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Part I

The cutoff phenomenon



Markov chains

P irreducible, aperiodic transition matrix on a finite space X

I there is a unique invariant law π = πP

I the system mixes: Pt(x , y) −−−→
t→∞

π(y)

Question (crucial for applications): how fast?
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Mixing times (Aldous-Diaconis, 80’s)

Distance to equilibrium: D(t) :=

max
x∈X

max
A⊆X

∣∣Pt(x ,A)− π(A)
∣∣

I [0, 1]−valued

I non-decreasing

I sub-multiplicative: D(t + s) ≤ 2D(t)D(s).

D(t)
1
t −−−→

t→∞
λ?

= max{|λ| : λ 6= 1 eigenv. of P} < 1

Relaxation time: trel := 1
1−λ?

Mixing time: tmix(ε) := min{t ≥ 0: D(t) ≤ ε}

Research program: estimate tmix(ε) (see Levin-Peres-Wilmer)
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Lazy random walk on the cycle

Xt = ξ1 + · · ·+ ξt mod n with (ξt) i.i.d.


+1 w .p. 1/4

0 w .p. 1/2
−1 w .p. 1/4

Take t ∼ λn2 and write fλ for the density of N (0, λ/2) mod 1.

I CLT: P (Xt ∈ [an, bn]) −−−→
n→∞

∫ b

a
fλ(u)du

I local CLT: P (Xt = bnuc) =
fλ(u)

n
+ o

(
1

n

)

This implies D(t) −−−→
n→∞

ψ(λ) :=
1

2

∫ 1

0
|1− fλ(u)| du

Conclusion: tmix(ε) = ψ−1(ε)n2 + o(n2)
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Lazy random walk on the cycle

B Convergence to stationarity occurs gradually on timescale Θ(n2)
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Lazy random walk on the hypercube
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Lazy random walk on the hypercube

• Start with the all-1 vector: X0 = (1, 1, . . . , 1) (w.l.o.g.)

• At each time t, choose a random coordinate Ut and refresh it

• Nt = #{U1, . . . ,Ut} is a coupon collector process

• Take t = 1
2n ln n + λn + o(n)

B Nt = n − e−λ
√
n + oP(

√
n)

B P(Xt = x |Nt) = 2−Nt

(
‖x‖

n − Nt

)
/

(
n

n − Nt

)

B D (t) −−−→
n→∞

ψ(λ) :=
1

2π

∫ + e−λ
2

− e−λ
2

e−
u2

2 du

Conclusion: tmix(ε) = 1
2n ln n + ψ−1(ε)n + o(n).
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Lazy random walk on the hypercube

B Convergence to stationarity occurs abruptly at t ≈ n log n
2
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The cutoff phenomenon (Aldous-Diaconis ’86)

A sequence of Markov chains (indexed by n) exhibits cutoff if

∀ε ∈ (0, 1),
t

(n)
mix(1− ε)

t
(n)
mix(ε)

−−−→
n→∞

1

d(t)

t(ε)t(1-ε)
ε

1-ε
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Ubiquity of the cutoff phenomenon

Cutoff has been shown to arise in various contexts, including

• Card shuffling (Aldous, Diaconis, Shahshahani...)

• Birth-and-death chains (Diaconis, Saloff-Coste...)

• Random walks on certain groups (Chen, Saloff-Coste...)

• Interacting particles (Hermon, Lacoin, Lubetzky, S., Sly...)

• Random walks on sparse random graphs (Ben-Hamou,
Berestycki, Hermon, Lubetzky, Peres, S., Sly, Sousi...)

• Random walks on random digraphs (Bordenave, Caputo, S...)

• Random random walks on groups (Hermon, Olesker-Taylor...)

B Still very far from being understood.

B Embarrassingly, no effective sufficient condition is known.
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The “product” condition trel � tmix(ε)

• Proposed by Peres (AIM’04) as an effective criterion for cutoff

• Satisfied on the hypercube, not on the cycle

• Always necessary for cutoff (because tmix(ε) ≥ trel log 1
2ε)

• Fails to be sufficient in general (Aldous 04’)

• Known to be sufficient on trees (Basu-Hermon-Peres’17)

Generic counter-example: consider the rank-1 perturbation

P̃(x , y) := (1− δ)P(x , y) + δπ(y)

⇒ D̃(t) = (1− δ)tD(t)

If trel � 1
δ � tmix, then t̃rel � t̃mix but cutoff is destroyed!

Corollary: the criterion is wrong even for abelian random walks...
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Quotes from the Masters (Aldous-Diaconis 86-96)

I At present writing, proof of a cutoff is a difficult, delicate
affair, requiring detailed knowledge of the chain, such as all
eigenvalues and eigenvectors. Most of the examples where
this can be pushed through arise from random walk on
groups, with the walk having a fair amount of symmetry.

I The careful work required to prove cutoff often leads to a
more or less complete understanding of the chain such that
essentially any natural question can be answered.

I It occurs in all the examples we can explicitly calculate, but
we know no general result which says that the phenomenon
must happen for all “reasonable” chains.
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Part II

An entropic approach



Entropic concentration

Entropy: dkl (µ‖π) :=
∑
x∈X

µ(x) log
µ(x)

π(x)

Varentropy: Vkl (µ‖π) :=
∑
x∈X

µ(x)

(
log

µ(x)

π(x)
− dkl (µ‖π)

)2

Worst-case varentropy at time t: V ?
kl(t) := max

x∈X
Vkl

(
Pt(x , ·)|π

)
Theorem (S. 21): for any ε ∈ (0, 1),

tmix(ε)− tmix(1− ε) ≤ 2trel

ε2

[
1 +

√
V ?

kl (tmix (1− ε))
]
.

Corollary: a sufficient condition for cutoff is

tmix(ε)
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Non-negative curvature (Ollivier’10)

A metric space has non-negative curvature if small balls are closer
to each other than their centers are:

I applies, in particular, to the discrete setting of Markov chains

I has remarkable impact on geometry, concentration & mixing

I turns out to provide an effective varentropy estimate
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Ollivier-Ricci curvature of Markov chains

The curvature between two states x and y is defined as

κ(x , y) := 1− W1 (P(x , ·),P(y , ·))

dist(x , y)

I dist(·, ·) is the graph distance on G = (X , supp(P))

dist(x , y) := min{t ≥ 0: Pt(x , y) > 0}

I W1 (·, ·) is the L1−Wassertein metric:

W1 (µ, ν) := min {E [dist(X ,Y )] : X ∼ µ,Y ∼ ν}
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Non-negatively curved chains

P is non-negatively curved if κ ≥ 0 everywhere, i.e.

∀x , y ∈X , W1 (P(x , ·),P(y , ·)) ≤ dist(x , y)

I Enough to check this on neighbours, i.e. when P(x , y) > 0

I Starting point of the path coupling method (Bubley-Dyer’97)

I Equivalent to ‖Pf ‖lip ≤ ‖f ‖lip for all f : X → R

I Remarkable consequences on geometry and functional analysis
(Ollivier’09, Joulin-Ollivier’10, Lin-Lu-Yau’11,
Eldan-Lee-Lehec’17, Jost-Münch-Rose ’19, Münch’19,
Cushing-Kamtue-Koolen-Liu-Münch-Peyerimhoff’20).

I Implies concentration at any time: Var(f (Xt)) ≤ 2t‖f ‖2
lip

I Also true under non-negative Bakry-Émery curvature
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Some examples of non-negatively curved chains

• Random walks on complete graphs, paths, stars

• Monotone birth-and-death chains

• Random walks on abelian groups

• Conjugacy-invariant random walks on symmetric groups

• Mean-field Zero-Range dynamics with non-decreasing rates

• Glauber dynamics at high temperature

• Noisy Voter models

• ...
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Varentropy estimate under non-negative curvature

Theorem (S. ’21): If P has non-negative curvature, then

V ?
kl(t) . (log ∆)2t,

where ∆ = max
{

1
P(x ,y) : x ∼ y

}
is the “maximum degree”.

Corollary: non-negatively curved chains exhibit cutoff whenever

tmix(ε) � (trel log ∆)2

Since tmix(ε) & log N
log ∆ , we obtain the simpler sufficient condition

trel � (logN)1/2

(log ∆)3/2

Remark: the presence of ∆ is crucial (dense counter-examples)
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Application: cutoff on almost all abelian Cayley graphs

Consider simple random walk on G = Cay(X ,S), where

• (X ,+) is an abelian group with N elements

• S ⊆X is a symmetric subset with d elements

B Cutoff as soon as trel � (log N)1/2

(log d)3/2

B Alon-Roichman’94: trel . 1 w.h.p. if S is random & d & logN

Conclusion: “almost all” abelian Cayley graphs exhibit cutoff!

This long-standing conjecture (Aldous-Diaconis’86) was settled
very recently (Hermon–Olesker-Taylor’21) via hard computations...
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Thanks!


