Excursion probabilities for Gaussian processes and fields

▶ $X = (X(t), t \in \mathbb{R}^d)$: real-valued continuous random field.

▶ $X = (X(t), t \in \mathbb{R}^d)$: real-valued continuous random field.

► Often: X stationary and/or Gaussian.

▶ $X = (X(t), t \in \mathbb{R}^d)$: real-valued continuous random field.

► Often: X stationary and/or Gaussian.

• $u \in \mathbb{R}$: a level;

the excursion set of **X** above the level *u*:

$$A_u = \left\{ \mathbf{t} \in \mathbb{R}^d : X(\mathbf{t}) \ge u \right\}.$$

► The structure of this random set?

Natural connection to important functionals of the field.

- The structure of this random set?
- Natural connection to important functionals of the field.
- ► The supremum functional: for a compact *K*:

$$A_u \cap K
eq \emptyset$$
 if and only if $\sup_{\mathbf{t} \in K} X(\mathbf{t}) \geq u$.

More delicate questions

More delicate questions

1. given that two points in \mathbb{R}^d belong to the excursion set A_u : what is the probability that they belong to the same connected component of the excursion set?

More delicate questions

- 1. given that two points in \mathbb{R}^d belong to the excursion set A_u : what is the probability that they belong to the same connected component of the excursion set?
- 2. given that a sphere belongs to the excursion set A_u , what is the probability that anywhere inside the ball the field is below ru, $0 < r \le 1$?

► Assume: **X** is Gaussian.

▶ The first step: the large deviations approach.

- Assume: X is Gaussian.
- The first step: the large deviations approach.
- ▶ **a**, **b** ∈ \mathbb{R}^d , **a** ≠ **b**. A path between **a** and **b**: a continuous map ξ : $[0,1] \rightarrow \mathbb{R}^d$ with $\xi(0) = \mathbf{a}, \xi(1) = \mathbf{b}$.

- Assume: X is Gaussian.
- The first step: the large deviations approach.
- ▶ **a**, **b** ∈ \mathbb{R}^d , **a** ≠ **b**. A path between **a** and **b**: a continuous map ξ : $[0,1] \rightarrow \mathbb{R}^d$ with $\xi(0) = \mathbf{a}, \xi(1) = \mathbf{b}$.
- $\triangleright \mathcal{P}(\mathbf{a}, \mathbf{b})$: the collection of such paths. Estimate

$$P\left(\exists \xi \in \mathcal{P}(\mathbf{a}, \mathbf{b}) : X(\xi(v)) > u, \ 0 \le v \le 1 \ \middle| \ X(\mathbf{a}) > u, \ X(\mathbf{b}) > u\right)$$

The non-trivial part of the problem: estimate the probability

$$\Psi_{\mathbf{a},\mathbf{b}}(u) := P\left(\exists \ \xi \in \mathcal{P}(\mathbf{a},\mathbf{b}) : \ X(\xi(v)) > u, \ 0 \le v \le 1\right).$$

The non-trivial part of the problem: estimate the probability

$$\Psi_{\mathbf{a},\mathbf{b}}(u) := P\left(\exists \ \xi \in \mathcal{P}(\mathbf{a},\mathbf{b}) : \ X(\xi(v)) > u, \ 0 \le v \le 1\right).$$

If the random field is stationary: assume that $\boldsymbol{b}=\boldsymbol{0},$ use the notation $\Psi_{\boldsymbol{a}}.$

The non-trivial part of the problem: estimate the probability

$$\Psi_{\mathbf{a},\mathbf{b}}(u) := P\left(\exists \ \xi \in \mathcal{P}(\mathbf{a},\mathbf{b}) : \ X(\xi(v)) > u, \ 0 \le v \le 1\right).$$

If the random field is stationary: assume that $\boldsymbol{b}=\boldsymbol{0},$ use the notation $\Psi_{\boldsymbol{a}}.$

If the domain of a random field is $T \subset \mathbb{R}^d$, and **a**, **b** in T:

 $\Psi_{\mathbf{a},\mathbf{b}}(u) = P\left(\exists \xi \in \mathcal{P}(\mathbf{a},\mathbf{b}):\, \xi(v) \in \mathcal{T} \text{ and } X(\xi(v)) > u, \ 0 \leq v \leq 1\right).$

An open set:

$$egin{aligned} A \equiv A_{\mathbf{a},\mathbf{b}} := \left\{ oldsymbol{\omega} \in C_0(\mathbb{R}^d): \ \exists \, \xi \in \mathcal{P}(\mathbf{a},\mathbf{b}), \ \omega(\xi(v)) > 1, \ 0 \leq v \leq 1
ight\} \end{aligned}$$

An open set:

$$egin{aligned} A \equiv A_{\mathbf{a},\mathbf{b}} &:= \left\{ oldsymbol{\omega} \in C_0(\mathbb{R}^d): \ \exists \, \xi \in \mathcal{P}(\mathbf{a},\mathbf{b}), \ \omega(\xi(v)) > 1, \ 0 \leq v \leq 1
ight\} \end{aligned}$$

$$C_0(\mathbb{R}^d) = \Big\{ \omega = (\omega(\mathbf{t}), \, \mathbf{t} \in \mathbb{R}^d) \in C(\mathbb{R}^d) : \lim_{\|\mathbf{t}\| \to \infty} \omega(\mathbf{t}) / \|\mathbf{t}\| = 0 \Big\}.$$

An open set:

$$A\equiv A_{\mathbf{a},\mathbf{b}}:=\left\{oldsymbol{\omega}\in C_0(\mathbb{R}^d):\ \exists\ \xi\in\mathcal{P}(\mathbf{a},\mathbf{b}),\ \omega(\xi(v))>1,\ 0\leq v\leq 1
ight\}$$

$$C_0(\mathbb{R}^d) = \Big\{ \boldsymbol{\omega} = (\boldsymbol{\omega}(\mathbf{t}), \, \mathbf{t} \in \mathbb{R}^d) \in C(\mathbb{R}^d) : \lim_{\|\mathbf{t}\| \to \infty} \boldsymbol{\omega}(\mathbf{t}) / \|\mathbf{t}\| = 0 \Big\}.$$

For u > 0:

$$\Psi_{\mathbf{a},\mathbf{b}}(u) = P(u^{-1}\mathbf{X} \in A).$$

An open set:

$$A\equiv A_{\mathbf{a},\mathbf{b}}:=\left\{oldsymbol{\omega}\in C_0(\mathbb{R}^d):\ \exists\ \xi\in\mathcal{P}(\mathbf{a},\mathbf{b}),\ \omega(\xi(\mathbf{v}))>1,\ 0\leq \mathbf{v}\leq 1
ight\}$$

$$C_0(\mathbb{R}^d) = \Big\{ \boldsymbol{\omega} = (\boldsymbol{\omega}(\mathbf{t}), \, \mathbf{t} \in \mathbb{R}^d) \in C(\mathbb{R}^d) : \lim_{\|\mathbf{t}\| \to \infty} \boldsymbol{\omega}(\mathbf{t}) / \|\mathbf{t}\| = 0 \Big\}.$$

For u > 0:

$$\Psi_{\mathbf{a},\mathbf{b}}(u) = P(u^{-1}\mathbf{X} \in A).$$

 Use the Gaussian large deviations theory: Deutschel and Stroock (1989).

The RKHS \mathcal{H} of **X**: a subspace of $C(\mathbb{R}^d)$.

The RKHS \mathcal{H} of **X**: a subspace of $C(\mathbb{R}^d)$.

1. Start with the space of finite linear combinations $\sum_{j=1}^{k} a_j X(\mathbf{t}_j) \ a_j \in \mathbb{R}, \ \mathbf{t}_j \in \mathbb{R}^d$ for $j = 1, \dots, k, \ k = 1, 2, \dots$

The RKHS \mathcal{H} of **X**: a subspace of $C(\mathbb{R}^d)$.

- 1. Start with the space of finite linear combinations $\sum_{j=1}^{k} a_j X(\mathbf{t}_j) \ a_j \in \mathbb{R}, \ \mathbf{t}_j \in \mathbb{R}^d$ for $j = 1, \dots, k, \ k = 1, 2, \dots$
- 2. \mathcal{L} : its closure in the mean square norm.

The RKHS \mathcal{H} of **X**: a subspace of $C(\mathbb{R}^d)$.

- 1. Start with the space of finite linear combinations $\sum_{j=1}^{k} a_j X(\mathbf{t}_j) \ a_j \in \mathbb{R}, \ \mathbf{t}_j \in \mathbb{R}^d$ for $j = 1, \dots, k, \ k = 1, 2, \dots$
- 2. \mathcal{L} : its closure in the mean square norm.
- 3. Identify \mathcal{L} with \mathcal{H} via the injection $\mathcal{L} \to C(\mathbb{R}^d)$:

$$H \to w_H = \left(E(X(\mathbf{t})H), \ \mathbf{t} \in \mathbb{R}^d \right)$$

The RKHS \mathcal{H} of **X**: a subspace of $C(\mathbb{R}^d)$.

- 1. Start with the space of finite linear combinations $\sum_{j=1}^{k} a_j X(\mathbf{t}_j) \ a_j \in \mathbb{R}, \ \mathbf{t}_j \in \mathbb{R}^d$ for $j = 1, \dots, k$, $k = 1, 2, \dots$
- 2. \mathcal{L} : its closure in the mean square norm.
- 3. Identify \mathcal{L} with \mathcal{H} via the injection $\mathcal{L} \to C(\mathbb{R}^d)$:

$$H \to w_H = \left(E(X(\mathbf{t})H), \ \mathbf{t} \in \mathbb{R}^d \right)$$

4. The resulting norm:

$$\|w_H\|_{\mathcal{H}}^2 = E(H^2).$$

The RKHS \mathcal{H} can be identified with the subspace of $L^2(F_{\mathbf{X}})$ of functions with even real parts and odd imaginary parts.

The RKHS \mathcal{H} can be identified with the subspace of $L^2(F_{\mathbf{X}})$ of functions with even real parts and odd imaginary parts.

The injection $L^2(F_{\mathbf{X}}) \to C(\mathbb{R}^d)$:

$$h o S(h) = \left(\int_{\mathbb{R}^d} e^{i(\mathbf{t},\mathbf{x})} \, \bar{h}(\mathbf{x}) \, F_{\mathbf{X}}(d\mathbf{x}), \, \, \mathbf{t} \in \mathbb{R}^d \right)$$

The RKHS \mathcal{H} can be identified with the subspace of $L^2(F_X)$ of functions with even real parts and odd imaginary parts.

The injection $L^2(F_{\mathbf{X}}) \to C(\mathbb{R}^d)$: $h \to S(h) = \left(\int_{\mathbb{R}^d} e^{i(\mathbf{t},\mathbf{x})} \bar{h}(\mathbf{x}) F_{\mathbf{X}}(d\mathbf{x}), \ \mathbf{t} \in \mathbb{R}^d \right).$

The resulting norm:

$$\|S(h)\|_{\mathcal{H}}^{2} = \|h\|_{L^{2}(F_{\mathbf{X}})}^{2} = \int_{\mathbb{R}^{d}} \|h(x)\|^{2} F_{\mathbf{X}}(d\mathbf{x}).$$

Theorem 1

Let $\mathbf{X} = (X(\mathbf{t}), \mathbf{t} \in \mathbb{R}^d)$ be a continuous stationary Gaussian random field, with covariance function satisfying

$$\limsup_{\|\mathbf{t}\| o \infty} R_{\mathbf{X}}(\mathbf{t}) = 0$$
 .

Theorem 1

Let $\mathbf{X} = (X(\mathbf{t}), \mathbf{t} \in \mathbb{R}^d)$ be a continuous stationary Gaussian random field, with covariance function satisfying

$$\limsup_{\|\mathbf{t}\| o \infty} R_{\mathbf{X}}(\mathbf{t}) = 0$$
 .

Then

$$\lim_{u\to\infty}\frac{1}{u^2}\log\Psi_{\mathbf{a}}(u)=-\frac{1}{2}\mathcal{C}_{\mathbf{X}}(\mathbf{a}),$$

Theorem 1

Let $\mathbf{X} = (X(\mathbf{t}), \mathbf{t} \in \mathbb{R}^d)$ be a continuous stationary Gaussian random field, with covariance function satisfying

$$\limsup_{\|\mathbf{t}\|\to\infty} R_{\mathbf{X}}(\mathbf{t}) = 0.$$

Then

$$\lim_{u\to\infty}\frac{1}{u^2}\log\Psi_{\mathbf{a}}(u)=-\frac{1}{2}\mathcal{C}_{\mathbf{X}}(\mathbf{a}),$$

with

$$\begin{split} \mathcal{C}_{\mathbf{X}}(\mathbf{a}) &:= \inf \left\{ \int_{\mathbb{R}^d} \|h(\mathbf{x})\|^2 \, F_{\mathbf{X}}(d\mathbf{x}) : \text{ for some } \xi \in \mathcal{P}(\mathbf{0}, \mathbf{a}) \\ \int_{\mathbb{R}^d} e^{i(\xi(v), \mathbf{x})} \, \bar{h}(\mathbf{x}) \, F_{\mathbf{X}}(d\mathbf{x}) \geq 1, \, \mathbf{0} \leq v \leq 1 \right\}. \end{split}$$
▶ The constraints in Theorem 1 are not convex.

The constraints in Theorem 1 are not convex.

For a fixed path, the constraints are convex, and one can use the convex Lagrange duality.

Theorem 2 For a continuous stationary Gaussian random field X,

$$\mathcal{C}_{\mathbf{X}}(\mathbf{a}) = \left[\sup_{\xi \in \mathcal{P}(\mathbf{0},\mathbf{a})} \min_{\mu \in M_1^+([0,1])} \int_0^1 \int_0^1 R_{\mathbf{X}}(\xi(u) - \xi(v)) \mu(du) \mu(dv)\right]^{-1}$$

The constraints in Theorem 1 are not convex.

For a fixed path, the constraints are convex, and one can use the convex Lagrange duality.

Theorem 2 For a continuous stationary Gaussian random field **X**,

$$\mathcal{C}_{\mathbf{X}}(\mathbf{a}) = \left[\sup_{\xi \in \mathcal{P}(\mathbf{0},\mathbf{a})} \min_{\mu \in M_1^+([0,1])} \int_0^1 \int_0^1 R_{\mathbf{X}}(\xi(u) - \xi(v)) \mu(du) \mu(dv)\right]^{-1}$$

 $M_1^+([0,1])$: the space of all probability measures on [0,1].

The constraints in Theorem 1 are not convex.

For a fixed path, the constraints are convex, and one can use the convex Lagrange duality.

Theorem 2 For a continuous stationary Gaussian random field X,

$$\mathcal{C}_{\mathbf{X}}(\mathbf{a}) = \left[\sup_{\xi \in \mathcal{P}(\mathbf{0},\mathbf{a})} \min_{\mu \in M_1^+([0,1])} \int_0^1 \int_0^1 R_{\mathbf{X}}(\xi(u) - \xi(v)) \mu(du) \mu(dv)\right]^{-1}$$

 $M_1^+([0,1])$: the space of all probability measures on [0,1].

An optimal path is a path of maximal R_X capacity.

Assume a path $\xi \in \mathcal{P}(\mathbf{0}, \mathbf{a})$ is fixed.

Assume a path $\xi \in \mathcal{P}(\mathbf{0}, \mathbf{a})$ is fixed.

The minimization problem

$$\min_{\mu \in M_1^+([0,1])} \int_0^1 \int_0^1 R_{\mathbf{X}}(\xi(u),\xi(v)) \,\mu(du) \,\mu(dv)$$

is the problem of finding a probability measures μ of minimal energy, or capacitory measures.

Assume a path $\xi \in \mathcal{P}(\mathbf{0}, \mathbf{a})$ is fixed.

The minimization problem

$$\min_{\mu \in M_1^+([0,1])} \int_0^1 \int_0^1 R_{\mathbf{X}}(\xi(u),\xi(v)) \,\mu(du) \,\mu(dv)$$

is the problem of finding a probability measures μ of minimal energy, or capacitory measures.

The set $W_{\xi} \subseteq M_1^+([0,1])$ of optimal measures: a weakly compact convex subset of $M_1^+([0,1])$.

Suppose the primary feasible set in

$$\inf \left\{ E(H^2): H \in \mathcal{L}, E[X(\xi(v))H] \ge 1, 0 \le v \le 1 \right\}$$

is non-empty.

Suppose the primary feasible set in

$$\inf \Big\{ E(H^2): \ H \in \mathcal{L}, \ Eig[X(\xi(v)ig)Hig] \geq 1, \ 0 \leq v \leq 1 \Big\}$$

is non-empty.

Then for every $\mu \in \mathcal{W}_{\xi}$:

$$\mu(\{0 \le v \le 1: E[X(\xi(v))H_{\xi}] > 1\}) = 0$$

for the unique primal optimal solution $H_{\xi} \in \mathcal{L}$.

If the primal feasible set is non-empty then, for every $\varepsilon > 0$:

$$P\left(\sup_{0\leq v\leq 1}\left|\frac{1}{u}X(\xi(v))-x_{\xi}(v)\right|\geq \varepsilon \left|X(\xi(v))>u,\,0\leq v\leq 1\right)\to 0$$

as $u \to \infty$.

If the primal feasible set is non-empty then, for every $\varepsilon > 0$:

$$P\left(\sup_{0\leq v\leq 1}\left|\frac{1}{u}X(\xi(v))-x_{\xi}(v)\right|\geq \varepsilon \left|X(\xi(v))>u,\,0\leq v\leq 1\right)\to 0$$

as $u \to \infty$.

Here

$$x_{\xi}(v) = E[X(\xi(v))H_{\xi}], \ 0 \leq v \leq 1.$$

Theorem 3

Theorem 3

(i) For every $\mu \in \mathcal{W}_{\xi}$:

$$H_{\xi} = \mathcal{C}_{\mathbf{X}}(\mathbf{a}, \mathbf{b}; \xi) \int_0^1 X(\xi(v)) \, \mu(dv)$$

with probability 1.

Theorem 3

(i) For every $\mu \in \mathcal{W}_{\xi}$:

$$H_{\xi} = \mathcal{C}_{\mathbf{X}}(\mathbf{a}, \mathbf{b}; \xi) \int_0^1 X(\xi(v)) \, \mu(dv)$$

with probability 1.

(ii) A probability measure $\mu \in M_1^+([0,1])$ is a measure of minimal energy if and only if

$$\begin{split} \min_{0 \le v \le 1} \int_0^1 R_{\mathbf{X}}(\xi(u), \xi(v)) \, \mu(du) \\ = \int_0^1 \int_0^1 R_{\mathbf{X}}(\xi(u_1), \xi(u_2)) \, \mu(du_1) \, \mu(du_2) > 0 \, . \end{split}$$

The function

$$v\mapsto \int_0^1 R_{\mathbf{X}}ig(\xi(u),\xi(v)ig)\,\mu(du),\,0\leq v\leq 1,$$

is constant on the support of any measure $\mu \in \mathcal{W}_{\xi}$.

The function

$$v\mapsto \int_0^1 R_{\mathbf{X}}ig(\xi(u),\xi(v)ig)\,\mu(du),\,0\leq v\leq 1,$$

is constant on the support of any measure $\mu \in \mathcal{W}_{\xi}$.

The support of any measure of minimal energy is not 'large'? Not always true!

The function

$$v\mapsto \int_0^1 R_{\mathbf{X}}ig(\xi(u),\xi(v)ig)\,\mu(du),\,0\leq v\leq 1,$$

is constant on the support of any measure $\mu \in \mathcal{W}_{\xi}$.

- The support of any measure of minimal energy is not 'large'? Not always true!
- If X is stationary, and the spectral measure is of the full support, the image of any μ ∈ W_ξ on the path ξ is unique.

There is, essentially, a single path between two points.

There is, essentially, a single path between two points.

 $\mathbf{X} = (X(t), t \in \mathbb{R})$: a stationary continuous Gaussian process.

There is, essentially, a single path between two points.

 $\mathbf{X} = (X(t), t \in \mathbb{R})$: a stationary continuous Gaussian process.

How does

$$\Psi_{a}(u) = P(X(t) > u, 0 \le t \le a)$$

change with a > 0?

There is, essentially, a single path between two points.

 $\mathbf{X} = (X(t), t \in \mathbb{R})$: a stationary continuous Gaussian process.

How does

$$\Psi_a(u) = P\Big(X(t) > u, 0 \le t \le a\Big)$$

change with a > 0?

What happens with the optimal probability measures μ_a ?

There is, essentially, a single path between two points.

 $\mathbf{X} = (X(t), t \in \mathbb{R})$: a stationary continuous Gaussian process.

How does

$$\Psi_a(u) = P(X(t) > u, 0 \le t \le a)$$

change with a > 0?

What happens with the optimal probability measures μ_a ?

The limiting shapes x_a ?

Proposition 1 Suppose that for some a > 0

$$R_{\mathbf{X}}(t)+R_{\mathbf{X}}(a-t)\geq R_{\mathbf{X}}(0)+R_{\mathbf{X}}(a)>0~~ ext{for all}~~0\leq t\leq a.$$

Proposition 1 Suppose that for some a > 0

$$R_{\mathbf{X}}(t)+R_{\mathbf{X}}(a-t)\geq R_{\mathbf{X}}(0)+R_{\mathbf{X}}(a)>0 \ \ ext{for all} \ 0\leq t\leq a.$$

Then a measure in \mathcal{W}_a is given by

$$\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1.$$

Proposition 1 Suppose that for some a > 0

$$R_{\mathbf{X}}(t)+R_{\mathbf{X}}(a-t)\geq R_{\mathbf{X}}(0)+R_{\mathbf{X}}(a)>0~~ ext{for all}~0\leq t\leq a.$$

Then a measure in \mathcal{W}_a is given by

$$\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1.$$

Furthermore:

$$C_{\mathbf{X}}(a) = \frac{2}{R_{\mathbf{X}}(0) + R_{\mathbf{X}}(a)},$$

Proposition 1 Suppose that for some a > 0

$$R_{\mathbf{X}}(t)+R_{\mathbf{X}}(a-t)\geq R_{\mathbf{X}}(0)+R_{\mathbf{X}}(a)>0~~ ext{for all}~0\leq t\leq a.$$

Then a measure in \mathcal{W}_a is given by

$$\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1.$$

Furthermore:

$$egin{aligned} & C_{\mathbf{X}}(a) = rac{2}{R_{\mathbf{X}}(0) + R_{\mathbf{X}}(a)}, \ & x_{a}(t) = rac{R_{\mathbf{X}}(t) + R_{\mathbf{X}}(a - t)}{R_{\mathbf{X}}(0) + R_{\mathbf{X}}(a)}, \qquad 0 \leq t \leq a. \end{aligned}$$

~

$$R(t)=e^{-t^2/2},\ t\in\mathbb{R}$$
 .

 $\label{eq:consider} \begin{array}{l} \textbf{Example 1} & \textbf{Consider the centered stationary Gaussian process} \\ \text{with the Gaussian covariance function} \end{array}$

$$R(t)=e^{-t^2/2},\ t\in\mathbb{R}$$
.

Gaussian spectral density: full support in \mathbb{R} ;

 $\label{eq:consider} \begin{array}{l} \textbf{Example 1} & \textbf{Consider the centered stationary Gaussian process} \\ \text{with the Gaussian covariance function} \end{array}$

$$R(t)=e^{-t^2/2},\ t\in\mathbb{R}$$
.

Gaussian spectral density: full support in \mathbb{R} ;

for every a > 0 there is a unique measure of minimal energy.

$$R(t)=e^{-t^2/2},\ t\in\mathbb{R}$$
.

Gaussian spectral density: full support in \mathbb{R} ;

for every a > 0 there is a unique measure of minimal energy.

The second spectral moment is finite: for a > 0 sufficiently small this process satisfies the conditions of Proposition 1.

The measure $\mu = (\delta_0 + \delta_1)/2$ remains optimal for $a \le a_1 \approx 2.2079$.

In the next regime the optimal measure acquires a point in the middle of the interval. This continues for $a_1 < a \le a_2 \approx 3.9283$.

a=3.93

t

In the next regime the middle point of the optimal measure splits in two and starts moving away from the middle. This continues for $a_2 < a \le a_3 \approx 5.4508$.

$$R(t)=e^{-|t|},\ t\in\mathbb{R}$$
.

$$R(t)=e^{-|t|},\ t\in\mathbb{R}$$
.

Cauchy spectral density: a full support in \mathbb{R} .

$$R(t)=e^{-|t|},\ t\in\mathbb{R}$$
.

Cauchy spectral density: a full support in \mathbb{R} .

For every a > 0 there is a unique measure of minimal energy.

$$R(t)=e^{-|t|},\ t\in\mathbb{R}$$
.

Cauchy spectral density: a full support in \mathbb{R} .

For every a > 0 there is a unique measure of minimal energy.

Even the first spectral moment is infinite. Proposition 1 does not apply.

The optimal probability measure:

$$\mu = \frac{1}{a+2}\delta_0 + \frac{1}{a+2}\delta_1 + \frac{a}{a+2}\lambda,$$

 λ : the Lebesgue measure on (0,1).

The optimal probability measure:

$$\mu = \frac{1}{a+2}\delta_0 + \frac{1}{a+2}\delta_1 + \frac{a}{a+2}\lambda,$$

 λ : the Lebesgue measure on (0,1).

No phase transitions.

$$C_{\mathbf{X}}(a) = (a+2)/2$$
 for all $a > 0$

The optimal probability measure:

$$\mu = \frac{1}{a+2}\delta_0 + \frac{1}{a+2}\delta_1 + \frac{a}{a+2}\lambda,$$

 λ : the Lebesgue measure on (0,1).

No phase transitions.

$$C_{\mathbf{X}}(a) = (a+2)/2$$
 for all $a > 0$

The limiting shape x_a : identically equal to 1 on [0, a].

As the length a of the interval increases, a difference between short and long memory processes arises.

As the length a of the interval increases, a difference between short and long memory processes arises.

In the short memory case, the uniform measure is asymptotically optimal.

As the length a of the interval increases, a difference between short and long memory processes arises.

In the short memory case, the uniform measure is asymptotically optimal.

Theorem 4 Assume that R_X is positive, $\int_0^\infty R(t) dt < \infty$. Then

$$\lim_{a \to \infty} \frac{1}{a} C_{\mathbf{X}}(a) = \left(\lim_{a \to \infty} a \int_0^1 \int_0^1 R_{\mathbf{X}}(a(u-v)) \lambda(du) \lambda(dv) \right)^{-1}$$
$$= \frac{1}{2 \int_0^\infty R(t) dt}.$$

Assume: the covariance function is regularly varying at infinity:

$${\sf R}_{f X}(t)=rac{L(t)}{|t|^eta}, \qquad 0$$

L: slowly varying at infinity.

Assume: the covariance function is regularly varying at infinity:

$${\it R}_{f X}(t)=rac{L(t)}{|t|^eta}, \qquad 0$$

L: slowly varying at infinity.

Consider the minimization problem with respect to Riesz kernel,

$$\min_{\mu \in \mathcal{M}_1^+([0,1])} \int_0^1 \int_0^1 \frac{\mu(du)\mu(dv)}{|u-v|^{\beta}}, \qquad 0 < \beta < 1.$$

Assume: the covariance function is regularly varying at infinity:

$${\sf R}_{f X}(t)=rac{L(t)}{|t|^eta}, \qquad 0$$

L: slowly varying at infinity.

Consider the minimization problem with respect to Riesz kernel,

$$\min_{\mu \in \mathcal{M}_1^+([0,1])} \int_0^1 \int_0^1 \frac{\mu(du)\mu(dv)}{|u-v|^{\beta}}, \qquad 0 < \beta < 1.$$

An optimal measure μ_{eta} exists, but it is not the uniform measure.

Theorem 5 Assume that R_X is positive and regularly varying.

Theorem 5 Assume that R_X is positive and regularly varying.

For any $\mu_{\beta} \in \mathcal{W}_{\beta}$, the set of optimal measures for the Riesz kernel,

$$\lim_{a\to\infty} R_{\mathbf{X}}(a) \mathcal{C}_{\mathbf{X}}(\mathbf{a}) = \left(\int_0^1 \int_0^1 \frac{\mu_\beta(du)\mu_\beta(dv)}{|u-v|^\beta}\right)^{-1}$$

٠

Theorem 5 Assume that R_X is positive and regularly varying.

For any $\mu_{\beta} \in \mathcal{W}_{\beta}$, the set of optimal measures for the Riesz kernel,

$$\lim_{a\to\infty} R_{\mathbf{X}}(a) \mathcal{C}_{\mathbf{X}}(\mathbf{a}) = \left(\int_0^1 \int_0^1 \frac{\mu_\beta(du)\mu_\beta(dv)}{|u-v|^\beta}\right)^{-1}$$

٠

In particular, $C_{\mathbf{X}}(\mathbf{a})$ is regularly varying with exponent β .

▶ $\mathbf{X} = (X(t), t \in \mathbb{R})$ centered continuous Gaussian process, perhaps stationary.

- ▶ $\mathbf{X} = (X(t), t \in \mathbb{R})$ centered continuous Gaussian process, perhaps stationary.
- [a, b] a compact interval, u > 0 a high level.

- X = (X(t), t ∈ ℝ) centered continuous Gaussian process, perhaps stationary.
- [a, b] a compact interval, u > 0 a high level.
- ▶ The event: the entire sample path of **X** on [*a*, *b*] is above *u*.

- X = (X(t), t ∈ ℝ) centered continuous Gaussian process, perhaps stationary.
- [a, b] a compact interval, u > 0 a high level.
- ▶ The event: the entire sample path of **X** on [*a*, *b*] is above *u*.
- Can one obtain more precise information than what can be learned from large deviations?

The 4 questions

The 4 questions

 ${\bf Question}~{\bf 1}.$ What is the precise asymptotic behaviour of

$$P\left(\min_{a\leq t\leq b}X(t)>u
ight)$$
 as $u
ightarrow\infty$?

The 4 questions

Question 1. What is the precise asymptotic behaviour of

$$P\left(\min_{a\leq t\leq b}X(t)>u
ight)$$
 as $u
ightarrow\infty$?

Question 2. Given the event

$$B_u := \left\{ \min_{a \le t \le b} X(t) > u \right\} ,$$

how does the conditional distribution of $(X(t), t \in [a, b])$ behave as $u \to \infty$? **Question 3**. Conditionally on B_u , what is the overshoot

$$\min_{a \le t \le b} X(t) - u \text{ as } u \to \infty ?$$

Question 3. Conditionally on B_u , what is the overshoot

$$\min_{a\leq t\leq b}X(t)-u$$
 as $u
ightarrow\infty$?

Question 4. What is the asymptotic conditional distribution, given B_u , of the location of the minimum

$$\arg\min_{a\leq t\leq b}X(t)$$
 as $u\to\infty$?

• Assume **X** is stationary, spectral measure F_X , such that

Assume **X** is stationary, spectral measure F_X , such that

A1. For all $t \in \mathbb{R}$,

$$\int_{-\infty}^{\infty} e^{tx} F_X(dx) < \infty \, .$$

Assume **X** is stationary, spectral measure F_X , such that

A1. For all $t \in \mathbb{R}$,

$$\int_{-\infty}^{\infty} e^{tx} F_X(dx) < \infty \, .$$

A2. The support of F_X has at least one accumulation point.

Assume **X** is stationary, spectral measure F_X , such that

A1. For all $t \in \mathbb{R}$,

$$\int_{-\infty}^{\infty} e^{tx} F_X(dx) < \infty \, .$$

A2. The support of F_X has at least one accumulation point.

The canonical example: the Gaussian spectral density

$$F_X(dx)=e^{-x^2/2}\,dx,\ x\in\mathbb{R}\,.$$

Lemma Under the assumptions A1 and A2:

Lemma Under the assumptions A1 and A2: the optimization problem

$$\min_{\mu\in M_1[0,b]}\int_0^b\int_0^b R(t-s)\mu(ds)\mu(dt)$$
Lemma Under the assumptions A1 and A2: the optimization problem

$$\min_{\mu\in M_1[0,b]}\int_0^b\int_0^b R(t-s)\mu(ds)\mu(dt)$$

1 has a unique minimizer μ_* ;

Lemma Under the assumptions A1 and A2: the optimization problem

$$\min_{\mu\in M_1[0,b]}\int_0^b\int_0^b R(t-s)\mu(ds)\mu(dt)$$

- 1 has a unique minimizer μ_* ;
- **2** μ_* has a support *S* of a finite cardinality;

Lemma Under the assumptions A1 and A2: the optimization problem

$$\min_{\mu\in M_1[0,b]}\int_0^b\int_0^b R(t-s)\mu(ds)\mu(dt)$$

- 1 has a unique minimizer μ_* ;
- **2** μ_* has a support *S* of a finite cardinality;
- **3** the optimal value $\sigma_*^2(b) > 0$.

Let
$$S = \{t_1, ..., t_k\}.$$

Let $S = \{t_1, ..., t_k\}.$

Let Σ be the covariance matrix of $(X(t_1), \ldots, X(t_k))$.

Let
$$S = \{t_1, ..., t_k\}.$$

Let Σ be the covariance matrix of $(X(t_1), \ldots, X(t_k))$.

Let $\theta = (\theta_1, \ldots, \theta_k) = \Sigma^{-1} \mathbf{1}$.

Let
$$S = \{t_1, ..., t_k\}.$$

Let Σ be the covariance matrix of $(X(t_1), \ldots, X(t_k))$.

Let $\theta = (\theta_1, \dots, \theta_k) = \Sigma^{-1} \mathbf{1}$. Then $\theta_j > 0, j = 1, \dots, k$,

Let
$$S = \{t_1, ..., t_k\}.$$

Let Σ be the covariance matrix of $(X(t_1), \ldots, X(t_k))$.

Let $heta = (heta_1, \dots, heta_k) = \Sigma^{-1} \mathbf{1}.$ Then $heta_j > 0, j = 1, \dots, k$,

$$P(\min_{j=1,...,k} X(t_j) > u) \sim (2\pi)^{-k/2} (\det \Sigma)^{-1/2} (\theta_1 \dots \theta_k)^{-1}$$
$$u^{-k} e^{-u^2/2\sigma_*^2(b)}, \ u \to \infty.$$

$$m(t) = E(X(t)|X(s) = 1, s \in S), \ 0 \le t \le b.$$

$$m(t) = E(X(t)|X(s) = 1, s \in S), \ 0 \le t \le b.$$

• *m* is infinitely differentiable, ≥ 1 on [0, b].

$$m(t) = E(X(t)|X(s) = 1, s \in S), \ 0 \le t \le b.$$

• *m* is infinitely differentiable, ≥ 1 on [0, b].

• $m \equiv 1$ on S, so points of S are local minima.

$$m(t) = E(X(t)|X(s) = 1, s \in S), \ 0 \le t \le b.$$

• *m* is infinitely differentiable,
$$\geq 1$$
 on $[0, b]$.

•
$$m \equiv 1$$
 on S, so points of S are local minima.

The key assumption: m'' > 0 on $S \cap (0, b)$.

Theorem 1

Let the cardinality of S be k. Then

$$P(\min_{0\leq t\leq b}X(t)>u)\sim cu^{-k}e^{-u^2/2\sigma_*^2(b)},\ u\to\infty$$

for $c \in [0,\infty)$.

Theorem 1

Let the cardinality of S be k. Then

$$P(\min_{0\leq t\leq b}X(t)>u)\sim cu^{-k}e^{-u^2/2\sigma_*^2(b)},\ u\to\infty$$

for $c \in [0,\infty)$.

Furthermore, c > 0 if and only if the key assumption holds.

Suppose the key assumption holds. Then in C[0, b],

$$P\left((X(t) - um(t), 0 \le t \le b) \in \cdot \left| \min_{t \in [0,b]} X(t) > u \right) \Rightarrow Q_W(\cdot),
ight.$$

where Q_W is the law of a tilted Gaussian process on [0, b].

Suppose the key assumption holds.

Then, as $u
ightarrow \infty$, the conditional distribution of

$$u(\min_{t\in[0,b]}X(t)-u)$$
 given $\min_{t\in[0,b]}X(t)>u$

converges weakly to the exponential distribution with mean $\sigma_*^2(b)$.

Theorem 4

Suppose the key assumption holds. Let

 $T_* := \arg\min_{s \in [0,b]} X(s)$ (the leftmost one in case of ties).

Theorem 4

Suppose the key assumption holds. Let

$$\mathcal{T}_* := \arg\min_{s \in [0,b]} X(s)$$
 (the leftmost one in case of ties).

Then, as $u \to \infty$,

$$P\left(T_*\in\cdot\left|\min_{s\in[0,b]}X(s)>u\right)\Rightarrow
u_*$$

It is a nondegeneracy assumption.

It is a nondegeneracy assumption.

Example The Gaussian covariance function $R(t) = e^{-t^2/2}$.

It is a nondegeneracy assumption.

Example The Gaussian covariance function $R(t) = e^{-t^2/2}$.

• If
$$0 < b \le 2.2079..., S = \{0, b\}.$$

It is a nondegeneracy assumption.

Example The Gaussian covariance function $R(t) = e^{-t^2/2}$.

• If
$$0 < b \le 2.2079..., S = \{0, b\}.$$

The key assumption holds.

• Then
$$S = \{0, b/2, b\}$$
.

b=3

b=3.9283

X = (X(t), t ∈ ℝ^d): real-valued continuous Gaussian random field.

- X = (X(t), t ∈ ℝ^d): real-valued continuous Gaussian random field.
- ▶ *B* a Euclidean ball, c_B its center, $S_B = \partial(B)$ the boundary (the sphere).

- X = (X(t), t ∈ ℝ^d): real-valued continuous Gaussian random field.
- ▶ *B* a Euclidean ball, c_B its center, $S_B = \partial(B)$ the boundary (the sphere).
- Is there a hole in the middle of a high excursion set?

- X = (X(t), t ∈ ℝ^d): real-valued continuous Gaussian random field.
- ▶ *B* a Euclidean ball, c_B its center, $S_B = \partial(B)$ the boundary (the sphere).
- Is there a hole in the middle of a high excursion set?
- Two probabilities:

 $\Psi_{sp}(u; r) = P(\text{there exists a ball } B \text{ entirely in } T$ such that $X(\mathbf{t}) > u$ for all $\mathbf{t} \in S_B$ but $X(\mathbf{s}) < ru$ for some $\mathbf{s} \in B$)

 $\Psi_{sp}(u; r) = P(\text{there exists a ball } B \text{ entirely in } T$ such that $X(\mathbf{t}) > u$ for all $\mathbf{t} \in S_B$ but $X(\mathbf{s}) < ru$ for some $\mathbf{s} \in B)$

 $\Psi_{sp;c}(u;r) = P(\text{there exists a ball } B \text{ entirely in } T$ such that $X(\mathbf{t}) > u$ for all $\mathbf{t} \in S_B$ but $X(c_B) < ru)$. Similar questions can be asked about a fixed ball.

- Similar questions can be asked about a fixed ball.
- Investigate the probabilities on logarithmic level using large deviations.

- Similar questions can be asked about a fixed ball.
- Investigate the probabilities on logarithmic level using large deviations.
- ▶ fixed ball *B*: Is a hole likely or not?
- Similar questions can be asked about a fixed ball.
- Investigate the probabilities on logarithmic level using large deviations.
- ► fixed ball *B*: Is a hole likely or not?

Let

$$\Psi(u) = P(X(\mathbf{t}) > u \text{ for all } \mathbf{t} \in S_B)$$
.

lf

$$\lim_{u\to\infty}\frac{1}{u^2}\log\Psi_{\mathsf{s}p;c}(u;r)=\lim_{u\to\infty}\frac{1}{u^2}\log\Psi(u)\,,$$

the hole is "likely".

lf

$$\lim_{u\to\infty}\frac{1}{u^2}\log\Psi_{sp;c}(u;r)=\lim_{u\to\infty}\frac{1}{u^2}\log\Psi(u)\,,$$

the hole is "likely".

 Large deviations approach requires solving difficult optimization problems.

► A centered Gaussian field is isotropic if

$$R_{\mathbf{X}}(\mathbf{t}_1, \mathbf{t}_2) = R(\|\mathbf{t}_1 - \mathbf{t}_2\|), \, \mathbf{t}_1, \, \mathbf{t}_2 \in T$$

A centered Gaussian field is isotropic if

$$R_{\mathbf{X}}(\mathbf{t}_1, \mathbf{t}_2) = R(\|\mathbf{t}_1 - \mathbf{t}_2\|), \, \mathbf{t}_1, \, \mathbf{t}_2 \in T$$

By the isotropy, the rotationally invariant probability measure on the sphere is optimal in many relevant optimization problems.

A centered Gaussian field is isotropic if

$$R_{\mathbf{X}}(\mathbf{t}_1, \mathbf{t}_2) = R(\|\mathbf{t}_1 - \mathbf{t}_2\|), \, \mathbf{t}_1, \, \mathbf{t}_2 \in T$$

- By the isotropy, the rotationally invariant probability measure on the sphere is optimal in many relevant optimization problems.
- Start first with the hole in the center of the ball.

For $0 \le \rho \le D$ denote:

For $0 \le \rho \le D$ denote:

• $S_{\rho}(\mathbf{0})$: the sphere of radius ρ centered at the origin;

For $0 \le \rho \le D$ denote:

• $S_{\rho}(\mathbf{0})$: the sphere of radius ρ centered at the origin;

• μ_h : the rotation invariant probability measure on $S_{\rho}(\mathbf{0})$.

For $0 \le \rho \le D$ and $0 < r \le 1$:

For $0 \le \rho \le D$ and $0 < r \le 1$:

$$D(\rho) = \int_{S_{\rho}(\mathbf{0})} \int_{S_{\rho}(\mathbf{0})} R(\|\mathbf{t}_1 - \mathbf{t}_2\|) \mu_h(d\mathbf{t}_1) \, \mu_h(d\mathbf{t}_2) \, .$$

For $0 \le \rho \le D$ and $0 < r \le 1$:

$$D(\rho) = \int_{\mathcal{S}_{\rho}(\mathbf{0})} \int_{\mathcal{S}_{\rho}(\mathbf{0})} R(\|\mathbf{t}_1 - \mathbf{t}_2\|) \mu_h(d\mathbf{t}_1) \, \mu_h(d\mathbf{t}_2) \, .$$

$$W_{\rho}(r) = \begin{cases} D(\rho) & \text{if } R(\rho) \leq rD(\rho), \\ \frac{R(0)D(\rho) - (R(\rho))^2}{R(0) - 2rR(\rho) + r^2D(\rho)} & \text{if } R(\rho) > rD(\rho). \end{cases}$$

Theorem Let X be isotropic. Then

$$\lim_{u\to\infty}\frac{1}{u^2}\log\Psi_{\mathsf{s}\rho;c}(u;r)=-\frac{1}{2}\min_{0\leq\rho\leq D}(W_\rho(r))^{-1}.$$

Theorem Let X be isotropic. Then

$$\lim_{u\to\infty}\frac{1}{u^2}\log\Psi_{\mathsf{s}p;c}(u;r)=-\frac{1}{2}\min_{0\leq\rho\leq D}(W_\rho(r))^{-1}.$$

For a sphere of radius ρ and $0 < r \le 1$:

Theorem Let X be isotropic. Then

$$\lim_{u\to\infty}\frac{1}{u^2}\log\Psi_{\mathsf{s}\mathsf{p};\mathsf{c}}(u;r)=-\frac{1}{2}\min_{0\leq\rho\leq D}(W_\rho(r))^{-1}.$$

For a sphere of radius ρ and $0 < r \le 1$:

- ▶ a hole of depth *r* is likely if $R(\rho) \le rD(\rho)$;
- a hole of depth r is unlikely if $R(\rho) > rD(\rho)$.

Is it true that a hole is always unlikely as $\rho \to 0$ and is always likely as $\rho \to \infty ?$

Is it true that a hole is always unlikely as $\rho \to 0$ and is always likely as $\rho \to \infty ?$

For small spheres $(\rho \rightarrow 0)$:

Is it true that a hole is always unlikely as $\rho \to 0$ and is always likely as $\rho \to \infty ?$

```
For small spheres (\rho \rightarrow 0):
```

```
• a hole of depth 0 < r < 1 is unlikely;
```

Is it true that a hole is always unlikely as $\rho \to 0$ and is always likely as $\rho \to \infty$?

```
For small spheres (\rho \rightarrow 0):
```

- a hole of depth 0 < r < 1 is unlikely;
- a hole of depth r = 1 is unlikely if the field has a finite second spectral moment.

Is it true that a hole is always unlikely as $\rho \to 0$ and is always likely as $\rho \to \infty$?

```
For small spheres (\rho \rightarrow 0):
```

- a hole of depth 0 < r < 1 is unlikely;
- a hole of depth r = 1 is unlikely if the field has a finite second spectral moment.
- If the second spectral moment is infinite, a hole of depth r = 1 may or may not be unlikely.

For large spheres ($\rho \to \infty$):

For large spheres $(\rho \rightarrow \infty)$:

▶ a hole of any depth 0 < r ≤ 1 is likely if the memory is sufficiently short, e.g. if R is nonnegative and

$$\limsup_{v o\infty} rac{R(tv)}{R(v)} \leq t^{-a} \;\; ext{with} \; a\geq d-1 ext{, for all} \; t\geq 1.$$

For large spheres $(\rho \rightarrow \infty)$:

► a hole of any depth 0 < r ≤ 1 is likely if the memory is sufficiently short, e.g. if R is nonnegative and

$$\limsup_{v \to \infty} \frac{R(tv)}{R(v)} \leq t^{-a} \ \, \text{with} \ a \geq d-1, \ \text{for all} \ t \geq 1.$$

In dimensions d ≥ 2, if the memory is sufficiently long, then a deep enough hole may be unlikely even for a sphere of an infinite radius.

R is regularly varying at infinity with exponent $-(d-1) + \varepsilon$.

R is regularly varying at infinity with exponent $-(d-1) + \varepsilon$.

Denote

$$I(d;\varepsilon) = \int_{\mathcal{S}_1(\mathbf{0})} \int_{\mathcal{S}_1(\mathbf{0})} \|\mathbf{t}_1 - \mathbf{t}_2\|^{-(d-1)+\varepsilon} \,\mu_h(d\mathbf{t}_1) \,\mu_h(d\mathbf{t}_2) \,.$$

R is regularly varying at infinity with exponent $-(d-1) + \varepsilon$.

Denote

$$I(d;\varepsilon) = \int_{\mathcal{S}_1(\mathbf{0})} \int_{\mathcal{S}_1(\mathbf{0})} \|\mathbf{t}_1 - \mathbf{t}_2\|^{-(d-1)+\varepsilon} \,\mu_h(d\mathbf{t}_1) \,\mu_h(d\mathbf{t}_2) \,.$$

A hole of depth $r < 1/I(d; \varepsilon)$ is unlikely even for spheres of infinite radius!

R is regularly varying at infinity with exponent $-(d-1) + \varepsilon$.

Denote

$$I(d;\varepsilon) = \int_{S_1(\mathbf{0})} \int_{S_1(\mathbf{0})} \|\mathbf{t}_1 - \mathbf{t}_2\|^{-(d-1)+\varepsilon} \mu_h(d\mathbf{t}_1) \mu_h(d\mathbf{t}_2).$$

A hole of depth $r < 1/I(d; \varepsilon)$ is unlikely even for spheres of infinite radius!

This is true even though the field is ergodic and mixing.

The value of $I(d; \varepsilon)$ in 2 and 3 dimensions.

Most likely radius

What is the radius of a sphere for which this event is the most likely:

What is the radius of a sphere for which this event is the most likely:

1. the random field has a "peak" of height greater than *u* covering the entire sphere;

What is the radius of a sphere for which this event is the most likely:

- 1. the random field has a "peak" of height greater than *u* covering the entire sphere;
- 2. there is a "hole" in the center of the sphere where the height is smaller than *ru*.

Assume that R is monotone, R(t)
ightarrow 0, and 0 < r < 1. Let

$$H_{
ho}(r) = rac{R(0)D(
ho) - \left(R(
ho)
ight)^2}{R(0) - 2rR(
ho) + r^2D(
ho)}, \ \
ho > 0 \, .$$

Assume that R is monotone, $R(t) \rightarrow 0$, and 0 < r < 1. Let

$$H_{
ho}(r) = rac{R(0)D(
ho) - \left(R(
ho)
ight)^2}{R(0) - 2rR(
ho) + r^2D(
ho)}, \ \
ho > 0 \, .$$

Then

$$\rho_r^* = \operatorname{argmax}_{\rho \ge 0} H_\rho(r) \,.$$

is the radius of the sphere most likely to have a hole corresponding to a factor r in the center.

Figure: The functions $D(\rho)$ (solid line) and $H_{\rho}(r)$ (dashed line) for r = 1/2 (left plot) and the optimal radius ρ_r^* (right plot), both for $R(t) = e^{-t^2}$.

Limiting shapes

Limiting shapes

For the isotropic random field and any sphere, there is a deterministic function $(x(\mathbf{t}), \mathbf{t} \in \mathbb{R}^d)$ such that

$$P\left(\sup_{\mathbf{t}\in\mathcal{T}}\left|\frac{1}{u}X(\mathbf{t}) - x(\mathbf{t})\right| \ge \varepsilon \left| X(\mathbf{t}) > u \text{ for each } \mathbf{t} \text{ on the sphere} \right.$$

and $X(\text{center}) < ru \right) \to 0$

as $u \to \infty$.

► The shape is rotationally invariant.

- ► The shape is rotationally invariant.
- ▶ The shape depends on whether the hole is likely or not.

- ► The shape is rotationally invariant.
- ▶ The shape depends on whether the hole is likely or not.
- ▶ We plot a radial crossection of the limting shape.

Figure: The limiting shapes for $\rho = 1$ (hole unlikely, left plot) and $\rho = 2$ (hole likely, right plot), both for r = 1/2 and $R(t) = e^{-t^2}$. The horizontal axes are units of t_1/ρ .

 $\Psi_{sp}(u; r) = P(\text{there exists a ball } B \text{ entirely in } T$ such that $X(\mathbf{t}) > u$ for all $\mathbf{t} \in S_B$ but $X(\mathbf{s}) < ru$ for some $\mathbf{s} \in B$)

 $\Psi_{sp}(u; r) = P(\text{there exists a ball } B \text{ entirely in } T$ such that $X(\mathbf{t}) > u$ for all $\mathbf{t} \in S_B$ but $X(\mathbf{s}) < ru$ for some $\mathbf{s} \in B$)

 $\Psi_{\mathsf{sp}}(u;r) \geq \Psi_{\mathsf{sp};c}(u;r).$

 $\Psi_{sp}(u; r) = P($ there exists a ball B entirely in Tsuch that $X(\mathbf{t}) > u$ for all $\mathbf{t} \in S_B$ but $X(\mathbf{s}) < ru$ for some $\mathbf{s} \in B)$

$$\Psi_{\mathsf{sp}}(u;r) \geq \Psi_{\mathsf{sp};c}(u;r).$$

In many cases: asymptotic behaviour of the two probabilities is the same on the logarithmic scale.

Assume $R(\mathbf{0}) = 1$, and denote $S_1 = S_1(\mathbf{0})$.

Assume $R(\mathbf{0}) = 1$, and denote $S_1 = S_1(\mathbf{0})$.

For $ho \geq$ 0, 0 \leq $b \leq$ 1 and $\mu \in M_1^+(S_1)$, let

 $V(
ho, b; \mu) =$

$$\frac{\int_{S_1} \int_{S_1} R(\rho \|\mathbf{t}_1 - \mathbf{t}_2\|) \, \mu(d\mathbf{t}_1) \mu(d\mathbf{t}_2) - \left(\int_{S_1} R(\rho \|\mathbf{t} - b\mathbf{e}_1\|) \, \mu(d\mathbf{t})\right)^2}{1 - 2r \int_{S_1} R(\rho \|\mathbf{t} - b\mathbf{e}_1\|) \, \mu(d\mathbf{t}) + r^2 \int_{S_1} \int_{S_1} R(\rho \|\mathbf{t}_1 - \mathbf{t}_2\|) \, \mu(d\mathbf{t}_1) \mu(d\mathbf{t}_2)}$$

Let

$$V_*(\rho, b) = \min_{\mu \in M_1^+(S_1)} V(\rho, b; \mu)$$

subject to

$$\int_{\mathcal{S}_1} R(\rho \|\mathbf{t} - b\mathbf{e}_1\|) \, \mu(d\mathbf{t}) \geq r \int_{\mathcal{S}_1} \int_{\mathcal{S}_1} R(\rho \|\mathbf{t}_1 - \mathbf{t}_2\|) \, \mu(d\mathbf{t}_1) \mu(d\mathbf{t}_2) \, .$$

$$V_*(
ho,b) = \min_{\mu \in \mathcal{M}_1^+(S_1)} V(
ho,b;\mu)$$

subject to

$$\int_{\mathcal{S}_1} R(\rho \|\mathbf{t} - b\mathbf{e}_1\|) \, \mu(d\mathbf{t}) \geq r \int_{\mathcal{S}_1} \int_{\mathcal{S}_1} R(\rho \|\mathbf{t}_1 - \mathbf{t}_2\|) \, \mu(d\mathbf{t}_1) \mu(d\mathbf{t}_2) \, .$$

If, for every $0 \le \rho \le D$ such that $R(\rho) \ge rD(\rho)$, the function $V_*(\rho, b), \ 0 \le b \le 1$ achieves its maximum at b = 0, then

$$\lim_{u\to\infty}\frac{1}{u^2}\log\Psi_{\mathsf{sp}}(u;r)=\lim_{u\to\infty}\frac{1}{u^2}\log\Psi_{\mathsf{sp};c}(u;r)\,.$$

A sufficient condition: for every $0 \le \rho \le D$ such that $R(\rho) \ge rD(\rho)$,

$$\min_{0\leq b\leq 1}\int_{\mathcal{S}_1}R(\rho\|\mathbf{t}-b\mathbf{e}_1\|)\,\mu_h(d\mathbf{t})=\int_{\mathcal{S}_1}R(\rho\|\mathbf{t}\|)\,\mu_h(d\mathbf{t})=R(\rho)\,,$$

where μ_h is the rotation invariant probability measure on S_1 .

A sufficient condition: for every $0 \le \rho \le D$ such that $R(\rho) \ge rD(\rho)$,

$$\min_{0\leq b\leq 1}\int_{\mathcal{S}_1}R(\rho\|\mathbf{t}-b\mathbf{e}_1\|)\,\mu_h(d\mathbf{t})=\int_{\mathcal{S}_1}R(\rho\|\mathbf{t}\|)\,\mu_h(d\mathbf{t})=R(\rho)\,,$$

where μ_h is the rotation invariant probability measure on S_1 .

This condition is not necessary.

Numerical experiments: the condition tends to hold for values of the radius ρ exceeding a certain positive threshold.

Numerical experiments: the condition tends to hold for values of the radius ρ exceeding a certain positive threshold.

In dimension d = 2 for both $R(t) = e^{-t^2}$ and $R(t) = e^{-|t|}$, the threshold is around $\rho = 1.18$.

Numerical experiments: the condition tends to hold for values of the radius ρ exceeding a certain positive threshold.

In dimension d = 2 for both $R(t) = e^{-t^2}$ and $R(t) = e^{-|t|}$, the threshold is around $\rho = 1.18$.

For these two covariance functions: the two probabilities are asymptotically equivalent on the logarithmic scale.