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I Introduction

· Convex hull of a planar point set: Smallest convex polygon containing
the points.

· Newton, 1676

· April 1864, Educational Times, J. J. Sylvester (1814-1897): Place four
points uniformly at random inside an ellipse. How many vertices does the
convex hull have?

· Three points:
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I Introduction

·The fourth point can be either inside or outside the triangle formed by the
first three points. If it is inside, then the convex hull has three vertices.

· Otherwise there are potentially four vertices (extreme points)

· Spatial dependencies present a formidable technical obstacle.
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I Introduction

· Place four points uniformly at random in a triangle.

· The number of vertices in the convex hull is either three or four. What is
the expected number?

· Expected number of vertices is 11
3 . (Sylvester)

· Answer does not depend on size or shape of triangle.
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I Introduction

· General set-up: X1, ..., Xn i.i.d. uniform points in K ⊂ R2, K compact.

· Kn = convex hull of X1, ..., Xn. This is the smallest convex polygon
containing the points.

· f0(Kn): number of vertices in Kn.
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I Introduction

· X1, ..., Xn i.i.d. uniform points in K ⊂ R2, K compact.

· Kn = convex hull of X1, ..., Xn.

· f0(Kn) = number of vertices in Kn.

· K = ∆2 E f0(K4) = 11
3 (Sylvester)

· K = B2 E f0(K4) = 48π2−35
12π2 (Woolhouse)

The formula does not depend on the radius of the ball.

· K = 2 E f0(K4) = 133
36 (Woolhouse)

The formula does not depend on the aspect ratio of the rectangle.

· Blaschke, Crofton, Dalla, Efron, Groemer, Herglotz, Larman, Schneider
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I Introduction

· What about dimensions larger than 2?

· Let K be a compact convex subset of Rd, d ≥ 3.

· X1, ..., Xn i.i.d. uniform points in K ⊂ Rd.

· Kn = convex hull of X1, ..., Xn. This is the smallest convex polytope
containing the points.

· K = [0, 1]3 E f0(K5) = 212023
43200 −

π2

432 (Zinani)

· The formulas are becoming more complicated as the number of points in
the sample increases.

· K = ∆3 EVol(Kn) = ?
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I Introduction

Buchta and Reitzner (2001):
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I Introduction

Statistics of random polytopes

· f0(Kn) = number of vertices of Kn

· fk(Kn) = number of k-faces of Kn, k ∈ {0, ..., d− 1},

· Vol(Kn) = volume of Kn.

· Efron (1965): E f0(Kn) = n(1− EVol(Kn−1)), when Vol(K) = 1.

· Average vertex count E f0(Kn) yields results about average volumes.
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I Introduction

· Efron (1965): E f0(Kn) = n(1− EVol(Kn−1)), when Vol(K) = 1.

· Proof.

f0(Kn) =

n∑
k=1

1(Xk /∈ Conv(X1, ...,Xk−1,Xk+1, ...,Xn))

· Take expectations.

E f0(Kn) = nP(Xn /∈ Conv(X1, ...,Xn−1))

= nEE (1(Xn /∈ Conv(X1, ...,Xn−1))|X1, ...,Xn−1)

= n

(
1− EVol(Kn−1)

VolK

)
.
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I Introduction

Connections with other fields

computational geometry: approximation of convex sets by random
polytopes

optimization: vertices of convex hull are extreme points of
multivariate random samples

statistics: data depth, convex hull peeling

ethology
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I Introduction

Simple questions and surprises

· Recall f0(Kn) = number of vertices of the convex hull of n i.i.d. points
uniformly distributed in K.

· Is the expected vertex count monotone in input size? Do we have

E f0(Kn) ≤ E f0(Kn+1)?

Answer: Yes, if K is planar (Reitzner et al. 2013).

· If K ⊆ L do we have EVol(Kn) ≤ EVol(Ln)?

Answer: No (L. Rademacher, 2012).
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II Expectation asymptotics

· Difficult to derive explicit formulas for statistics of convex hulls on finite
number of i.i.d. points in a body K.

· Investigation has focussed on behavior as input size n→∞.

· The shape of ∂K determines the order of magnitude of E f0(Kn).
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II Expectation asymptotics

· The convex hull of 50 i.i.d. uniform points in the unit ball (red points are
vertices):
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II Expectation asymptotics

· The convex hull of 50 i.i.d. uniform points in the unit square:
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II Expectation asymptotics

· The convex hull of 100 i.i.d. uniform points in the unit ball:

Spatial dependence: whether a point is a vertex of the convex hull
depends on locations of other points. There are 13 vertices here.
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II Expectation asymptotics

· The convex hull of 500 i.i.d. uniform points in the unit ball:
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II Expectation asymptotics

· The convex hull of 500 i.i.d. uniform points in the unit square:
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II Expectation asymptotics (d = 2)

· f0(Kn) = number of vertices of the convex hull Kn of n i.i.d. points
uniformly distributed in K.

· K = B2: Rényi and Sulanke (1963), Xi, 1 ≤ i ≤ n, i.i.d. uniform in B2:

lim
n→∞

E f0(Kn)

n1/3
= C.

· Why the unusual cube root asymptotics n1/3?

· A cap of B2 is the intersection of a half-plane with B2.

· Every extreme point is contained in a cap which does not contain any
other sample point.
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II Expectation asymptotics

· n1/3 scaling heuristics

· This cap will have area roughly equal to n−1 and height n−2/3:

· The expected number of extreme points is the expected number of
points in an annulus of width n−2/3.
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II Expectation asymptotics

· fk(Kn) = number of k-dimensional faces of the convex hull Kn of n
i.i.d. points uniformly distributed in K.

· Rényi and Sulanke (1963), Xi i.i.d. in K ⊂ R2, ∂K smooth, VolK = 1:

lim
n→∞

E f0(Kn)

n1/3
= c

∫
∂K

κ(x)1/3dx.

· κ(x): curvature at x ∈ ∂K
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II Expectation asymptotics

· Dichotomy between smooth K and those which are polytopes.

· Reitzner (2005): K ⊂ Rd, d ≥ 2, ∂K of class C2,

lim
n→∞

E fk(Kn)

n(d−1)/(d+1)
= cd,k

∫
∂K

κ(x)1/(d+1)dx.

· κ(x): Gaussian curvature at x ∈ ∂K (product of principal curvatures)

· Affine surface area:
∫
∂K κ(x)1/(d+1)dx.

· Reitzner (2005): if K ⊂ Rd is a convex polytope with N vertices then

lim
n→∞

E fk(Kn)

(log n)d−1
= ed,k ·N.

· Half-spaces defining the convex hull have more long range impact when
the points come from a convex polytope.
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II Expectation asymptotics

· Rényi and Sulanke (1963-64):

· Kn is convex hull of n i.i.d. standard normal r.v. on Rd:

lim
n→∞

E f0(Kn)

(log n)(d−1)/2
= Cd.
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Variance asymptotics

· Question: What are the precise variance asymptotics?

· As is the case with expectations, the correct scaling depends on the
geometry, as seen in the next slide.
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Variance asymptotics

· K ⊂ Rd, d ≥ 2, ∂K of class C3, Vol(K) = 1, k ∈ {0, 1, ..., d− 1},

lim
n→∞

Varfk(Kn)

n(d−1)/(d+1)
= Vk,d

∫
∂K

κ(x)1/(d+1)dx.

· K ⊂ Rd, d ≥ 2, is a simple polytope with N vertices, Vol(K) = 1,
k ∈ {0, 1, ..., d− 1},

lim
n→∞

Varfk(Kn)

(log n)(d−1)
= νk,d ·N.

· Kn is Gaussian polytope:

lim
n→∞

Varfk(Kn)

(log n)(d−1)/2
= vk,d.

· Calka, Schreiber and Y (2013); Calka and Y (2014,2015,2017)
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III Fluctuations of convex hull boundaries

· Kn: convex hull of n i.i.d. uniform points in the unit ball Bd. Re-scale to
get: nKn.

· The boundary ∂(nKn) is a random interface. As n increases, new
points appear, creating new faces which subsume existing faces.

Maximal radial fluctuation: width of minimal annulus which contains
∂(nKn). It is a measure of maximal local roughness.

Maximal longitudinal fluctuation: maximal diameter of faces in ∂(nKn).
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III Fluctuations of convex hull boundaries

· Much is known concerning the fluctuations of dynamic and equilibrium
systems.
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III Fluctuations of convex hull boundaries

· For a planar object or planar system of linear scale n, there is known or
believed to be:

· Roughness of order n1/3, i.e. radial fluctuations are of this order.

· Longitudinal correlation length of order n2/3, which may be
interpreted as the typical length of an edge in the convex hull of the
extreme points of the considered object.

· In such instances the object is said to exhibit 1
3 ,

2
3 scaling.

· Planar models exhibiting 1
3 ,

2
3 scaling are ubiquitous. The corner growth

model is one example.

· The convex hull boundary is another example.
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III Fluctuations of convex hull boundaries

· Maximal radial (transversal) fluctuation MRF (nKn): width of
minimal annulus which contains ∂(nKn).

· Maximal longitudinal fluctuation MLF (nKn): maximal diameter of
faces in ∂(nKn).

· d = 2: We obtain order of growth of fluctuations, up to logarithmic
precision.

MRF (nKn)

n1/3(log n)2/3
= Θ(1) a.s.,

MLF (nKn)

n2/3(log n)1/3
= Θ(1) a.s.

· The convex hull boundary exhibits 1
3 ,

2
3 scaling. Is this a coincidence?

· d ≥ 3: We also obtain order of growth of fluctuations, up to logarithmic
precision.
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III Fluctuations of convex hull boundaries, general case Bd

· Maximal radial fluctuation MRF (nKn): width of minimal annulus
which contains ∂(nKn).

· Maximal longitudinal fluctuation MLF (nKn): maximal diameter of
faces in ∂(nKn).

· We obtain order of growth of fluctuations, up to logarithmic precision:

MRF (nKn) = Θ(nχ(d)(log n)2/(d+1)) a.s.,

MLF (nKn) = Θ(nξ(d)(log n)1/(d+1)) a.s.,

where χ(d) := d−1
d+1 , ξ(d) := d

d+1 satisfy the relation

χ = 2ξ − 1.
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III Fluctuations of convex hull boundaries; Bd

· Another model where one observes similar fluctuations:

· Brownian motion with parabolic drift:

x 7→ B(x)− x2

t
.

· How does Brownian motion with parabolic drift fluctuate with respect to
its convex hull?
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III Fluctuations of convex hull boundaries; Bd

· Hammond: The facet length L of the convex hull may be identified as
the horizontal scale above which parabolic curvature is dominant and
below which Brownian fluctuation dominates.

· The scale of L may be identified by equating the two effects: Brownian
fluctuation ∼ parabolic curvature, i.e.

L1/2 ∼ L2

t
, i.e., L ∼ t2/3.
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III Fluctuations of convex hull boundaries; Bd

· The facet length of the convex hull scales like t2/3.

· The inward deviation (local roughness) of the BM from its convex hull
scales like t1/3.

Joe Yukich Convex Hulls of Random Point Sets Based on joint work with Pierre Calka (Rouen) 34 / 75



III Fluctuations of convex hull boundaries; Bd

Four characteristics of the KPZ universality class:

an exponent of 2/3 on the spatial scale

an exponent of 1/3 for the scale of height

interfaces which are locally Brownian

as well as globally parabolic.

· The above Brownian model has all four of these characteristics.
· The boundary of the convex hull of an i.i.d. sample appears to have only
three of these characteristics.
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III Fluctuations of convex hull boundaries, general case Bd

· Maximal radial fluctuation MRF (nKn): width of minimal annulus
which contains ∂(nKn).

· Maximal longitudinal fluctuation MLF (nKn): maximal diameter of
faces in ∂(nKn).

· The order of growth of fluctuations are a corollary to a more precise
growth result.
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III Fluctuations of convex hull boundaries; Bd

· Given i.i.d. random variables X1, ..., Xn, it is of interest to compute the
distribution of maximum, Mn := maxi≤nXi. One limit distribution is

lim
n→∞

P
(
Mn − an

bn
≤ t
)

= e−e
− t−a

b , t ∈ (−∞,∞),

the Gumbel distribution.

· It is difficult to obtain the distribution of the maximum of random
variables with spatial correlations.

· The diameters of faces of the convex hull are spatially correlated. So are
the radial distances between each face and the boundary of Bd.
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III Fluctuations of convex hull boundaries

· The maximal radial fluctuation MRF (nKn) satisfies a Gumbel extreme
value result, i.e., as n→∞

P

(
c0

(
MRF (nKn)

n(d−1)/(d+1)

) d+1
2

− c1 log n− c2 log(log n)− c3 ≤ t

)
→ e−e

−t
, t ∈ (−∞,∞).

· The maximal diameter of the faces MLF (nKn) also satisfies a Gumbel
extreme value result, but with different scaling.
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IV Scaling limit of convex hull boundaries

· What is the scaling limit of the boundary of the convex hull?

· Let’s start with the case of i.i.d. uniform points in the unit ball.
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IV Scaling limit of convex hulls

· The convex hull of 100 points which are i.i.d. uniform in the unit ball:
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IV Scaling limit of convex hulls

· The convex hull of 500 points which are i.i.d. uniform in the unit ball:

What is the scaling limit of the convex hull boundary?
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IV Scaling limits of convex hulls in unit ball

· Xn: i.i.d. uniform point set in unit ball of cardinality n.
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IV Scaling limits of convex hulls in unit ball

· Parabolic geometry: y ∼ x2/2 near the south pole.
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IV Scaling limits of convex hulls in unit ball

· The geometry of the unit ball near the boundary is ‘parabolic’.

· Thus any reasonable transformation of the unit ball into rectangular
coordinates should be such that its scaling in radial direction is the square
of scaling in angular direction.
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IV Scaling limits of convex hulls in unit ball

· Given an i.i.d. point set Xn of size n, we assert that there is a transform

T (n) : Bd → Rd−1 × R+

which produces the following picture:

· T (n) carries the boundary of the convex hull to the festoon of inverted
down quasi-paraboloids, which are translates of y = −x2

2 + o(1).

· What about the up quasi-paraboloids?
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IV Scaling limits of convex hulls in unit ball

T (n) carries the boundary of the convex hull to the festoon of inverted
down quasi-paraboloids. What about the up quasi-paraboloids?

Xn: i.i.d. point set in unit ball of cardinality n.

Definition. w0 ∈ T (n)(Xn) is extreme iff the up quasi-paraboloid in
Rd−1 × R+ with apex at w0 is not covered by the union of the up
quasi-paraboloids with apices at T (n)(Xn) \ w0.

Key idea: a point in the left-hand figure is extreme iff it is carried to an
extreme point in the right-hand figure.
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IV Scaling limits of convex hulls in unit ball

Properties of the transform T (n) : Bd → Rd−1 × R+

(i) T (n) sends extreme pts to extreme pts

(ii) As n→∞, T (n) sends uniform samples of size n in Bd to a rate one
Poisson point process on Rd−1 × R+

(iii) As n→∞, T (n) sends the boundary of convex hull into the inverted
festoon of down-paraboloids (translates of y = −|x|2/2).

(iv) T (n) sends Sd−1 to a subset of Rd−1 having area n(d−1)/(d+1).
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IV Scaling limits of convex hulls in unit ball

Advantages to studying re-scaled picture:

(i) spatial dependencies are easier to localize in re-scaled picture

(ii) the space correlations decay exponentially fast wrt distance. This leads
to asymptotic independence and a CLT for the number of extreme points.

(iii) the scaling limit of the convex hull boundary is the festoon of
inverted down-paraboloids.
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IV Scaling limits of convex hulls: scaling transform T (n)

· What is the transformation T (n) : Bd 7→ Rd−1 × R+ which does the job?

· For d = 2 we require this transformation:

(r, θ) 7→ (n1/3θ, n2/3(1− r)).

· For d > 2: use the inverse of the exponential map.
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IV Scaling limits of convex hulls: scaling transform T (n)

· For d > 2: use the inverse of the exponential map to measure the angle
with respect to north pole.

· Tan: tangent space to Sd−1 at the north pole u0 = (0, 0, ..., 1).

· Exponential map exp : Tan→ Sd−1 maps a vector v ∈ Tan to the point
u ∈ Sd−1 lying at the end of the geodesic of length |v| starting at u0 and
having direction v.

· Use scaling transform T (n) : Bd 7→ Rd−1 × R+:

T (n)(x) :=

(
n

1
d+1 exp−1(

x

|x|
), n

2
d+1 (1− |x|)

)
, x ∈ Bd \ {0}.

· T (n) carries the sphere Sd−1 into a subset of Rd−1 of area n(d−1)/(d+1).
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IV Scaling limits of convex hulls in polytopes

· We are given an i.i.d. sample of points in the unit cube.

· We can likewise find a transform which:

(i) sends the points in [0, 1]d to points in the upper half-space Rd−1 ×R+,

(ii) sends the boundary of the convex hull to a limit shape similar to the
parabolic festoon.
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IV Scaling limits of convex hulls of Gaussian samples

· We are given an i.i.d. Gaussian sample X1, ..., Xn in Rd with standard
normal density

(2π)−d/2 exp(−|x|
2

2
), x ∈ Rd.

· We can find a transform T (n) which:

(i) sends the Gaussian sample to points in the product space Rd−1 × R,

(ii) as n→∞, sends the boundary of the convex hull of the Gaussian
sample to a limit parabolic festoon suspended on a Poisson point process
P with density proportional to the exponentiated height h above Rd−1,
namely the density is

dP((v, h)) = ehdhdv, (v, h) ∈ Rd−1 × R.
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IV Scaling limits of convex hulls of Gaussian samples

· We are given an i.i.d. Gaussian sample X1, ..., Xn in Rd with standard
normal density

(2π)−d/2 exp(−|x|
2

2
), x ∈ Rd.

· We find a good transform by first scaling the Gaussian points so that
nearly all of them are inside the unit ball. In d = 2, we re-scale by Rn,
where

Rn :=
√

2 log n− log(2 · (2π)2 · log n).

What is the transformation T (n) : Rd 7→ Rd−1 × R which does the job?

· For d = 2 we require this transformation:

(r, θ) 7→
(
Rnθ,R

2
n(1− r

Rn
)

)
.
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IV Scaling limits of convex hulls of Gaussian samples

· Scaling limit of the convex hull of a Gaussian sample of size n, n→∞:

· Scaling limit (green festoon) consists of translates of the down parabola

y = −|x|2
2 . It is suspended on points of the limit Poisson point process P

with density

dP((v, h)) = ehdhdv, (v, h) ∈ Rd−1 × R.

· Blue points correspond to the limiting extreme points (vertices) of the
convex hull.
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V Proof ideas

· We focus on proof techniques for k-face functional of the convex hull of
an i.i.d. uniform sample in the unit ball.

· Some of the ideas can be used for convex hull of i.i.d. samples in
hypercubes and for Gaussian samples.
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V Proof ideas

Properties of the transform T (n) : Bd → Rd−1 × R+

(i) As n→∞, T (n) sends the boundary of convex hull into the inverted
festoon of down-paraboloids suspended on the points of a rate one Poisson
point process on Rd−1 × R+.

(ii) T (n) transforms the (d− 1)-dimensional faces of the convex hull Kn

into subsets of inverted quasi down-paraboloids, all of which are translates

of y = − |x|
2

2 + o(1).
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V Proof ideas

(iii) The vertices of Kn , being the intersection of d hyperplanes of
dimension d− 1, are transformed by T (n) into the intersection of d
inverted quasi down-paraboloids. Extreme points mapped to extreme
points and k-faces mapped to k-faces.

· If w ∈ X (n) is extreme, then for all k ∈ {0, 1, ..., d− 1} we put

ξ
(n)
k (w,X (n)) =

1

k + 1
(card(k-faces in festoon which contain w))
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V Proof ideas

· If w ∈ X (n) is extreme, then for all k ∈ {0, 1, ..., d− 1} we put

ξ
(n)
k (w,X (n)) =

1

k + 1
(card(k-faces in festoon which contain w))

· If w ∈ X (n) is not extreme, then set ξ
(n)
k (w,X (n)) = 0.

· The number of k-faces in the festoon is given by∑
w∈X (n)

ξ
(n)
k (w,X (n))

and this coincides with the number of k-faces in the convex hull Kn.
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V Proof ideas

· We claim that the geometry in the right hand picture localizes. In other
words, the extremality status of a transformed point in right hand picture
is determined by ‘local data’, i.e., data in a cylindrical neighborhood of
that point.

· We make this rigorous as follows.
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V Proof ideas

· For w ∈ Rd−1×R+ and r > 0, let Cr(w) be the cylinder of radius r with
vertical axis through w.

Stabilization radius for ξ
(n)
k : given w ∈ X (n), there is R := R(w,X (n))

such that for all k ∈ {0, 1, ..., d− 1}

ξ
(n)
k (w,X (n) ∩ CR(w)) = ξ

(n)
k (w, (X (n) ∩ CR(w)) ∪ A)

for any point set A ⊂ CR(w)c.

· Moreover, the random variable R has an exponentially decaying tail, i.e.,

the scores ξ
(n)
k (w,X (n)) are exponentially stabilizing. This is a non-trivial

but essential observation.
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V Proof ideas

· The number of k-faces in the festoon is given by∑
w∈X (n)

ξ
(n)
k (w,X (n))

and this coincides with the number of k-faces in the original convex hull.

· Thus we have represented the k-face statistic as a sum of scores which
are exponentially stabilizing. Heuristically, since the spatial dependence of
the scores is well controlled, the sum of the scores should behave like a
sum of i.i.d random variables.

· Large literature on the limit theory for sums of stabilizing scores.
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VI Further results: variance asymptotics

· The number of k-faces in the festoon is given by∑
w∈X (n)

ξ
(n)
k (w,X (n))

and this coincides with the number of k-faces in the convex hull.

· Weak law of large numbers: K the unit ball, d ≥ 2,

lim
n→∞

E fk(Kn)

n(d−1)/(d+1)
= cd,k.

· Variance asymptotics?
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VI Further results: variance asymptotics

· Define a limit k-face functional as follows.

· If w ∈ X (n) is extreme, then for all k ∈ {0, 1, ..., d− 1} we recall

ξ
(n)
k (w,X (n)) =

1

k + 1
(card(k-faces in festoon which contain w))

· Denote by ξ
(∞)
k (·,P) the limit k-face functional operating on the limit

PPP P.
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VI Further results: variance asymptotics

· A generic point w in Rd−1 × R+ is given by w = (v, h).

· ξ(∞)
k is the limit k-face functional operating on the limit PPP P.

Definition. For all w1, w2 ∈ Rd−1 × R+ and all k ∈ {0, 1, ..., d− 1}, put

cξ
(∞)
k (w1, w2) := E ξ(∞)

k (w1,P ∪ {w2})ξ(∞)
k (w2,P ∪ {w1})

− E ξ(∞)
k (w1,P)E ξ(∞)

k (w2,P),

σ2(ξ
(∞)
k ) :=

∫ ∞
0

E ξ(∞)
k ((0, h1),P)2dh1

+

∫ ∞
0

∫
Rd−1

∫ ∞
0

cξ
(∞)
k ((0, h1), (v2, h2))dh1dv2dh2.

The triple integral is finite because of asymptotic de-correlation and

because ξ
(∞)
k decays exponentially fast in height.
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VI Further results: variance asymptotics

· The number of k-faces in the festoon is given by∑
w∈X (n)

ξ
(n)
k (w,X (n))

and this coincides with the numer of k-faces in the convex hull Kn.

· Variance asymptotics: If K the unit ball, d ≥ 2, then

lim
n→∞

Varfk(Kn)

n(d−1)/(d+1)
= σ2(ξ

(∞)
k ) ∈ (0,∞).

· Schreiber, Calka, Y.

Joe Yukich Convex Hulls of Random Point Sets Based on joint work with Pierre Calka (Rouen) 65 / 75



VI Further results: CLT

· Rates of asymptotic normality for k-face functional.

Theorem (LSY, 2019): For all k ∈ {0, 1, ..., d− 1} we have

sup
t

∣∣∣∣∣P
(
fk(Kn)− E fk(Kn)√

Varfk(Kn)
≤ t

)
− P(N ≤ t)

∣∣∣∣∣ = O

(
1√

Varfk(Kn)

)
,

where N denotes a mean zero normal random variable with variance one.

· RHS is of order

O

(
1

n(d−1)/2(d+1)

)
.
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VI Further results: CLT

· Rates of asymptotic normality for k-face functional.

Theorem (LSY, 2019): For all k ∈ {0, 1, ..., d− 1} we have

sup
t

∣∣∣∣∣P
(
fk(Kn)− E fk(Kn)√

Varfk(Kn)
≤ t

)
− P(N ≤ t)

∣∣∣∣∣ = O

(
1√

Varfk(Kn)

)
,

where N denotes a mean zero normal random variable with variance one.

· RHS is of order

O

(
1

n(d−1)/2(d+1)

)
.

Joe Yukich Convex Hulls of Random Point Sets Based on joint work with Pierre Calka (Rouen) 66 / 75



VI Further results: CLT

· What is the advantage to re-scaling and using the transform T (n) ?

· If we are only interested in CLT, then re-scaling via T (n) is not required
in order to see that the scores localize.

· But if we want second order results (variance asymptotics), then
re-scaling is needed. Likewise, re-scaling needed in order to find scaling
limit of boundary of convex hull (green festoon).
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VI Further results: Brownian limits

· Exponential map exp : Tan→ Sd−1 maps a vector v ∈ Tan to the point
u ∈ Sd−1 lying at the end of the geodesic of length |v| starting at north
pole and having direction v.

· Def. For any σ2 let Bσ2
be the Brownian sheet with variance coefficient

σ2 on the injectivity region of the exponential map. That is to say Bσ2
is

the mean zero continuous Gaussian path process indexed by Rd−1 with

cov(Bσ2
(v),Bσ2

(w)) = σ2 · σd−1(exp([0, v] ∩ [0,w])),

where σd−1 is the (d− 1)-dimensional surface measure on Sd−1.
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VI Further results: Brownian limits

· Let Vn(v), v ∈ Rd−1, be the volume between ∂Kn and
Sd−1 ∩ exp([0, v]). There is a σ2 such that in C(Rd−1)

n(d+3)/2(d+1)(Vn(·)− EVn(·)) D−→ Bσ2
, n→∞.

· The variance scales like n−(d+3)/(d+1).

· There are ∼ n(d−1)/(d+1) facets, each facet contributes a defect volume
having variance equal to the square of the product of facet area
n−(d−1)/(d+1) and defect height n−2/(d+1).
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VI Further results: Convex hull peeling

· The process of sorting a set of sample points X ⊂ Rd into convex layers
is called convex hull peeling or convex hull ordering.

· Convex peeling of X ⊂ Rd: Consider the nested sequence of closed
convex sets defined by L1(X ) = conv(X ) and

L2 = conv(X ∩ int(L1(X )))

Ln+1 = conv(X ∩ int(Ln(X ))),

where conv(X ) is the convex hull of X and int(L) is the interior of L.

· Note Ln+1 ⊂ Ln for all n = 1, 2, ... The difference Ln \ Ln+1 is called a
‘peel’.
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VI Further results: Convex hull peeling

· This peeling procedure will eventually exhaust the entire dataset.

· The first 10 peels of data sets of 105 i.i.d. uniform points in three
different planar regions:
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VI Further results: Convex hull peeling

· The scaling transform which we used to study the first layer could also be
used to study the second, third, etc. layers.

· This transform gives expectation asymptotics, variance asymptotics,
central limit theorems and scaling limits for the number of points in the
kth layer.
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VI Further results: Convex hull peeling

· Convex hull peeling depth:

hX (x) =
∑
n≥1

1(x ∈ int(Ln(X ))).

· What is the shape of hX for random finite sets X ⊂ Rd?

· Dalal (2004): There is a constant C > 0 such that, if Xn ⊂ Rd consists
of n points chosen independently and uniformly at random from the unit
ball, then

C−1n2/(d+1) ≤ E [maxhXn ] ≤ Cn2/(d+1).
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VI Further results: Convex hull peeling

· Dalal (2004): There is a constant C > 0 such that, if Xn ⊂ Rd consists
of n points chosen independently and uniformly at random from the unit
ball, then

C−1n2/(d+1) ≤ E [maxhXn ] ≤ Cn2/(d+1).

· The re-scaled height functions n−2/(d+1)hXn converge almost surely:

n−2/(d+1)hXn(x)→ α(
d+ 1

2d
)(1− |x|2d/(d+1)).

· Calder and Smart (2020): When the underlying points in Xn ⊂ Rd have
a density f then the rescaled height functions n−2/(d+1)hXn converge to
the solution of a PDE involving f .
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THANK YOU
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