
Excursion probabilities for Gaussian processes
and fields



Excursion sets

I X = (X (t), t ∈ Rd): real-valued continuous random field.

I Often: X stationary and/or Gaussian.

I u ∈ R: a level;

the excursion set of X above the level u:

Au =
{
t ∈ Rd : X (t) ≥ u

}
.
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I The structure of this random set?

I Natural connection to important functionals of the field.

I The supremum functional: for a compact K :

Au ∩ K 6= ∅ if and only if sup
t∈K

X (t) ≥ u .
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More delicate questions

1. given that two points in Rd belong to the excursion set Au:
what is the probability that they belong to the same
connected component of the excursion set?

2. given that a sphere belongs to the excursion set Au,
what is the probability that anywhere inside the ball
the field is below ru, 0 < r ≤ 1?
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I Assume: X is Gaussian.

I The first step: the large deviations approach.

I a, b ∈ Rd , a 6= b. A path between a and b: a continuous
map ξ : [0, 1]→ Rd with ξ(0) = a, ξ(1) = b.

I P(a,b): the collection of such paths. Estimate

P
(
∃ ξ ∈ P(a,b) : X (ξ(v)) > u, 0 ≤ v ≤ 1

∣∣∣ X (a) > u, X (b) > u
)
.
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The non-trivial part of the problem: estimate the probability

Ψa,b(u) := P (∃ ξ ∈ P(a,b) : X (ξ(v)) > u, 0 ≤ v ≤ 1) .

If the random field is stationary: assume that b = 0, use the
notation Ψa.

If the domain of a random field is T ⊂ Rd , and a, b in T :

Ψa,b(u) = P (∃ξ ∈ P(a,b) : ξ(v) ∈ T and X (ξ(v)) > u, 0 ≤ v ≤ 1) .
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Large deviations setup

An open set:

A ≡ Aa,b :=
{
ω ∈ C0(Rd) : ∃ ξ ∈ P(a,b), ω(ξ(v)) > 1, 0 ≤ v ≤ 1

}

C0(Rd) =
{
ω = (ω(t), t ∈ Rd) ∈ C (Rd) : lim

‖t‖→∞
ω(t)/‖t‖ = 0

}
.

For u > 0:
Ψa,b(u) = P

(
u−1X ∈ A

)
.

I Use the Gaussian large deviations theory:
Deutschel and Stroock (1989).
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The reproducing kernel Hilbert space

The RKHS H of X: a subspace of C (Rd).

1. Start with the space of finite linear combinations∑k
j=1 ajX (tj) aj ∈ R, tj ∈ Rd for j = 1, . . . , k , k = 1, 2, . . ..

2. L: its closure in the mean square norm.

3. Identify L with H via the injection L → C (Rd):

H → wH =
(
E
(
X (t)H

)
, t ∈ Rd

)

4. The resulting norm:

‖wH‖2H = E (H2) .
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Suppose X stationary, spectral measure FX.

The RKHS H can be identified with the subspace of L2(FX)
of functions with even real parts and odd imaginary parts.

The injection L2(FX)→ C (Rd):

h→ S(h) =

(∫
Rd

e i(t,x) h̄(x)FX(dx), t ∈ Rd

)
.

The resulting norm:

‖S(h)‖2H = ‖h‖2L2(FX)
=

∫
Rd

‖h(x)‖2 FX(dx) .
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Theorem 1

Let X = (X (t), t ∈ Rd) be a continuous stationary Gaussian
random field, with covariance function satisfying

lim sup
‖t‖→∞

RX(t) = 0 .

Then

lim
u→∞

1

u2
log Ψa(u) = −1

2
CX(a),

with

CX(a) := inf

{∫
Rd

‖h(x)‖2 FX(dx) : for some ξ ∈ P(0, a)∫
Rd

e i(ξ(v),x) h̄(x)FX(dx) ≥ 1, 0 ≤ v ≤ 1

}
.
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I The constraints in Theorem 1 are not convex.

I For a fixed path, the constraints are convex, and one can use
the convex Lagrange duality.

Theorem 2 For a continuous stationary Gaussian random field X,

CX(a) =

[
sup

ξ∈P(0,a)
min

µ∈M+
1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
ξ(u)− ξ(v)

)
µ(du)µ(dv)

]−1
.

M+
1 ([0, 1]): the space of all probability measures on [0, 1].

An optimal path is a path of maximal RX capacity.
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Fixed path

Assume a path ξ ∈ P(0, a) is fixed.

The minimization problem

min
µ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
ξ(u), ξ(v)

)
µ(du)µ(dv)

is the problem of finding a probability measures µ
of minimal energy, or capacitory measures.

The set Wξ ⊆ M+
1 ([0, 1]) of optimal measures: a weakly compact

convex subset of M+
1 ([0, 1]).



Fixed path

Assume a path ξ ∈ P(0, a) is fixed.

The minimization problem

min
µ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
ξ(u), ξ(v)

)
µ(du)µ(dv)

is the problem of finding a probability measures µ
of minimal energy, or capacitory measures.

The set Wξ ⊆ M+
1 ([0, 1]) of optimal measures: a weakly compact

convex subset of M+
1 ([0, 1]).



Fixed path

Assume a path ξ ∈ P(0, a) is fixed.

The minimization problem

min
µ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
ξ(u), ξ(v)

)
µ(du)µ(dv)

is the problem of finding a probability measures µ
of minimal energy, or capacitory measures.

The set Wξ ⊆ M+
1 ([0, 1]) of optimal measures: a weakly compact

convex subset of M+
1 ([0, 1]).



Fixed path

Assume a path ξ ∈ P(0, a) is fixed.

The minimization problem

min
µ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
ξ(u), ξ(v)

)
µ(du)µ(dv)

is the problem of finding a probability measures µ
of minimal energy, or capacitory measures.

The set Wξ ⊆ M+
1 ([0, 1]) of optimal measures: a weakly compact

convex subset of M+
1 ([0, 1]).



Suppose the primary feasible set in

inf
{
E (H2) : H ∈ L, E

[
X (ξ(v)

)
H
]
≥ 1, 0 ≤ v ≤ 1

}
is non-empty.

Then for every µ ∈ Wξ:

µ
({

0 ≤ v ≤ 1 : E
[
X (ξ(v)

)
Hξ
]
> 1
})

= 0

for the unique primal optimal solution Hξ ∈ L.
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If the primal feasible set is non-empty then, for every ε > 0:

P

(
sup

0≤v≤1

∣∣∣∣1uX (ξ(v))− xξ(v)

∣∣∣∣ ≥ ε∣∣∣∣X (ξ(v)) > u, 0 ≤ v ≤ 1

)
→ 0

as u →∞.

Here

xξ(v) = E
[
X (ξ(v)

)
Hξ
]
, 0 ≤ v ≤ 1 .
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Theorem 3

(i) For every µ ∈ Wξ:

Hξ = CX(a,b; ξ)

∫ 1

0
X
(
ξ(v)

)
µ(dv)

with probability 1.

(ii) A probability measure µ ∈ M+
1 ([0, 1]) is a measure of minimal

energy if and only if

min
0≤v≤1

∫ 1

0
RX

(
ξ(u), ξ(v)

)
µ(du)
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∫ 1
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)
µ(du1)µ(du2) > 0 .
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Remarks

I The function

v 7→
∫ 1

0
RX

(
ξ(u), ξ(v)

)
µ(du), 0 ≤ v ≤ 1,

is constant on the support of any measure µ ∈ Wξ.

I The support of any measure of minimal energy is not ‘large’?
Not always true!

I If X is stationary, and the spectral measure is of the full
support, the image of any µ ∈ Wξ on the path ξ is unique.
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One-dimensional case

There is, essentially, a single path between two points.

X =
(
X (t), t ∈ R

)
: a stationary continuous Gaussian process.

How does
Ψa(u) = P

(
X (t) > u, 0 ≤ t ≤ a

)
change with a > 0?

What happens with the optimal probability measures µa?

The limiting shapes xa?
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For some processes (in particular, those with a finite second
spectral moment), on short intervals, an easy descrption.

Proposition 1 Suppose that for some a > 0

RX(t) + RX(a− t) ≥ RX(0) + RX(a) > 0 for all 0 ≤ t ≤ a.

Then a measure in Wa is given by

µ =
1

2
δ0 +

1

2
δ1.

Furthermore:

CX(a) =
2

RX(0) + RX(a)
,

xa(t) =
RX(t) + RX(a− t)

RX(0) + RX(a)
, 0 ≤ t ≤ a .
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In any case, the measure µ = (δ0 + δ1)/2 does NOT remain
optimal for longer intervals.

Example 1 Consider the centered stationary Gaussian process
with the Gaussian covariance function

R(t) = e−t
2/2, t ∈ R .

Gaussian spectral density: full support in R;

for every a > 0 there is a unique measure of minimal energy.

The second spectral moment is finite: for a > 0 sufficiently small
this process satisfies the conditions of Proposition 1.
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The measure µ = (δ0 + δ1)/2 remains optimal for a ≤ a1 ≈ 2.2079.
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In the next regime the optimal measure acquires a point in the
middle of the interval. This continues for a1 < a ≤ a2 ≈ 3.9283.
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In the next regime the middle point of the optimal measure splits
in two and starts moving away from the middle. This continues for
a2 < a ≤ a3 ≈ 5.4508.
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Example 2 Consider an Ornstein-Uhlenbeck process: a centered
stationary Gaussian process with the covariance function

R(t) = e−|t|, t ∈ R .

Cauchy spectral density: a full support in R.

For every a > 0 there is a unique measure of minimal energy.

Even the first spectral moment is infinite. Proposition 1 does not
apply.
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The optimal probability measure:

µ =
1

a + 2
δ0 +

1

a + 2
δ1 +

a

a + 2
λ ,

λ: the Lebesgue measure on (0, 1).

No phase transitions.

CX(a) = (a + 2)/2 for all a > 0

The limiting shape xa: identically equal to 1 on [0, a].
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Long intervals

As the length a of the interval increases, a difference between short
and long memory processes arises.

In the short memory case, the uniform measure is asymptotically
optimal.

Theorem 4 Assume that RX is positive,
∫∞
0 R(t) dt <∞. Then

lim
a→∞

1

a
CX(a) =

(
lim
a→∞

a

∫ 1

0

∫ 1

0
RX

(
a(u − v)

)
λ(du)λ(dv)

)−1
=

1

2
∫∞
0 R(t) dt

.



Long intervals

As the length a of the interval increases, a difference between short
and long memory processes arises.

In the short memory case, the uniform measure is asymptotically
optimal.

Theorem 4 Assume that RX is positive,
∫∞
0 R(t) dt <∞. Then

lim
a→∞

1

a
CX(a) =

(
lim
a→∞

a

∫ 1

0

∫ 1

0
RX

(
a(u − v)

)
λ(du)λ(dv)

)−1
=

1

2
∫∞
0 R(t) dt

.



Long intervals

As the length a of the interval increases, a difference between short
and long memory processes arises.

In the short memory case, the uniform measure is asymptotically
optimal.

Theorem 4 Assume that RX is positive,
∫∞
0 R(t) dt <∞. Then

lim
a→∞

1

a
CX(a) =

(
lim
a→∞

a

∫ 1

0

∫ 1

0
RX

(
a(u − v)

)
λ(du)λ(dv)

)−1
=

1

2
∫∞
0 R(t) dt

.



Long intervals

As the length a of the interval increases, a difference between short
and long memory processes arises.

In the short memory case, the uniform measure is asymptotically
optimal.

Theorem 4 Assume that RX is positive,
∫∞
0 R(t) dt <∞. Then

lim
a→∞

1

a
CX(a) =

(
lim
a→∞

a

∫ 1

0

∫ 1

0
RX

(
a(u − v)

)
λ(du)λ(dv)

)−1
=

1

2
∫∞
0 R(t) dt

.



Long memory case

Assume: the covariance function is regularly varying at infinity:

RX(t) =
L(t)

|t|β
, 0 < β < 1,

L: slowly varying at infinity.

Consider the minimization problem with respect to Riesz kernel,

min
µ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0

µ(du)µ(dv)

|u − v |β
, 0 < β < 1.

An optimal measure µβ exists, but it is not the uniform measure.
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Theorem 5 Assume that RX is positive and regularly varying.

For any µβ ∈ Wβ, the set of optimal measures for the Riesz kernel,

lim
a→∞

RX(a)CX(a) =

(∫ 1

0

∫ 1

0

µβ(du)µβ(dv)

|u − v |β

)−1
.

In particular, CX(a) is regularly varying with exponent β.
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More precise one-dimensional asymptotics

I X = (X (t), t ∈ R) centered continuous Gaussian process,
perhaps stationary.

I [a, b] a compact interval, u > 0 a high level.

I The event: the entire sample path of X on [a, b] is above u.

I Can one obtain more precise information than what can be
learned from large deviations?
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The 4 questions

Question 1. What is the precise asymptotic behaviour of

P

(
min

a≤t≤b
X (t) > u

)
as u →∞ ?

Question 2. Given the event

Bu :=

{
min

a≤t≤b
X (t) > u

}
,

how does the conditional distribution of (X (t), t ∈ [a, b]) behave
as u →∞ ?
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Question 3. Conditionally on Bu, what is the overshoot

min
a≤t≤b

X (t)− u as u →∞ ?

Question 4. What is the asymptotic conditional distribution,
given Bu, of the location of the minimum

arg min
a≤t≤b

X (t) as u →∞?
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I Assume X is stationary, spectral measure FX , such that

A1. For all t ∈ R, ∫ ∞
−∞

etxFX (dx) <∞ .

A2. The support of FX has at least one accumulation point.

I The canonical example: the Gaussian spectral density

FX (dx) = e−x
2/2 dx , x ∈ R .
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problem

min
µ∈M1[0,b]

∫ b

0

∫ b

0
R(t − s)µ(ds)µ(dt)

1 has a unique minimizer µ∗;

2 µ∗ has a support S of a finite cardinality;

3 the optimal value σ2∗(b) > 0.



Let S = {t1, . . . , tk}.

Let Σ be the covariance matrix of
(
X (t1), . . . ,X (tk)

)
.

Let θ = (θ1, . . . , θk) = Σ−11.

Then θj > 0, j = 1, . . . , k ,

P
(

min
j=1,...,k

X (tj) > u
)
∼(2π)−k/2(det Σ)−1/2(θ1 . . . θk)−1

u−ke−u
2/2σ2

∗(b), u →∞ .
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An important function

m(t) = E
(
X (t)

∣∣X (s) = 1, s ∈ S
)
, 0 ≤ t ≤ b .

I m is infinitely differentiable, ≥ 1 on [0, b].

I m ≡ 1 on S , so points of S are local minima.

The key assumption: m′′ > 0 on S ∩ (0, b).
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Theorem 1

Let the cardinality of S be k. Then

P
(

min
0≤t≤b

X (t) > u
)
∼ cu−ke−u

2/2σ2
∗(b), u →∞

for c ∈ [0,∞).

Furthermore, c > 0 if and only if the key assumption holds.
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Theorem 2

Suppose the key assumption holds. Then in C [0, b],

P

(
(X (t)− um(t), 0 ≤ t ≤ b) ∈ ·

∣∣∣∣ min
t∈[0,b]

X (t) > u

)
⇒ QW (·) ,

where QW is the law of a tilted Gaussian process on [0, b].



Theorem 3

Suppose the key assumption holds.

Then, as u →∞, the conditional distribution of

u
(

min
t∈[0,b]

X (t)− u
)

given min
t∈[0,b]

X (t) > u

converges weakly to the exponential distribution with mean σ2∗(b).



Theorem 4

Suppose the key assumption holds. Let

T∗ := arg min
s∈[0,b]

X (s) (the leftmost one in case of ties).

Then, as u →∞,

P

(
T∗ ∈ ·

∣∣∣ min
s∈[0,b]

X (s) > u

)
⇒ ν∗ .
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How often does the key assumption hold?

I It is a nondegeneracy assumption.

I Example The Gaussian covariance function R(t) = e−t
2/2.

I If 0 < b ≤ 2.2079..., S = {0, b}.

I The key assumption holds.
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I Suppose 2.2079... < b ≤ 3.9283....

I Then S = {0, b/2, b}.
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Existence of holes in excursion sets

I X = (X (t), t ∈ Rd): real-valued continuous Gaussian random
field.

I B a Euclidean ball, cB its center, SB = ∂(B) the boundary
(the sphere).

I Is there a hole in the middle of a high excursion set?

I Two probabilities:
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I Fix 0 < r ≤ 1.

Ψsp(u; r) = P
(
there exists a ball B entirely in T

such that X (t) > u for all t ∈ SB but X (s) < ru for some s ∈ B
)

Ψsp;c(u; r) = P
(
there exists a ball B entirely in T

such that X (t) > u for all t ∈ SB but X (cB) < ru
)
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I Similar questions can be asked about a fixed ball.

I Investigate the probabilities on logarithmic level using large
deviations.

I fixed ball B: Is a hole likely or not?

Let

Ψ(u) = P
(
X (t) > u for all t ∈ SB

)
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If

lim
u→∞

1

u2
log Ψsp;c(u; r) = lim

u→∞

1

u2
log Ψ(u) ,

the hole is “likely”.

I Large deviations approach requires solving difficult
optimization problems.
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Isotropic Gaussian fields

I A centered Gaussian field is isotropic if

RX(t1, t2) = R(‖t1 − t2‖), t1, t2 ∈ T .

I By the isotropy, the rotationally invariant probability measure
on the sphere is optimal in many relevant optimization
problems.

I Start first with the hole in the center of the ball.
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D = sup
{
ρ ≥ 0 : there is a ball of radius ρ entirely in T

}
.

For 0 ≤ ρ ≤ D denote:

I Sρ(0): the sphere of radius ρ centered at the origin;

I µh: the rotation invariant probability measure on Sρ(0).
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For 0 ≤ ρ ≤ D and 0 < r ≤ 1:

D(ρ) =

∫
Sρ(0)

∫
Sρ(0)

R(‖t1 − t2‖)µh(dt1)µh(dt2) .

Wρ(r) =

 D(ρ) if R(ρ) ≤ rD(ρ) ,

R(0)D(ρ)−
(
R(ρ)
)2

R(0)−2rR(ρ)+r2D(ρ)
if R(ρ) > rD(ρ) .
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Theorem Let X be isotropic. Then

lim
u→∞

1

u2
log Ψsp;c(u; r) = −1

2
min

0≤ρ≤D

(
Wρ(r)

)−1
.

For a sphere of radius ρ and 0 < r ≤ 1:

I a hole of depth r is likely if R(ρ) ≤ rD(ρ);

I a hole of depth r is unlikely if R(ρ) > rD(ρ).
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Is it true that a hole is always unlikely as ρ→ 0 and is always
likely as ρ→∞?

For small spheres (ρ→ 0):

I a hole of depth 0 < r < 1 is unlikely;

I a hole of depth r = 1 is unlikely if the field has a finite second
spectral moment.

I If the second spectral moment is infinite, a hole of depth
r = 1 may or may not be unlikely.
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For large spheres (ρ→∞):

I a hole of any depth 0 < r ≤ 1 is likely if the memory is
sufficiently short, e.g. if R is nonnegative and

lim sup
v→∞

R(tv)

R(v)
≤ t−a with a ≥ d − 1, for all t ≥ 1.

I In dimensions d ≥ 2, if the memory is sufficiently long, then
a deep enough hole may be unlikely even for a sphere of an
infinite radius.
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Suppose that d ≥ 2, R monotone and

R is regularly varying at infinity with exponent −(d − 1) + ε.

Denote

I (d ; ε) =

∫
S1(0)

∫
S1(0)
‖t1 − t2‖−(d−1)+ε µh(dt1)µh(dt2) .

A hole of depth r < 1/I (d ; ε) is unlikely even for spheres of infinite
radius!

This is true even though the field is ergodic and mixing.
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The value of I (d ; ε) in 2 and 3 dimensions.
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Most likely radius

What is the radius of a sphere for which this event is the most
likely:

1. the random field has a “peak” of height greater than u
covering the entire sphere;

2. there is a “hole” in the center of the sphere where the height
is smaller than ru.
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Assume that R is monotone, R(t)→ 0, and 0 < r < 1. Let

Hρ(r) =
R(0)D(ρ)−

(
R(ρ)

)2
R(0)− 2rR(ρ) + r2D(ρ)

, ρ > 0 .

Then

ρ∗r = argmaxρ≥0Hρ(r) .

is the radius of the sphere most likely to have a hole corresponding
to a factor r in the center.
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Limiting shapes

For the isotropic random field and any sphere, there is a
deterministic function (x(t), t ∈ Rd) such that

P

(
sup
t∈T

∣∣∣∣1uX (t)− x(t)

∣∣∣∣ ≥ ε∣∣∣∣ X (t) > u for each t on the sphere

and X (center) < ru

)
→ 0

as u →∞.
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I The shape is rotationally invariant.

I The shape depends on whether the hole is likely or not.

I We plot a radial crossection of the limting shape.
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The probability Ψsp(u; r)

Ψsp(u; r) = P
(
there exists a ball B entirely in T

such that X (t) > u for all t ∈ SB but X (s) < ru for some s ∈ B
)

Ψsp(u; r) ≥ Ψsp;c(u; r) .

In many cases: asymptotic behaviour of the two probabilities
is the same on the logarithmic scale.
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Assume R(0) = 1, and denote S1 = S1(0).

For ρ ≥ 0, 0 ≤ b ≤ 1 and µ ∈ M+
1 (S1), let

V (ρ, b;µ) =

∫
S1

∫
S1
R
(
ρ‖t1 − t2‖

)
µ(dt1)µ(dt2)−

(∫
S1
R(ρ‖t− be1‖)µ(dt)

)2
1− 2r

∫
S1
R(ρ‖t− be1‖)µ(dt) + r2
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Let

V∗(ρ, b) = min
µ∈M+

1

(
S1
)V (ρ, b;µ)

subject to

∫
S1

R(ρ‖t− be1‖)µ(dt) ≥ r

∫
S1

∫
S1

R
(
ρ‖t1 − t2‖

)
µ(dt1)µ(dt2) .

If, for every 0 ≤ ρ ≤ D such that R(ρ) ≥ rD(ρ), the function
V∗(ρ, b), 0 ≤ b ≤ 1 achieves its maximum at b = 0, then

lim
u→∞

1

u2
log Ψsp(u; r) = lim

u→∞

1

u2
log Ψsp;c(u; r) .
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A sufficient condition: for every 0 ≤ ρ ≤ D such that
R(ρ) ≥ rD(ρ),

min
0≤b≤1

∫
S1

R(ρ‖t− be1‖)µh(dt) =

∫
S1

R(ρ‖t‖)µh(dt) = R(ρ) ,

where µh is the rotation invariant probability measure on S1.

This condition is not necessary.



A sufficient condition: for every 0 ≤ ρ ≤ D such that
R(ρ) ≥ rD(ρ),

min
0≤b≤1

∫
S1

R(ρ‖t− be1‖)µh(dt) =

∫
S1

R(ρ‖t‖)µh(dt) = R(ρ) ,

where µh is the rotation invariant probability measure on S1.

This condition is not necessary.



Numerical experiments: the condition tends to hold for values of
the radius ρ exceeding a certain positive threshold.

In dimension d = 2 for both R(t) = e−t
2

and R(t) = e−|t|,
the threshold is around ρ = 1.18.

For these two covariance functions: the two probabilities are
asymptotically equivalent on the logarithmic scale.
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