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Discrete Hessian
‘ \ W 4

e Unit rhombi come In the above three orientations. The
discrete Hessian is a map from the set of unit rhombi to

the reals.

* For a given unit rhombus, with the above labels (denoting
values that the hive takes), the Hessian evaluated on the
corresponding rhombus, is b + d — a — ¢ in each case.



Connection to
representation theory
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Connection to
representation theory

* The number of integer valued concave functions (also
called hives) on a equilateral lattice on an equilateral

triangle of side n with fixed boundary conditions count
Littlewood-Richardson coefficients C/’{ , which are

Clebsch-Gordon coefficients correspoﬁding to the group
GL, (C) (Knutson-Tao 1999).

V, & Vﬂ =@, C/’{ﬂVU




Connection to statistical
physics

* Height functions of random tilings.

 The gradients of a random concave function measured at
the centers of the unit triangles form the vertices of a
random hexagonal tiling of the plane.
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Littlewood-Richardson
coefficients and mosaics

Kevin Purbhoo - Puzzles, Tableaux and mosaics




Lozenge tilings
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Connection to random
matrices

e The volume of the polytope Pj"
. . I’llul’l . . .
of all real hives is equal, up to known multiplicative factors
involving Vandermonde determinants, to the probability

density of obtaining a Hermitian matrix with spectrum v,
when two independent Haar random Hermitian matrices

with spectra A, 4, are added (Knutson-Tao 2003).



Spectrum of the sum of two
random matrices
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Density of the Marginals of random augmented hives along the diagonal give
the density of the spectrum of the sum of two random matrices
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Large deviation principle for the spectrum
of the sum of two independent Haar
random matrices.

e Let {Pn} be the seguence of Borel probability measures
on L~((0,1]), supported on the set of Lipschitz concave
functions that are zero on the endpoints, defined by
piecewise linear extensions of ¥n — spec(Xn + Yn), where
Xn and Yx» are independent and Haar random with
spec(Xn) = An gnd spec(Yn) = tin
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Large deviation principle for the spectrum
of the sum of two independent Haar
random matrices.

0, 1]

e Here )\7 :u are strongly decreasing, bounded on [ and integrate to O

mn mn

i/n
)\n(l) _ nfﬁ . ,Un(z) = n[l 2z

o A(z)—=A(y)
. V(A) := exp (fT\{(t,t)|te[o,1]} log ( = J ) d:):dy) .

e Let the rate function I at y such that Dy = v be given by

inf /Ta((—l)(VQh)ac)Lebg(dx).

I(7) = log <V(V)V(T) heH(\, ;)
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Large deviation principle for the spectrum
of the sum of two independent Haar
random matrices.

e Main Theorem:

e [Letidn = n2/ 2. For each Borel measurable set
E C L*(]0,1]),
— inf I(v) <liminfa; 'log(P,(F)) < limsupa, *log(P,(E)) < — inf I(y).

yek©° n— oo n— 00 ~YEE
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Periodic Hessians

« Consider the polytope P, (s) of mean zero functions on a
discrete torus obtained from a fundamental domain of the

equilateral lattice generated by unit vectors u and v in two
dimensional euclidean space, of functions, whose
discrete Hessians are dominated by ° — (S0, 51, 2), This is

a polytope of dimension n> — 1.
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Volume of P, (s)

* Suppose § = (807 S1; 82) and that 2 = so < s1 < $2.

 We see that any mean zero function on the discrete torus

taking values in [—1/2,1/2] belongs to P, (s), which

therefore contains a central section of the unit cube. By a
result of J. Vaaler, any central section of the unit cube has

volume at least 1. Therefore | P (s)| > 1.
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 The marginals of log-concave densities are log-concave,
as a consequence of the Prekopa-Leindler inequality.
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e Using differential entropy, we show that
!
lim sup | P, (s)|-1 < 2e.

n— oo
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Volume of P, (s)

e \We thus have
1 1
] <liminf|P,(s)|=-1 < lim sup |P,(s)|2-1 < 2e.

n— oo

n— Qoo

1
» We show that as a function of n, | P (s)|»*-1 is

“approximately” monotonically increasing, and this tells
1
usthat lim | P (s)|=2-1 € [1,2¢e].

n—oo
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Convex geometry

e Let K and L be compact convex subsets of R", where
m > 1. The Brunn-Minkowski inequality states that

K+ L|"> |K|7"+ |L[".

Minkowski Sum
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In the periodic case

* By the Brunn-Minkowski Inequality, the volumes of
parallel d-dimensional sections of a convex body raised
to d—! define a concave function.

 Consequently, f.(s) == |Pn(s)| "1 is a concave function
of s.
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* Proof idea:

e Partition into small
squares K € Dy

and triangles separated

by four or five layer
boundaries. Fix the values of

the hive on the boundaries.
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Lemma relating the discrete
to the continuous

Lemma:
Let"f‘ := Leba(kx), and K be the interior of K. For any fixed
R
hoe U HOmv),
v'€B1(v,e)
such that
inf min ((—1)D;hy)ae > 0,
T 0<i<2
Then,

lim _exp <§2; k|0 ((1)/{1/%V2h*(da:))> — exp (-/ 0((—1)(V2h*(x))aC)Lebg(d:U)>.

T
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Proof

e Let fu C F be the o—field generated by all possible
events x where s belongs to the set D of all dyadic

triangles or dyadic squares of side length 27% contained in
T, the x being half-open.

e Lot X(@) = (= V2h)ae(w) and Xa = E[X|Fa).

e |Let Y/Cb(w) — (2‘/{‘)_1(_v2h*)sing(/€>a-
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Proof

e Since o is convex, this implies that

° E[O—(Xa,—l—l + ?a—l—l)‘fa] > O-(XCL T S}a)? and so

10(Xa +Ya)}az1is a submartingale. Similarly {o(Xa)}ax1
IS a submartingale.

e A collection of random variables Xi,? € 1, is said to be
uniformly integrable if

lim (Sup *E(\XZ-|1X7:>M)> = 0.
M—oo \ 17
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Proof

* For a submartingale, the following are equivalent.
1. It is uniformly integrable.
2. It converges almost surely and in L.

* The logarithmic growth of -0 gives uniform integrability via a
criterion of de la Vallée Poussin, which together with an application
of tbe Leb~esgue differentiation theorem, gives us that as a — 00,

0(Xa+ Ya) converges almost surely and in L' to o(X). Thus,

lim_exp ( 3" Jklo ((1)51/V2h*(dw)>> — exp (—/TJ((—l)(VQh*(a:))ac)Lebg(da:)>.

KR
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Upper bound

 One dyadic square
with a four layer
boundary.

Use Brunn-Minkowski
for upper bound on
volume of the relevant

Polytope as follows.

w 1
1 1
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Upper bound

e emma;

Let t be a function from the rhombi of Tm to the nonnegative reals.

Let Qm (t) be the polytope consisting of the set of all functions
g:V(T,,) =R

2
such that g is zero mean and V=(g)(e) < t(e)

Suppose
Z t(e) = n’s;
eéEi(Tnl)
Then, in (t) S Pm (S)



Upper bound

Let s be the average | 11 / ) 1
lessian of any extension 1 K= e

to the interior. Then, [ L
Qn, ()] < [P, (3)]. 1 / %
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Lower bound

* The marginals of log-concave densities are log-concave, as a
consequence of the Prekopa-Leindler inequality.

e Fradelizi’s Theorem:

The value of a logconcave

density on R™ at its mean I

is at least exp(—n) times

the density at any other

point.
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Lower bound

e Assume the hive is

C? after smoothing.

}_L

Embed a large volume

section of P ()
Into the

relevant polytope.
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Definitions

- A@)—A(y)
V(A) = exp ( Jotceicroan 108 ( )2y ) dxdy) |

T =V exp ([ (-1 h)ac(o)Leba(ds)

* For

e H\ wv')

o |et

_ T(H)
) = ~log (w57




Lower bound in terms of '
hives

e Given a C" hive h € H()\a M V), let Ln(h) denote the point in
: . -th
Hyy (Ans 403 Vi) whose 2 coordinate is given by

9 n+1—i J ..
(Ln(h))ej == nh (P = 2) s oo and, 7 € [+ 1] such that
i+ <n+2.

e Lemma:

e Forany € > Uand h € H()HIW V)a

n—+1 ~
liminf (%) logP,, |hy, € BCSOQ ) (Lp(hs),n?€)| > — inf I (h).
n—00 B €Bao (ha.e)NH(A, 1)
h'—heH

heC?(T)
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Upper bound in terms of C°
hives

e | emma:

e Foranye >0 and hse € H(A, w5 v),

limsup (-%) log Py, | hy, € ngl) (L (hy),n?€) | < — inf I (h).

n— 00 h!€Boo (hy,e)NH (A, 1)
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Equality when \ and / are C'’

e [emma:
e Suppose X and H are C.

e Foranye > 0and he € H(A, p3v),

n—+1

§ 2 )1ogP,, |h,, B&f)th* 26| = — inf I (W),
lim (7z) log s (L (ha), n2e) wen i o I®)
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Large deviation principle for
hives when \ and M are C'*

Theorem:

Suppose X and & are C.

Let an = n°/2. For each Borel measurable set £ C L>(T),

-infpego I1(h) < liminf a,, ' log(P,(E)) < limsupa, ' log(P,(F)) < —inf, 5 I (h)

n—oo n— 0o
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Proof idea

We take a C* hive /

that minimises the rate
function and alter it very
slightly to obtain a

C? hive with a very /

similar rate function.
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Large deviation principle for the spectrum
of the sum of two independent Haar
random matrices.

e Let {Pn} be the seguence of Borel probability measures
on L~((0,1]), supported on the set of Lipschitz concave
functions that are zero on the endpoints, defined by
piecewise linear extensions of ¥n — spec(Xn + Yn), where
Xn and Yx» are independent and Haar random with
spec(Xn) = An gnd spec(Yn) = tin
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Large deviation principle for the spectrum
of the sum of two independent Haar
random matrices.

¢ Here A I are strongly decreasing, bounded on 0,1] and
integrate to 0.

A, () = nfﬁ | (1) = n[l H-

e Leto(s) = —logf(s).

o Let the rate function I at y such that Dy = v be given by

VOV |

- I(y) :==log (V(V)V(T) inf /TJ((—l)(Vzh)ac)Lebg(da:).

he H (A, p;v)
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Large deviation principle for the spectrum
of the sum of two independent Haar
random matrices.

e Theorem:

e [etdn = n2/ 2. For each Borel measurable set
E C L*(]0,1]),

— inf I(v) <liminfa; 'log(P,(F)) < limsupa, *log(P,(E)) < — inf I(y).

ye£®© Nn—00 n— 00 ~eE
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Open Problems
J(h) =V (') exp <—/Ta((—l)(VZh)ac(x))Lebg(dx)>

- J (1)
[1(h") := —log (v<,\§v<u>) .

e |Lemma:

e Foranye >0 and N« € H(A, p;v),

n—+1
5 2)10g P, hneBéoQ)th*,z < - inf I,.(h).
lgsogp(n ) log (Ln(hy),n%e) | < weno i o (W)

Question: Can the above inequality be replaced by an equality?
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Open problem: Exact
computation of surface tension

e Ultimately, we would like a closed form expression for f(s)
using which we would like to write down a PDE for the
scaling limit of a random augmented hive with given
boundary conditions, along the lines of Cohn-Kenyon-
Propp, “A variational principle for domino tilings.”

e Such a result would shed light on tilings, random
matrices, and asymptotic representation theory.
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Thank you for your
attention!



