, Kenyon, etc..

Key task therefore to establish free energy convergence.
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Why are Monomer Dimer Models Studied?

Statistical physics, either equivalent or related to several models of
interest such as Ising Models with external field, Random
Assignment Problems, etc..

Computing the partition function with constant weights is
equivalent to the computation of the permanent of a {0, 1} valued
matrix (#P class). Quick probabilistic algorithms are thus of
interest.
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The Disordered Context

What happens when {νv}v∈V and {ωe}e∈E are random variables?

The partition function and free energy logZn can have non trivial
limiting behavior.

For statistics like U , we have environmental and ensemble
contributions to fluctuations, need to distinguish.
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What is Already Known?

Alberici, Contucci and Mignione (2015) analyse the monomer
dimer model on the complete graph with i.i.d random vertex
weights, and establish an exact solution for the limiting free energy

Partition function expressed with Gaussian Representation.
Enables Saddle point argument, fixed point solution for partition
function.

Alberici and Contucci (2014) also analyse the monomer dimer
model on locally tree like graphs, such as the Erdös-Renyi graph,
establish exact solution via fixed point argument.

Methods suited for mean field situation, similar to the cavity
method in the study of spin glasses.
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Our Context

Definition (Cylinder Graph)

Let H = (VH , EH) be a fixed graph with |VH | = h and Gn be the line
graph on n vertices with vertex set [n]. A cylinder graph Gn is given by
the graph Cartesian product

Gn := Gn ×H

We will work with i.i.d families {ν}v∈V and {ωe}e∈E , though not
necessarily with same distribution.

We will require E|ν|2+ϵ + E|ω|2+ϵ < ∞ for some ϵ > 0.
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Notation

Let G[k:l] denote the principal subgraph of Gn generated by the
vertices with Gn components in the interval [k, l].

Let Z[k:l] denote the partition function of the monomer-dimer
model on G[k:l].

Let U[k,l] denote the number of unpaired vertices of a matching m
on Gn contained in the section G[k:l].
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Main Result (1)

Theorem (Dey, K. 2021)

Assume that E(|νv|2+ε + |ωe|2+ε) is finite for some ε > 0. We have
f ∈ R and σF > 0 depending only on the distributions of ν and ω such
that

n−1 · logZn
P→ f as n → ∞

and

n−1/2 · (logZn − E logZn)
(d)−→ N(0, σ2

F ) as n → ∞.

Kesav Krishnan (UIUC) Bangalore Probability Seminar February 2022 13 / 31



Main Result (1)

Theorem (Dey, K. 2021)

Assume that E(|νv|2+ε + |ωe|2+ε) is finite for some ε > 0. We have
f ∈ R and σF > 0 depending only on the distributions of ν and ω such
that

n−1 · logZn
P→ f as n → ∞

and

n−1/2 · (logZn − E logZn)
(d)−→ N(0, σ2

F ) as n → ∞.

Kesav Krishnan (UIUC) Bangalore Probability Seminar February 2022 13 / 31



Main Result (1)

Theorem (Dey, K. 2021)

Assume that E(|νv|2+ε + |ωe|2+ε) is finite for some ε > 0. We have
f ∈ R and σF > 0 depending only on the distributions of ν and ω such
that

n−1 · logZn
P→ f as n → ∞

and

n−1/2 · (logZn − E logZn)
(d)−→ N(0, σ2

F ) as n → ∞.

Kesav Krishnan (UIUC) Bangalore Probability Seminar February 2022 13 / 31



Main Result (2)

Theorem (Dey, K. 2021)

Recall the definition of U[k,l]. Let t ∈ [0, 1] and let

θn(t) = U[1:⌊nt⌋].

Then as n → ∞, ∃u > 0 and σ > 0(
θn(t)− ntu√

n

)
t∈[0,1]

(d)−→ (σBt)t∈[0,1]

in probability, in the sense of finite dimensional distributions, Bt is
standard Brownian Motion.
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Key Ideas for Free Energy Convergence

This situation is essentially one dimensional, Hielmann and Lieb
recursion can be recast into a form allowing application of a
subadditive theorem.

The new form of the recursion also enables us to write the free
energy and the number of unpaired vertices as a sum of i.i.d
random variables, with an error term.

We can show that the error vanishes in all relevant limits.
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Splitting the Graph

1 2 3 . . . . . . . . . . . . . . . . . . . . . . . . n = 2k + 1

k + 1 · · · · · · · · · · · · 2k1 2 3 · · · · · · · · · k

Figure 2: First step of the subdivision

Kesav Krishnan (UIUC) Bangalore Probability Seminar February 2022 16 / 31



Error Decomposition

Let k be fixed, and let Ek denote the layer of edges joining G[1:k]

and G[k+1:n].

Edges of Ek may be enumerated as ek,i where i = 1, 2 . . . h. The
vertices adjacent to ek,i are denoted vk,i and vk+1,i respectively.

With A ⊂ Ek, we denote by ZA
(.) to be a restricted partion function

on the principal subgraph with alll vertices adjacent to A removed.

logZn = logZ[1:k] + logZ[k+1:n] +Rn,k

Rn,k = log

∑
A⊆E

∏
i:ek,i∈A

eωk,i−νk,i−νk+1,i ·
ZA
[1:k]

Z[1:k]
·
ZA
[k+1:n]

Z[k+1:n]


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Error Control for Free Energy

With moment condition as assumed, there is a constant depending
only on distributions of ω and ν such that

E|Rn,k|2+ϵ ⩽ C

Theorem (Hammersley 1962)

Let an and bn be sequences such that an+m ⩽ an + am + bn+m. A
sufficient condition for an/n to converge to limit ℓ < ∞ is∑

n⩾1

|bn|
n2

⩽ ∞.

Directly applicable to E logZn and Var logZn.

Central Limit Theorem follows from the Lyapunov condition.
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Non Degeneracy of Variance

“Complete” the underlying line graph to the n+ 1 cycle, to bring
in translation invariance. Partition functions differ at most by a
constant. Partition function here will be denoted Wn.

Pick a horizontal layer of edges, and consider

Fn := σ{ω1, ω2, . . . , ωn}

Fj := σ{ω1, ω2, . . . , ωj}

Var(logWn) ⩾ Var(E(logWn | Fn)) =

n∑
j=1

Var(E(logWn | Fj))

⩾
n∑

j=1

Var(E(logWn | ωj))
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Number of Unpaired Vertices

Standard trick, exponential tilting. Replace νv by νv + x where
x ∈ R.

Gibbs average of U , denoted ⟨U⟩ can be calculated by ∂x logZn(x).

For the same error decomposition as the free energy, we need to
control ∂xRn,k

In particular, need to control ∂xZ
A
(.)/Z(.), which is equivalent to

bounding ∂x logZ
A
(.) − ∂x logZ(.).
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Lee Yang Zeroes

Zn(x) is a polynomial in ex, with purely imaginary roots, which
we denote as {

√
−1λi}Ni=1, {λi} are enumerated in order.

The Hielmann-Lieb recurrence implies interlacing for the zeroes.

Let Gv denote the principal subgraph obtained on removal of
vertex v from G. Let {λv

i }
N1
i=1 denote the Lee-Yang zeroes of

ZGv(x).We have
λi ⩽ λv

i ⩽ λi+1.

All quantities will be evaluated at x = 0.
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Interlacing Hierarchy

λ1,1

λ1,2 λ2,2

λ1,3 λ2,3

λ1,4 λ2,4 λ3,4

λ1,5 λ2,5 λ3,5 λ4,5 λ5,5

λ4,4

λ3,3

Z(1)

Z(2)

Z(3)

Z(4)

Z(5)

Figure 3: Interlacing shown for the first 5 levels
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Error Control for Unpaired Vertices

The average number of unpaired vertices may be expressed as

⟨U⟩ = ∂x logZG(x) =

N∑
i=1

e2x

e2x + (λi)2
.

Using interlacing, we can show that there is C(x, i) such that

|∂i
x logZG − ∂i

x logZGv | ⩽ C

This can be finitely iterated to yield a constant order bound for
∂xRn,k

Subadditive lemma then applies to ⟨U⟩n, we denote
u := limn→∞ n−1 · ⟨U⟩n
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Empirical Measure of Zeroes

To the roots {λi}Ni=1 we associate a probability measure on R

ρn =
1

n

n∑
i=1

δλi

Free energy may be written as

n−1 · logZn =
1

n

∑
v∈V

νv +
1

2

∫
R
log(e2x + λ2)dρn(λ)

n−1 · ⟨U⟩n =

∫
R

e2x

e2x + λ2
dρn(λ)
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Convergence of Cumulants

Tightness of the random variable X = exp(ω)− exp(ν1)− exp(ν2)
implies tightness in probability of the sequence {ρn}n∈N

Convergence of n−1⟨U⟩n implies weak convergence in probability
of ρn.

Weak convergence of ρn implies convergence of all quenched
moments of n−1U , we denote limiting variance as σ2

Q

The boundedness of the third cumulant of n−1U is particularly
useful.
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CLT (Quenched)

We have size of fluctuations of U about ⟨U⟩n, can characterize
them as well. Let Û := U − ⟨U⟩.

Consider quenched generating function of n−1/2Û , i.e.

Mn(ξ) := ⟨exp(ξ · n−1/2U)⟩

.

Easy to show that

logMn(ξ) = logZn(x+ n−1/2ξ)− logZn(x)− n1/2ξ∂x logZn(x).

Taylor’s theorem shows that logM(ξ) = σ2
Qξ

2/2 is the limit.
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Consider quenched generating function of n−1/2Û , i.e.
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CLT (Annealed)

⟨U⟩n is itself a random variable, environmental fluctuations should
play a role. Let ⟨U⟩ := ⟨U⟩ − E⟨U⟩.

Efron-Stein Inequality shows that Var⟨U⟩ ⩽ Cn for some constant
C.

Approximate subadditivity shows that n−1Var⟨U⟩ converges, we
denote limit by σ2

A.

CLT for the free energy can be adapted to establish CLT for
n−1/2⟨U⟩.
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CLT (Joint)

Let t ∈ (0, 1) and k = ⌊tn⌋
For disjoint sections [1, k] and [k+1 : n], ⟨U⟩[1:k] and ⟨U⟩[k+1:n] are
independent.

In particular

n−1/2(⟨U[1,k]⟩, ⟨U[k+1:n]⟩)
(d)−→ N

(
0, σ2

A ·Diag(t, 1− t)
)
.

Exponential tilting argument can be adapted to tilt the vertices in
[1, k] by x1 and those in section [k + 1 : n] by x2. Quenched CLT
method can be used to show that

n−1/2(Û[1:k], Û[k+1:n])
(d)−→ N

(
0, σ2

Q ·Diag(t, 1− t)
)

in probability.

Quenched and Annealed fluctuations are independent in the limit.
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FDD Convergence

We can now characterize limiting behavior of matching, in other
words the “height function” θn(t) := U[1:⌊nt⌋].

We can prove that |E⟨U⟩n − nu| ⩽ C, implying that

n−1θn(t)
P→ u · t.

Joint CLT is sufficient to establish independent Gaussian
increments, thus establishing convergence of θ̂n(t) to σ2Bt in
distribution sense.

Process level convergence yet to be shown.

Kesav Krishnan (UIUC) Bangalore Probability Seminar February 2022 29 / 31



FDD Convergence

We can now characterize limiting behavior of matching, in other
words the “height function” θn(t) := U[1:⌊nt⌋].

We can prove that |E⟨U⟩n − nu| ⩽ C, implying that

n−1θn(t)
P→ u · t.

Joint CLT is sufficient to establish independent Gaussian
increments, thus establishing convergence of θ̂n(t) to σ2Bt in
distribution sense.

Process level convergence yet to be shown.
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Tridiagonal Operators

Here, we take H to be a single vertex.

Hielmann-Lieb recurrence becomes two step, suggesting expression
in terms of determinant of tridiagonal matrix.

An :=


√
−1eν1 eω1/2 . . . 0

eω1/2
. . .

. . .
...

...
. . .

√
−1eνn−1 eωn−1/2

0 . . . eωn−1/2
√
−1eνn


Recurrence for determinant yields Zn = | detAn|.
Lee Yang zeroes are eigenvalues.

Convergence of free energy analogous to Thouless formula.
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Thanks!

Kesav Krishnan (UIUC) Bangalore Probability Seminar February 2022 31 / 31


