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Objective

To use tools from robust stochastic optimization to avoid
overfitting and systematically improve out of sample
performance in statistical learning problems such as regression
and classification.
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Overfitting - an illustration: n independent samples (X, Y;)
from the model Y; = X? +¢;, ¢&; ~ standard normal

500 samples
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Overfitting - an illustration: Y = X2 + ¢,

500 samples 50 samples

e~ N(0,1)

25 samples




Overfitting - an illustration: Y = X? +¢, &~ N(0,1)
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Overfitting - an illustration: Y = X2 + ¢,
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vLasso

Regularized
logisitc

regression

min
B

1 n
S i=8Tx)" + sl

i=1

1 n
- Z log (1 +exp(—yi87x)) + A8l
i=1
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“The optimizer’s curse”

100 assets
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“The optimizer’s curse”

100 assets

3% change
in mean of

one asset

[Best & Grauer '91]
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The premise of distributionally robust optimization

To solve:

mﬁin E [Loss(W; B)]

ERM / SAA:

1 n
in =3 Loss(W;
min 2 oss(W;; B)
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1 n
in =3 Loss(W;
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DR linear regression:
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The premise of distributionally robust optimization

To solve: Example 1

mﬁin E [Loss(W; 5)] DR linear regression:
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min omax o [(Y = BTX)?]

ERM / SAA:

Objective

R
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The premise of distributionally robust optimization

Example 1

DR linear regression:

i Eo [(Y — BT X)?
min omax o [(Y = BTX)?]

Objective
» Improve generalization with DRO

» self-tune?

Q1) How to quantify D?
Q2) How to choose §7



Outline of rest of the presentation

» Q1) How to choose the distance function
Optimal transport based DRO formulation
» Q2) How to choose the tuning parameter?

Profile function

Tuning parameter as a quantile of the profile function



DR Linear

Regression: min max
BeRY Q:D(Q,Pn)<6

Eo [(Y _ 5Tx)2]

How to quantify the distance D(P, Q)?
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DR Linear

ion: min max E [Y— X 2]
Regression: SeRY Q:D(Q Pr)<s Q ( B )

How to quantify the distance D(P, Q)?

DP,Q)= min EJU-V]|
P, =Q

m,=P,m,=
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DR Linear

ion: min max  E [Y— X 2]
Regression: JeRY Q:D(Q Pr)<s Q ( B )

v

remblais
déblais 1

How to quantify the distance D(P, Q)?

D(P.Q)= min EJU-V|
P Q

mr,=P,m,=

!Image source: Optimal Transport: Old and New by Cédric Villani
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DR Linear

Regression: min max Eq [(Y - ﬁTX)2]

/BERd QiDc(Qypn)S(S

déblais

D.(P,Q) = min E. [C(U, V)]

mw, =P, =

The metric D, is called optimal transport metric.

When c(u, v) = ||lu — v||?, D¥* is the p*" order Wasserstein

distance
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Why optimal transport distances?

P = {P: Dki(P||Prr) < 6}

Hansen and Sargent '01, '06
Nilim and El Ghaoui '02, '03
lyengar '05

Lim, Shanthikumar and Watewai '05, '06
Jain, Lim and Shanthikumar '10
Ben-Tal et al '13

Lam '13, '16

Csiszar and Breuer '13

Jiang and Guan '12

Hu and Hong '13

Wang, Glynn and Ye '14
Glasserman and Xu '14
Bayrakskan and Love '15
Shapiro '15

Duchi, Glynn and Namkoong '16
Dhara, Das and Natarajan '17
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Why optimal transport distances?

J p(x)log %dx ifp<q

00 otherwise.

P = {P: Dki(P||Prer) < 6} Dki(pllq) = {
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Why optimal transport distances?

PO) gy
p(x)log Z55dx if p< g
P = {P: Dxi(P||Prr) < 0} Dre(pllq) = {f ol |
otherwise.

Baseline probability distribution p
p(x.y)
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Why optimal transport distances?

p(x) log % PRy if p< g
P = {P: Dir(PI||Prer) < 0} D(pllq) = {f a(x) |
otherwise.
Baseline probability distribution p A KL-neighbor of p
p(x.y) a(x.y)
| i
- ’
| | 7 | § Y
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Why optimal transport distances?

PO) gy
p(x)log Z55dx if p< g
P = {P: Dxi(P||Prr) < 0} Dre(pllq) = {f ol |
otherwise.

Baseline probability distribution p A Wasserstein neighbor of p
p(x.y) a(x.y)
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Application 1: Linear regression

OLS: DR linear regression:
min MSE,(8) DRO min max Eq [(Y — ETX)Z}
ﬁERd _— ,BERd QiDc(Q7Pn)S5
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Application 1: Linear regression

OLS: DR linear regression:
min MSE,(8) DRO min max Eoq [(Y — 6TX)2}
5€Rd _— ,BERd QiDc(Q7Pn)§5

Theorem: If c(u,v) = |lu—v|%,

argmin  sup Ep [(Y = BTX)?]

B Q:D.(Q,Pn)<s
— argmin {\/MSE,(3) + V31|51 }

DR-linear regression = +/Lasso!
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Application 2: Logistic regression

ERM: DR linear regression:

DRO min max E Logistic loss(X;
ﬁn;;lgd - Z Logistic loss(Xj; 8) _PRO . MG (.50 5y)< o [Log (X: 8

Theorem: If c(u,v) = |lu—v|q,

argmin  sup Ep [Logistic loss(X; 5)]
ﬁ Q:DC(Q,P,,)SJ

= arg mln{ ZLOgIStIC loss( :v5)+0||»3|p}

DR-logistic regression = /,-penalized logistic regression!
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Pflug et al (2012)
Wozabal (2012)

Lee and Mehrotra (2013),
Kuhn et al (2015)
Blanchet & M (2016)
Gao & Kleywegt (2016)
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Duality theorem [Blanchet & M|

S Polish space

P.er € P(S) reference measure

f € LY(dPyer) is upper semicontinuous

d € (0,00)

A lower semicontinuous cost function ¢ : S x S — R satisfying
c(x,x) =0 for all x € S.

Duality holds

}

14 /21

sup { / fdP : d.(P, Prer) < 5} = inf {/\5 + Erer [sup {f(y) — Ac(X,y)}
A20 y€es



Qutline

» Q1) How to choose the distance function v/
Optimal transport based DRO formulation
» Q2) How to choose the tuning parameter?

Profile function

Tuning parameter as a quantile of the profile function

14 /21



DR Linear

Regression:

How do we choose 47

min max
BERd Q:DC(Q7P")§6

Eo [(Y —ﬁTX)z]
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DR Linear

) 2

ion: min max E [ Y —8TX ]
Regression: SeRY QD0 Pr)<s Q ( B )

How do we choose 47

P(D.(P,P,)<d)>1—¢

See Fournier and Guillin (2015)
Lee and Mehrotra (2013), Kuhn et al (2015), O(n~%/9) rate
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DR Linear

Regression:

min max
/BERd QiDc(Qypn)S(S

Eo [(Y —BTX)2]

Given Q,
B(q) := optimal 3 satisfying

Eo[(Y = BlpX)x] =0

/21



DR Linear

ion: min max E, [ Y -3"X 1
Regression: SeRY QD0 Pr)<s Q ( p )

Plausible (’s:

B« € {B(Q) Q P <5}

Given Q,
B(q) := optimal 3 satisfying

Eo[(Y = BlpX)x] =0
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DR Linear

Regression:

Plausible (’s:

B. € {Bio) : De(Q, Pn) < 6}

min max
/BERd QiDc(Qypn)S(S

Eo | (¥

_ BTX)2]

B, is the optimal 3
satisfying

Ep[(Y-8]X)X] =0
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DR Linear

ion: min max E, [ Y -3"X 1
Regression: SeRY QD0 Pr)<s Q ( p )

Plausible (’s:

B. € {Bio) : De(Q, Pn) < 6}

Ra(B.) =inf {DC(Q, P,): Eq [(Y —BIX)X] = o}



DR Linear

Regression:

Plausible ('s:

B. € {Bio) : De(Q, Pn) < 6}

min max
/BERd QiDc(Qypn)S(S

Eo|(Y

_ ﬁTX)2]

Theorem
IfY =p8IX +e,

nRy(B8.) = R

Choose § = % where 7 is such that P {R’ < n} >0.95
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DR Linear

Regression:

Plausible ('s:

B. € {Bio) : De(Q, Pn) < 6}

min max
/BERd QiDc(Qypn)S(S

Eo|(Y

_ ﬁTX)2]

Theorem
IfY =p8IX +e,

nRy(B8.) = R

Choose § = 7770‘ where 7, is such that P {R’ < na} =1-oa.
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DR Linear

Regression:

Plausible ('s:

B. € {Bio) : De(Q, Pn) < 6}

min max
/BERd QiDc(Qypn)S(S

Eo|(Y

_ ﬁTX)2]

Theorem
IfY =p8IX +e,

nRy(B8.) = R

Then P(ﬂ* € Plausible set) ~1-—a.

16 /21



Optimality condition: E[h(W;B5)]=0
RWP function: Ra(8) = inf{DC(Q, P,) : Eq [h(Waﬂ)] = 0}

» Similar to empirical likelihood profile function

T(B) = max{z log p; : ZP:’ =1, Zp;h(w;,ﬁ) = 0}
i=1 i=1 i=1
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Optimality condition: E[h(W;B5)]=0
RWP function: Ra(8) = inf{DC(Q, P,) : Eq [h(Waﬂ)] = 0}

» Similar to empirical likelihood profile function

= max{z Iog Zp, 1, Zp,-h(w,-,,é’) = 0}

= min { D (Q[|Pn) - Eq[h(W;, 0.)] = 0}

T(f.) typically has a x2—limiting distribution

17/21



Optimality condition: E[n(W;B.)] =0
RWP function: Ra(8) = inf {Dc(Q, Py) : Eq[h(W, B)] = 0}

Theorem

If we let c(u,v) = [ju—v|,

np/an (ﬂ*) i> Ra

5 T (. T p/(p—1)
R=sup {72 = (p=DE[¢TDLh(W. 5]}
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Optimality condition: E[n(W;B.)] =0
RWP function: Ra(8) = inf {Dc(Q, Py) : Eq[h(W, B)] = 0}

lp—1lin reg: p=2

Theorem _ D T
R < Z|2
< T)zig,
If we let c(u,v) = [ju—v|,
lp—log reg: p=1
D -_
n"?R, (8,) — R, R g 12114,

where Z ~ N (0, E[XXT]).

R=sup {p"Z— (o= VE "D (W, 5[
CeR"
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Optimality condition: E[n(W;B.)] =0
RWP function: Ra(8) = inf {Dc(Q, Py) : Eq[h(W, B)] = 0}

lp—1lin reg: p=2

Theorem _ D T
R < Z|2
< T)zig,
If we let c(u,v) = [ju—v|,
lp—log reg: p=1
D -_
n"?R, (8,) — R, R g 12114,

where Z ~ N (0, E[XXT]).

n

nRa(Bx) < =0

7 ©71(1-a/2d) log d
T —2 Vn
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RWPI Linear

Regression:

1.0
0.7

0.35

min max
BeRY Q:D(Q,Pn)<d

Eo [ (v = 57X)’]

Training
MSE  Test
X MSE
!

RWPI-Lasso

RWPI based tuning parameter selection against cross-validated Lasso and

OLS in the diabetes data set of 142 training samples with 64 predictors
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A snapshot of main results

Application 1: DR linear regression
If c(u,v) = |lu— v||57

arg min sup Ep [(Y—BTX)z]
B Q:D.(Q,P,)<s

= argmin { V/VSEL(5) + V3111,

T 1Zllq
Application 2: DR logistic regression T—2 \n
If c(u, v) = [lu = vl
argmin  sup Ep [Logistic loss(X; 3)]
B @:De(Q.Pn)<s
I
= arg mﬂl‘n {n Z Logistic loss(X;; 8) + 5||B||p}
i=1
1Zllq
vn
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Application 1: DR linear regression
If c(u,v) = |lu— v||57

arg min sup Ep [(Y—BTX)z]
B Q:D.(Q,P,)<s

= argmin { V/VSEL(5) + V3111,

T 1Zllq
Application 2: DR logistic regression T—2 \n
If c(u, v) = [lu = vl
argmin  sup Ep [Logistic loss(X; 3)]
B @:De(Q.Pn)<s
I
= arg mﬂl‘n {n Z Logistic loss(X;; 8) + 5||B||p}
i=1
1Zllq
vn

» Scalability: Similar equivalences with SVM, LAD-regression
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Discussion

» DRO approach towards improving out-of-sample performance
» Optimal uncertainty size as a notion of plausibility

» Popular regularized estimators as particular cases

» A partial answer to "why optimal transport based distances?”

> Potential to generate new algorithms that self-tune and
systematically improve out-of-sample-performance

» Future research: Optimal choice of cost functions, computational

methods, multivariate extremes, etc.

Paper: Robust Wasserstein Profile Inference (Available in arXiv)
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