

Active Infections and Disease Extinction in the Stochastic SIR Model

Gugan Thoppe (IISc)

Collaborators: Gal Dalal (nVidia) and Balazs Szorenyi (Yahoo) *Event*: Bengaluru Probability Seminar *Date*: 12 Vaishakh 1943 **Cheat Sheet**

One Slide Summary

- SIR models are useful for studying the spread of infections.
- Our work concerns a discrete-time SIR model and focuses on:
 1. Active Infections: Confirmed cases minus recoveries.
 2. Disease Extinction Time: Active infections become zero.
- · Our analysis via novel stopping times is fundamentally different.
- Our results include:
 - 1. Bounds for active infections and disease extinction time.
 - 2. Estimate for the expected value of the largest epidemic size.

Background

SIR Models: Preliminaries

- The SIR model is an example of a compartment model.
- A fixed size population is divided into different compartments.

$$S \xrightarrow{\lambda} I \xrightarrow{\gamma} R$$

- Arrows indicate how the status of an individual may change.
- + λ and γ are parameters that control the rate of evolution.
- Two categories of SIR models: deterministic and stochastic.

Deterministic SIR Models

- First proposed by Kermack and McKendriek in 1927.
- · Good if community is homogeneous and people mix uniformly.
- Described by ordinary differential equations:

$$\dot{S}(t) = -\lambda \frac{SI}{n}, \qquad \dot{I}(t) = \lambda \frac{SI}{n} - \gamma I, \qquad \dot{R}(t) = \gamma I,$$

where n is the fixed population size.

- Two major issues:
 - 1. No analytical estimates exist for active infections, i.e., I(t).
 - 2. Early disease termination not possible as $I(t) \neq 0$ for finite t.

When are deterministic models insufficient?

- · Inherent uncertainty in epidemic
 - Community is small, e.g., school.
- Epidemic fails to start
 - Large community, but outbreak started by few individuals.
- Noisy data
 - Disease outbreak data has standard measurement errors.
- Early disease extinction
 - Such questions are of interest.

- Described via discrete/continuous time Markov chains or stochastic differential equations.
- Major issue with Markov chain based models:

Complicated analysis via multiple approximations, e.g., branching process for early and final stages, ODE for middle.

Our Model

Continuous-time Stochastic SIR Model

- Introduced by Barlett in 1949.
- Fixed population size: n
- There is an independent $\exp(\lambda/(n-1))$ clock for each pair. Each time a clock ticks, the corresponding pair meet.
- Mean waiting before individual *i* meets another person is $1/\lambda$.
- An infected person recovers in $\exp(\gamma)$ time, independently.

• Basic reproduction number
$$\mathcal{R}_0 = \frac{\lambda}{\gamma} = \frac{\text{mean recovery time}}{\text{mean waiting time}}.$$

Discrete-time Stochastic SIR Model

• At jump $t \ge 0$,

S _t : Susceptibles	I_t : Infected	R_t : Recovered
-------------------------------	------------------	-------------------

- $I_t = 0$ implies $I_{t+1} = 0$, $S_{t+1} = S_t$, and $R_{t+1} = R_t$.
- Suppose $I_t > 0$. Then, conditioned on the value of (S_t, I_t, R_t) ,

$$(S_t, I_t, R_t) \rightarrow \begin{cases} (S_t - 1, I_t + 1, R_t) & \text{w.p.} & \frac{\lambda S_t}{\lambda S_t + \gamma(n-1)} \\ (S_t, I_t - 1, R_t + 1) & \text{w.p.} & \frac{\gamma(n-1)}{\lambda S_t + \gamma(n-1)} \end{cases}$$

Our Approach

- We do not try to directly estimate the value of I_t for all t.
- Instead, propose new stopping times (T_i) and focus on I_{T_i} .

Stopping Times T_i and T_{max}

- $T_{\max} = \min\{t \ge 0 : I_t = 0\}.$
- $T_0 = 0$.

•
$$T_i = \min\{t \ge 0 : S_t = S_0 - i\}.$$

- $\tau_i = \min\{T_i, T_{\max}\}.$
- Since $T_{\max} < \infty$, we have $\tau_i < \infty$ a.s.

Usefulness of τ_i

- Suppose $I_{\tau_i} > 0$. Then, $\tau_i = T_i$ and $S_{\tau_i} = S_0 i$.
- Between τ_i and τ_{i+1} , one and only one of the following could occur:
 - 1. there are a bunch of recoveries followed by an infection.
 - 2. all I_{τ_i} infected people recover.
- At each recovery, the value of S_t does not change from $S_0 i$.
- Recoveries between τ_i and τ_{i+1} is a truncated geometric random variable with parameter $1/q_i$, where $q_i = 1 + \frac{1}{\mathcal{R}_0} \left(\frac{n-1}{n-l_0-i} \right)$.
- Truncation is needed since recoveries cannot exceed I_{τ_i} .

Our Results

Theorem

For any $t \in \{0, \ldots, S_0\}$,

$$\mathbb{E}[I_{\tau_t}-I_0] = \sum_{i=0}^{t-1} \left[1-\frac{1}{\mathcal{R}_0}\left(\frac{n-1}{n-I_0-i}\right)\right] \mathbb{P}\left[T_{i+1} \leq T_{\max}\right].$$

Early Termination Bounds $(I_0 = 1)$

Theorem

• Suppose $0 \le i \le (n-3)/2$ and $\zeta = 1/(\mathcal{R}_0 + 1)$.

•
$$\mathbb{P}\{T_i \geq T_{\max}\} \geq \zeta.$$

• If
$$\gamma/(\gamma + \lambda) \leq$$
 0.0654, then

$$\mathbb{P}\{T_i \geq T_{\max}\} \leq 2.9\zeta.$$

• If $\gamma/(\gamma + \lambda) \leq$ 0.101, then

$$\limsup_{n\to\infty} \mathbb{P}\{T_i \ge T_{\max}\} \le 1.38\zeta.$$

- If mean recovery period is 14 days, then $\gamma = 1/14 \approx 0.071$.
- If the mean time for one to meet others is 0.5, then $\lambda = 2$.
- $\zeta \approx 0.034.$
- The bound does not depend on *i*.

Theorem

Suppose $\mathcal{R}_0 \ge 4$ and $0 \le i + I_0 \le (n - 1)/2$. Then,

$$\mathbb{P}\{T_i \geq T_{\max}\} \leq c_1 e^{-c_2 l_0},$$

where
$$c_1 = e^{1/30}/(1 - e^{-1/30})$$
 and $c_2 = 0.2/3$.

- The bound $c_1 e^{-c_2 I_0} \leq 1$ for $I_0 \geq 52$.
- \cdot The bound does not depend on *i*.

Bounds for Active Infections ($I_0 \ge 1$)

Theorem

• Suppose $\mathcal{R}_0 \ge 4$ and $0 \le i + I_0 \le (n-1)/2$.

• For
$$q_j = 1 + \frac{1}{\mathcal{R}_0} \left(\frac{n-1}{n-l_0-j} \right)$$
, let $\mu_i = \sum_{j=0}^i q_j = O(i)$.

• Let $\epsilon \in (0,1)$ be such that

$$\mathcal{E}_i := \left(2[i+1]-[1+\epsilon]\mu_i,\ 2[i+1]-[1-\epsilon]\mu_i\right) \subseteq [2-l_0,\infty).$$

• Then, for c_1 , c_2 as before and $c_3 = \frac{2}{3} \left(1 + \frac{\gamma}{\lambda} \ln(2)\right)$,

$$\mathbb{P}\{(I_{\tau_{i+1}}-I_{\tau_0})\notin \mathcal{E}_i\} \leq c_1 e^{-c_2 I_0} + e^{-c_3 i\epsilon \left(1-\frac{1}{\sqrt{1+\epsilon}}\right)} + e^{-c_3 i\epsilon \left(\frac{1}{\sqrt{1-\epsilon}}-1\right)}.$$

- $\mathcal{E}_i \subseteq [2 I_0, \infty)$ implies that $I_{\tau_{i+1}} > 0$.
- $I_{\tau_{i+1}} > 0$ implies $I_{\tau_j} > 0$ for all $j \in \{0, \ldots, j\}$.

Proof Ideas

Early Termination Bounds

• Use coupling to show that, for $k \ge 0$ and $\mathcal{E}_0, \ldots, \mathcal{E}_k \subset [2 - I_0, \infty)$,

$$\mathbb{P}\left[\bigcap_{i=0}^{k}\left\{\left(I_{\tau_{i+1}}-I_{\tau_{0}}\right)\in\mathcal{E}_{i}\right\}\right]=\mathbb{P}\left[\bigcap_{i=0}^{k}\left\{\left((i+1)-\sum_{j=0}^{i}H_{j}\right)\in C_{i}\right\}\right],$$

where $H_j \sim Geom(1/q_j)$ are independent random variables.

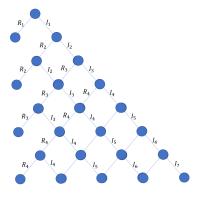
$$\cdot \mathbb{P}\{T_{k+1} < T_{\max}\} = \mathbb{P}\left[\bigcap_{i=0}^{k} \{I_{\tau_{i+1}} \ge 2\}\right] \ge 1 - \sum_{i=0}^{k} \mathbb{P}\left\{\sum_{j=0}^{i} H_{j} \ge i + I_{0}\right\}$$

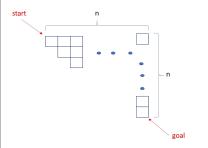
• Use bounds for sums of geometric variables from [Janson '14].

.

For
$$\mathcal{E}_i \subseteq [2 - I_0, \infty)$$
,
 $\mathbb{P}\{(I_{\tau_{i+1}} - I_{\tau_0}) \in \mathcal{E}_i\} = \mathbb{P}\left[\left\{T_i < T_{\max}\right\} \cap \left\{\left(i + 1 - \sum_{j=0}^i H_j\right) \in \mathcal{E}_i\right\}\right].$

Early Termination Bounds $(I_0 = 1)$





• Use direct counting to obtain a bound for $\mathbb{P}\{T_{\max} = k\}$.

•
$$I_{t+1} - I_t = 2(S_t - S_{t+1}) - 1.$$

•
$$I_t - I_0 = 2(S_0 - S_t) - t$$
.

• ${T_{\max} < T_i} = {S_{T_{\max}} > S_0 - i} = {T_{\max} < 2i + I_0}.$

Expected Number of Active Infections

• Let
$$X_t \equiv (S_t, I_t, R_t)$$
.

• Suppose
$$I_{\tau_i} > 0$$
. Then, for any $T_i \le t < T_{i+1}$,

$$\mathbb{E}[I_{t+1}-I_t|X_t] = \left(1-\frac{1}{\mathcal{R}_0}\left[\frac{n-1}{n-I_0-i}\right]\right)\mathbb{E}[S_t-S_{t+1}|X_t].$$

•
$$\mathbb{E}[I_{\tau_{i+1}} - I_{\tau_i}] = \left(1 - \frac{1}{\mathcal{R}_0}\left[\frac{n-1}{n-I_0-i}\right]\right)\mathbb{E}[S_{\tau_i} - S_{\tau_{i+1}}].$$

•
$$S_{\tau_i} - S_{\tau_{i+1}} = \mathbb{I}[T_{i+1} \leq T_{\max}].$$

- Extend the first early termination result to cover the case $I_0 = k$.
- Obtain bounds for $\mathbb{E}[I_{\tau_i} I_{\tau_0}]$ using estimates for $\mathbb{P}\{T_i \leq T_{\max}\}$.
- Obtain estimates for expected time for disease extinction.

