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Objective

To use tools from robust stochastic optimization to avoid

overfitting and systematically improve out of sample

performance in statistical learning problems such as regression

and classification.
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Overfitting - an illustration: n independent samples (Xi ,Yi)

from the model Yi = X 2
i + εi , εi ∼ standard normal
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“With 4 parameters I can fit an elephant and

with 5, I can make him wiggle his trunk.”

- von Neumann
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Overfitting - an illustration: Y = X 2 + ε, ε ∼ N (0, 1)
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“The optimizer’s curse”

100 assets

100 assets
75 assets3% change  

in mean of  
one asset

[Best & Grauer ’91]
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The premise of distributionally robust optimization

To solve:

min
β

E [Loss(W ; β)]

ERM / SAA:

min
β

1

n

n∑

i=1

Loss(Wi ; β)

DRO:

min
β

max
Q:D(Q,Pn)≤δ

EQ [Loss(W ; β)]

Example 1

DR linear regression:

min
β

max
Q:D(Q,Pn)≤δ

EQ

[
(Y − βTX )2

]

Objective

I Improve generalization with DRO

I self-tune?

Q1) How to quantify D?

Q2) How to choose δ?
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Outline of rest of the presentation

I Motivation

I The distributionally robust approach

The premise of DRO

I Q1) How to choose the distance function

Optimal transport based DRO formulation

I Q2) How to choose the tuning parameter?

Profile function

Tuning parameter as a quantile of the profile function

I Discussion
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DR Linear

Regression: min
β∈Rd

max
Q:D(Q,Pn)≤δ

EQ

[(
Y − βTX

)2]

3

The founding fathers of optimal transport

As many other research subjects in mathematics, the field of optimal transport was born
several times. The first of these births occurred at the end of the eighteenth century, by
ways of the French geometer Gaspard Monge.

Monge was born in 1746 under the French Ancient Régime. Because of his outstanding
skills, military authorities tolerated him in a military training school from which he should
have been excluded by his modest origin. He invented descriptive geometry all by his own,
and the power of the method was so apparent that he was appointed professor at the
age of 22, with the understanding that his theory would remain a military secret, for
exclusive use of higher officers. He later was one of the most ardent warrior scientists
of the French Revolution, served as a professor under several regimes, escaped a death
sentence pronounced during the Terror, and became one of Napoleon’s closest friends. He
taught at École Normale Supérieure and École Polytechnique in Paris. Most of his work
was devoted to geometry.

In 1781 he published one of his first famous works, Mémoire sur la théorie des déblais et
des remblais (a “déblai” is an amount of material that is extracted from the earth or a mine;
a “remblai” is a material that is input into a new construction). The problem considered
by Monge is as follows: Assume you have a certain amount of soil, to extract from the
ground and transport to places where it should be incorporated in a construction. The
places where the material should be extracted, and the ones where it should be transported
to, are all known. But the assignment has to be determined: To which destination should
one send the material that has been extracted at a certain place? The answer does matter
because transport is costly, and you want to minimize the total cost. Monge assumed that
the transport cost of one unit of mass along a certain distance was given by the product
of the mass by the distance.

déblais
remblais

x

T

y

Fig. 3.1. Monge’s problem of déblais and remblais

How to quantify the distance D(P ,Q)?

D(P ,Q) = min
π:π

U
=P,π

V
=Q

Eπ‖U − V ‖
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How to quantify the distance D(P ,Q)?

D(P ,Q) = min
π:π

U
=P,π

V
=Q

Eπ‖U − V ‖

1Image source: Optimal Transport: Old and New by Cédric Villani
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[
c(U ,V )

]

The metric Dc is called optimal transport metric.

When c(u, v) = ‖u − v‖ρ,D1/ρ
c is the ρth order Wasserstein

distance
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Why optimal transport distances?

P =
{
P : DKL(P‖Pref ) ≤ δ

}
Hansen and Sargent ’01, ’06
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Ben-Tal et al ’13
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Csiszàr and Breuer ’13

Jiang and Guan ’12

Hu and Hong ’13

Wang, Glynn and Ye ’14
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Duchi, Glynn and Namkoong ’16
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Why optimal transport distances?

P =
{
P : DKL(P‖Pref ) ≤ δ

}
DKL(p‖q) =





∫
p(x) log p(x)

q(x)dx if p � q

∞ otherwise.

10 / 21



Why optimal transport distances?

P =
{
P : DKL(P‖Pref ) ≤ δ

}
DKL(p‖q) =





∫
p(x) log p(x)

q(x)dx if p � q

∞ otherwise.

x

y

p(x,y)
Baseline probability distribution p

10 / 21



Why optimal transport distances?

P =
{
P : DKL(P‖Pref ) ≤ δ

}
DKL(p‖q) =





∫
p(x) log p(x)

q(x)dx if p � q

∞ otherwise.

x

y

p(x,y)

x

y

q(x,y)
Baseline probability distribution p A KL-neighbor of p

10 / 21



Why optimal transport distances?

P =
{
P : DKL(P‖Pref ) ≤ δ

}
DKL(p‖q) =





∫
p(x) log p(x)

q(x)dx if p � q

∞ otherwise.

x

y

p(x,y)

x

y

q(x,y)
Baseline probability distribution p A Wasserstein neighbor of p

10 / 21



Application 1: Linear regression

OLS:

min
β∈Rd

MSEn(β) DRO
−− −→

DR linear regression:

min
β∈Rd

max
Q:Dc (Q,Pn)≤δ

EQ

[(
Y − βTX

)2]

Theorem: If c(u, v) = ‖u − v‖2q,

(Recall Dc(P,Q) = minE [c(U,V )])

arg min
β

sup
Q:Dc (Q,Pn)≤δ

EP

[
(Y − βTX )2

]

=

arg min
β

{√
MSEn(β) +

√
δ‖β‖p

}

DR-linear regression = `p-penalized regression!
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√
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Application 2: Logistic regression

ERM:

min
β∈Rd

1

n

n∑

i=1

Logistic loss(Xi ;β) DRO
−− −→

DR linear regression:

min
β∈Rd

max
Q:Dc (Q,Pn)≤δ

EQ [Logistic loss(X ;β)]

Theorem: If c(u, v) = ‖u − v‖q,

arg min
β

sup
Q:Dc (Q,Pn)≤δ

EP [Logistic loss(X ;β)]

= arg min
β

{
1

n

n∑

i=1

Logistic loss(Xi ;β) + δ‖β‖p
}

DR-logistic regression = `p-penalized logistic regression!
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Pflug et al (2012)

Wozabal (2012)

Lee and Mehrotra (2013),

Kuhn et al (2015)

Blanchet & M (2016)

Gao & Kleywegt (2016)
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Duality theorem [Blanchet & M]

S Polish space

Pref ∈ P(S) reference measure

f ∈ L1(dPref ) is upper semicontinuous

δ ∈ (0,∞)

A lower semicontinuous cost function c : S × S → R satisfying

c(x , x) = 0 for all x ∈ S .

Duality holds

sup

{∫
fdP : dc(P,Pref ) ≤ δ

}
= inf
λ≥0

{
λδ + Eref

[
sup
y∈S

{
f (y)− λc(X , y)

}
]}

14 / 21



Outline

I Motivation

I The distributionally robust approach

The premise of DRO

I Q1) How to choose the distance function X
Optimal transport based DRO formulation

I Q2) How to choose the tuning parameter?

Profile function

Tuning parameter as a quantile of the profile function

I Discussion
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DR Linear

Regression: min
β∈Rd

max
Q:Dc (Q,Pn)≤δ

EQ

[(
Y − βTX

)2]

How do we choose δ?

P (Dc(P ,Pn) ≤ δ) ≥ 1− ε
P

Pn

δ

See Fournier and Guillin (2015)

Lee and Mehrotra (2013), Kuhn et al (2015), O(n−1/d) rate
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DR Linear

Regression: min
β∈Rd

max
Q:Dc (Q,Pn)≤δ

EQ

[(
Y − βTX

)2]

Plausible β’s:

β∗ ∈

{
β(Q) : Dc(Q,Pn) ≤ δ

}

Given Q,

β(Q) := optimal β satisfying

EQ

[(
Y − βT

(Q)X
)
X
]

= 0

Theorem

If Y = βT
∗ X + ε,

nRn(β∗)
D−→ R̄

P

Pn

δ
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δ

Rn(β∗) = inf

{
Dc

(
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)
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δ

Choose δ =
η

n
where η is such that P

{
R̄ ≤ η

}
≥ 0.95
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DR Linear
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nRn(β∗)
D−→ R̄

P

Pn

{
Q : EQ

[
(Y − β

T
∗X

)X
]
= 0

}

δ

Then P
(
β∗ ∈ Plausible set

)
≈ 1− α.
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Optimality condition:

RWP function:

E [h(W ;β∗)] = 0

Rn(β) = inf
{
Dc(Q,Pn) : EQ

[
h(W , β)

]
= 0

}

I Similar to empirical likelihood profile function

T (β) = max

{
n∑

i=1

log pi :
n∑

i=1

pi = 1,
n∑

i=1

pih(wi , β) = 0

}

= min {DKL(Q‖Pn) : EQ [h(Wi , θ∗)] = 0}

I T (β∗) typically has a χ2−limiting distribution

17 / 21



Optimality condition:

RWP function:

E [h(W ;β∗)] = 0

Rn(β) = inf
{
Dc(Q,Pn) : EQ

[
h(W , β)

]
= 0

}

I Similar to empirical likelihood profile function

T (β) = max

{
n∑

i=1

log
pi

1/n
:

n∑

i=1

pi = 1,
n∑

i=1

pih(wi , β) = 0

}

= min {DKL(Q‖Pn) : EQ [h(Wi , θ∗)] = 0}

I T (β∗) typically has a χ2−limiting distribution

17 / 21
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RWP function:

E [h(W ;β∗)] = 0

Rn(β) = inf
{
Dc(Q,Pn) : EQ

[
h(W , β)

]
= 0

}

Theorem

If we let c(u, v) = ‖u − v‖ρq,

nρ/2Rn (β∗)
D−→ R̄,

`p−lin reg: ρ = 2

R̄
D
≤ π

π − 2
‖Z‖2q,

`p−log reg: ρ = 1

R̄
D
≤ ‖Z‖q,

where Z ∼ N (0,E [XXT ]).

R̄ = sup
ζ∈Rr

{
ρζTZ − (ρ− 1)E

∥∥ζTDwh (W , β∗)
∥∥ρ/(ρ−1)
p

}
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where Z ∼ N (0,E [XXT ]).
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π
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log d
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RWPI Linear

Regression: min
β∈Rd

max
Q:D(Q,Pn)≤δ

EQ

[(
Y − βTX

)2]

0

0.35

0.7

1.05

1.4

OLS CV-Lasso RWPI-Lasso

Training 
MSE Test 

MSE

RWPI based tuning parameter selection against cross-validated Lasso and

OLS in the diabetes data set of 142 training samples with 64 predictors
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A snapshot of main results

Application 1: DR linear regression

If c(u, v) = ku � vk2
q,

arg min
�

sup
Q:Dc (Q,Pn)�

EP

⇥
(Y � �TX )2

⇤

= arg min
�

np
MSEn(�) +

p
�k�kp

o

Application 2: DR logistic regression

If c(u, v) = ku � vkq,

arg min
�

sup
Q:Dc (Q,Pn)�

EP [Logistic loss(X ;�)]

= arg min
�

(
1

n

nX

i=1

Logistic loss(Xi ;�) + �k�kp

)

I Scalability: Similar equivalences with SVM, LAD-regression

I Xu, Caramanis & Mannor (2009)
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Discussion

I DRO approach towards improving out-of-sample performance

I Optimal uncertainty size as a notion of plausibility

I Popular regularized estimators as particular cases

I A partial answer to “why optimal transport based distances?”

I Potential to generate new algorithms that self-tune and

systematically improve out-of-sample-performance

I Future research: Optimal choice of cost functions, computational

methods, multivariate extremes, etc.

Paper: Robust Wasserstein Profile Inference (Available in arXiv)
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