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Cheat Sheet



One Slide Summary

- SIR models are useful for studying the spread of infections.

- Our work concerns a discrete-time SIR model and focuses on:
1. Active Infections: Confirmed cases minus recoveries.

2. Disease Extinction Time: Active infections become zero.
- Our analysis via novel stopping times is fundamentally different.
- Our results include:

1. Bounds for active infections and disease extinction time.

2. Estimate for the expected value of the largest epidemic size.



Background



SIR Models: Preliminaries

- The SIR model is an example of a compartment model.

- A fixed size population is divided into different compartments.
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- Arrows indicate how the status of an individual may change.

- X and v are parameters that control the rate of evolution.

- Two categories of SIR models: deterministic and stochastic.



Deterministic SIR Models

- First proposed by Kermack and McKendriek in 1927.
- Good if community is homogeneous and people mix uniformly.

- Described by ordinary differential equations:
. Sl . Si .

where n is the fixed population size.

- Two major issues:
1. No analytical estimates exist for active infections, i.e., I(t).

2. Early disease termination not possible as I(t) # 0 for finite t.



When are deterministic models insufficient?

- Inherent uncertainty in epidemic
- Community is small, e.g., school.

- Epidemic fails to start
- Large community, but outbreak started by few individuals.

- Noisy data
- Disease outbreak data has standard measurement errors.

- Early disease extinction
- Such questions are of interest.



Stochastic SIR Models

- Described via discrete/continuous time Markov chains or
stochastic differential equations.

- Major issue with Markov chain based models:

Complicated analysis via multiple approximations,
e.g., branching process for early and final stages, ODE for middle.



Our Model




Continuous-time Stochastic SIR Model

- Introduced by Barlett in 1949.
- Fixed population size: n

- There is an independent exp (A/(n — 1)) clock for each pair. Each
time a clock ticks, the corresponding pair meet.

- Mean waiting before individual i meets another person is 1/A.

- An infected person recovers in exp () time, independently.

. . A mean recovery time
- Basic reproduction number Rg = = = — y - )
¥ mean walting time




Discrete-time Stochastic SIR Model

- Atjumpt >0,

St : Susceptibles | I; : Infected R: : Recovered

. /t =0 ImplleS lt+j = O, SH_] = St, and Rt+j = Rt.

- Suppose I; > 0. Then, conditioned on the value of (S, It, Rt),

AS;
AS; —|—7(n — 1)
v(n=1)
AS; +’y(r7 - 1)

(St—‘l,/[+’|7RI) W.p.
(Stv lt7 Rt) —
(St, It — 1L,Re+1) w.p.



Our Approach



Key Idea

- We do not try to directly estimate the value of I; for all t.

- Instead, propose new stopping times (T;) and focus on Ir,.



Stopping Times T; and T,,.x

* Tmax = min{t > 0: Iy = 0}.

- To = 0.
cTi=min{t>0:5 =S50 —1i}.
+ 77 = min{Tj, Tmax }-

- Since Thax < 00, We have 7; < co a.s.



Usefulness of 7;

- Suppose I, > 0. Then, ; =T;and S;; = Sp — I.

- Between 7; and 7i,q, one and only one of the following could
occur:

1. there are a bunch of recoveries followed by an infection.

2. all I, infected people recover.
- At each recovery, the value of S; does not change from Sg — .

- Recoveries between 7; and 7,4 is a truncated geometric random
variable with parameter 1/q;, where g; = 1+ Rio (nﬁ,‘;_,.) .

- Truncation is needed since recoveries cannot exceed /.



Our Results




Expected Number of Active Infections

Theorem
Foranyt e {0,...,So0},

t—1
1 n—1
Ell-, — o] = [1 o (n - ’ﬂ P(Tit1 < Tmaxl -

i=0
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Early Termination Bounds (lo = 1)

Theorem

- Suppose 0 <i<(n-3)/2and ¢ =1/(Ro +1).
« P{T; > Tmax} > C.
< Ifv/(y + A) < 0.0654, then
P{T; > Trmax} < 2.9¢.
- Ifv/(v + A) <0.101, then

limsup P{T; > Tmax} < 1.38(.

n—oo



- If mean recovery period is 14 days, then v = 1/14 & 0.071.
- If the mean time for one to meet others is 0.5, then A = 2.
- ( &~ 0.034.

- The bound does not depend on i.



Early Termination Bounds (ly > 1)

Theorem
Suppose Rg > 4 and 0 < i+ Iy < (n—1)/2. Then,

P{T; > Tmax} < Gre~%",

where ¢; = e'/3° /(1 —e~1/3%) and ¢, = 0.2/3.
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- The bound cie=% < 1 for Iy > 52.

- The bound does not depend on |.



Bounds for Active Infections (Ip > 1)

Theorem

- Suppose Ro > 4and 0 < i+ 1y <(n—1)/2.

- Forgi=1+ O(n”,o }) et;z,_Zqu,_O()

- Lete € (0,1) be such that

& = (2[i+ M=+ e, 2l +1—[1— e]u,') C 2o, 0).

« Then, for ¢4, ¢, as before and ¢; = 3 (1+ 1 In(2)),
B{(l,., — 1)) ¢ £} < e 4 e~ (= v) 4 = (A=),
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- & C[2—lg,00) implies that I, . > 0.

Tit

* I, > 0implies I, > 0 forallj € {0,...,j}.

TiH1



Proof Ideas




Early Termination Bounds

- Use coupling to show that, for k > 0 and &, ...,& C [2 — lp, 0),
k i
[0 - <)) =2 { (649 ) ec]

i=0 j=0

where H; ~ Geom(1/q;) are independent random variables

k k i
c P{Thi1 < Tmax} =P [ﬂ{lﬂ+1 > 2}} >1— ZIP’{ > Hi > i+/o}
i=0

i—o j=o0

- Use bounds for sums of geometric variables from [Janson “14].



Bounds for Active Infections

For & C [2 — lp, 00),

P{(l7,, — I) €&} = }P’HT,- < Tmax} N {<i+1 - Zi:Hj) € 8,-”.

j=0
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Early Termination Bounds (lo = 1)

start

o

™ goal
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Early Termination Bounds (lo = 1)

- Use direct counting to obtain a bound for P{T.x = R}.

* g — le = 2(S¢ — Se1) — 1.

* It—/o:Z(SO—St)ft.

*ATmax < Ti} ={St,.. > So — 1} = {Tmax < 2 + lo}.
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Expected Number of Active Infections

- LetX; = (S[, /t7 Rt)

- Suppose I, > 0. Then, forany T; <t < Tiy4,

1 n—1
Elltyr =Xt = (1 — =— | ————| | E|[St — Xt
[ler — el Xe] ( R {ﬂ—/o—l:|> [St = St4a|Xi]
: E[IT/JH - IT/] = (1 - Rio |:nﬁ701—/:|) E[STI _STI+1]'

-5, -S

i Tit1

= ]I[Ti+1 < Tmax]-
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Future Directions

- Extend the first early termination result to cover the case Iy = k.
- Obtain bounds for E[l,, — I,,] using estimates for P{T; < Trax}-

- Obtain estimates for expected time for disease extinction.
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