Excursion probabilities for Gaussian processes
and fields
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> X = (X(t), t € RY): real-valued continuous random field.
» Often: X stationary and/or Gaussian.

> ucR: alevel;

the excursion set of X above the level u:

Ay ={teR?: X(t) > u}.
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» The structure of this random set?
» Natural connection to important functionals of the field.

» The supremum functional: for a compact K:

A,NK #Q if and only if sup X(t) > u.
tek
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More delicate questions

1. given that two points in R? belong to the excursion set A,:
what is the probability that they belong to the same
connected component of the excursion set?

2. given that a sphere belongs to the excursion set A,
what is the probability that anywhere inside the ball
the field is below ru, 0 < r < 17
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» Assume: X is Gaussian.
» The first step: the large deviations approach.

> a,bcR? a+#b. A path between a and b: a continuous
map & : [0,1] — RY with £(0) = a, £(1) = b.

» P(a,b): the collection of such paths. Estimate

P(EfeP(a,b): X(EW) >u, 0<v<1|X@) > u, X(b) > u).
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The non-trivial part of the problem: estimate the probability

Vyp(u) =P(3 e P(a,b): X(E(v))>u, 0<v<1).

If the random field is stationary: assume that b = 0, use the
notation W,.

If the domain of a random fieldis T c RY, and a, b in T:

Vap(u) =P (3 € P(a,b): {(v) € T and X(&(v)) > u, 0<v <1).
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Large deviations setup

An open set:

A=Ay = {w € GRY): 3¢ € Pla,b), wE(v) >1,0< v < 1}

Co(RY) = {w = (w(t), teRY) € C(RY): lim w(t)/|t] = o}.

[[t]] =00

For u > 0:
Vap(u)=P(u'X € A).

» Use the Gaussian large deviations theory:
Deutschel and Stroock (1989).
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The reproducing kernel Hilbert space

The RKHS H of X: a subspace of C(RY).

1. Start with the space of finite linear combinations

S aX(t) g eR G eRI forj=1,... k k=12,....

2. L: its closure in the mean square norm.
3. Identify £ with A via the injection £ — C(R9):

H = wy = (E(X(£)H), teRY)

4. The resulting norm:

lwnl|3, = E(H?).
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Suppose X stationary, spectral measure Fx.

The RKHS # can be identified with the subspace of L?(Fx)
of functions with even real parts and odd imaginary parts.

The injection L%(Fx) — C(RY):

h— S(h) = </Rd e'(t%) h(x) Fx(dx), t € Rd> .

The resulting norm:

IS(O)IZ, = 182 ry = / 16GI2 Fx(dx)
]Rd
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Theorem 1

Let X = (X(t), t € RY) be a continuous stationary Gaussian
random field, with covariance function satisfying

limsup Rx(t) =0.

l[t]]—o0

Then 1 1
lim — log Va(u) = —§Cx(a),

u—oo U
with
Cx(a) :=inf {/ |h(x)||? Fx(dx) : for some & € P(0,a)
Rd

/ e/ €)X h(x) Fx(dx) > 1,0 < v < 1} :
Rd
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» The constraints in Theorem 1 are not convex.

» For a fixed path, the constraints are convex, and one can use
the convex Lagrange duality.

Theorem 2 For a continuous stationary Gaussian random field X,

Cx(a)_[ sup i / / R (6(u) — €(v) p(du) p(cv)

geP(o a) LEM;([0,1])

M ([0, 1]): the space of all probability measures on [0, 1].

An optimal path is a path of maximal Rx capacity.

-1
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Fixed path

Assume a path £ € P(0,a) is fixed.

The minimization problem

MeMri”?ou/ / R (§(u), §(v)) u(du) p(av)

is the problem of finding a probability measures p
of minimal energy, or capacitory measures.

The set We C M; ([0, 1]) of optimal measures: a weakly compact
convex subset of M;"([0,1]).
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Suppose the primary feasible set in

inf{E(H?): He £, E[X(Ev)H] >1,0<v<1]
is non-empty.
Then for every u € W:

p({0<v<1: E[X(E(V))He] >1}) =0

for the unique primal optimal solution H, € L.



If the primal feasible set is non-empty then, for every € > 0:

P < sup
0<v<1

as u — oQ.
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If the primal feasible set is non-empty then, for every € > 0:

P < sup
0<v<1

as u — oQ.

> €

EX(E) — xev)| 2 X(6) > 0. 05 v 1) 0

u

Here
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Theorem 3

(i) For every € We:

1
He = Cx(a, b €) /0 X (£(v)) p(av)

with probability 1.

(ii) A probability measure € M; ([0, 1]) is a measure of minimal
energy if and only if

1
min /0 Rx (€(u), £(v)) a(dlu)

0<v<1

1 1
- /O /O R (€(un), &(u2)) p(dun) pu(duz) > 0.
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Remarks

» The function
1
v »—>/ Rx (&(u),&(v)) u(du), 0 < v <1,
0
is constant on the support of any measure p € W.

» The support of any measure of minimal energy is not ‘large’?
Not always true!

> If X is stationary, and the spectral measure is of the full
support, the image of any 11 € W on the path £ is unique.
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There is, essentially, a single path between two points.
X = (X(t), t € R): a stationary continuous Gaussian process.

How does
W, (u) = P(X(t) >, 0<t< a)

change with a > 07

What happens with the optimal probability measures 11,7

The limiting shapes x,?
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For some processes (in particular, those with a finite second
spectral moment), on short intervals, an easy descrption.

Proposition 1 Suppose that for some a > 0

Rx(t) + Rx(a—t) > Rx(0) + Rx(a) >0 forall0 <t <a.

Then a measure in W, is given by

1 1
= 6y + =91.
jz 20+21

Furthermore: )
G =
X(2) = 2 0T Rx(3)
Rx(t R, —t
x,(t) = x(t) + Rx(a — 1) 0<t<a.

Rx(0) + Rx(a) ’
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In any case, the measure j = (dp + 01)/2 does NOT remain
optimal for longer intervals.

Example 1 Consider the centered stationary Gaussian process
with the Gaussian covariance function

R(t)=e /2 teR.

Gaussian spectral density: full support in R;
for every a > 0 there is a unique measure of minimal energy.

The second spectral moment is finite: for a > 0 sufficiently small
this process satisfies the conditions of Proposition 1.



The measure = (6o + d1)/2 remains optimal for a < a; ~ 2.2079.
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In the next regime the optimal measure acquires a point in the
middle of the interval. This continues for a; < a < a» ~ 3.9283.

a=3 a=3.925

limiting shape
1.04

1

limiting shape

1.02
1
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t
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1.00004

limiting shape
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In the next regime the middle point of the optimal measure splits
in two and starts moving away from the middle. This continues for
a» < a < a3 =~ 5.4508.

a=4.5

1.05
L

1.04
L

1.03
L

1.02
L

101
L

1.00
L
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Example 2 Consider an Ornstein-Uhlenbeck process: a centered
stationary Gaussian process with the covariance function

R(t)=e It teR.

Cauchy spectral density: a full support in R.
For every a > 0 there is a unique measure of minimal energy.

Even the first spectral moment is infinite. Proposition 1 does not
apply.
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The optimal probability measure:

1 1 a
= 0, o A,
. a+20+a+21+a+2

A: the Lebesgue measure on (0,1).
No phase transitions.

Cx(a) =(a+2)/2 foralla>0

The limiting shape x;: identically equal to 1 on [0, a].
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Long intervals

As the length a of the interval increases, a difference between short
and long memory processes arises.

In the short memory case, the uniform measure is asymptotically
optimal.

Theorem 4 Assume that Ry is positive, [;~ R(t)dt < co. Then

all)n;o%Cx (algr;oa/ / Ry (a(u — v)) A(du) (dv)>

-1

2fo
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Long memory case

Assume: the covariance function is regularly varying at infinity:

L(t)
R , 0<pB<1l,
X( ) ‘t’B 6
L: slowly varying at infinity.

Consider the minimization problem with respect to Riesz kernel,

min / / ﬁ ) 0<pB<l.
neEM; ([0,1]) Iu - v|

An optimal measure pig exists, but it is not the uniform measure.
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Theorem 5 Assume that Ry is positive and regularly varying.

For any pg € Wg, the set of optimal measures for the Riesz kernel,

lim Rx(a </ / Holdu)ps dv)>
a—00 |u—v|?

In particular, Cx(a) is regularly varying with exponent £.
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More precise one-dimensional asymptotics

> X = (X(t), t € R) centered continuous Gaussian process,
perhaps stationary.

» [a, b] a compact interval, u > 0 a high level.
» The event: the entire sample path of X on [a, b] is above u.

» Can one obtain more precise information than what can be
learned from large deviations?
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The 4 questions

Question 1. What is the precise asymptotic behaviour of

P<min X(t)>u) asu— o0 ?

a<t<b
Question 2. Given the event

B, ::{ min X(t) > u} ,

a<t<b

how does the conditional distribution of (X(t),t € [a, b]) behave
as u—o0 7
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Question 3. Conditionally on By, what is the overshoot

min X(t)—u asu— o0 ?
a<t<b

Question 4. What is the asymptotic conditional distribution,
given B, of the location of the minimum

arg min X(t) as u — o7
a<t<b
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Al.

A2.

Assume X is stationary, spectral measure Fx, such that

For all t € R,

/ e™ Fx(dx) < .

—0o0

The support of Fx has at least one accumulation point.

The canonical example: the Gaussian spectral density

Fx(dx) = e /?dx, x €R.
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Lemma Under the assumptions Al and A2: the optimization
problem

b b
min ]/0 /O R(t — s)u(ds)u(dt)

neM1[0,b

1 has a unique minimizer p.;
2 4 has a support S of a finite cardinality;

3 the optimal value o2(b) > 0.



Let S ={t1,..., tx}.



Let S ={t1,..., tx}.

Let X be the covariance matrix of (X(t1),...,X(tx)).



Let S ={t1,..., tx}.
Let X be the covariance matrix of (X(t1),...,X(tx)).

Let 0 = (017 e ,(9;() =y 11



Let S ={t1,..., tx}.
Let X be the covariance matrix of (X(t1),...,X(tx)).
Let 0 = (017 e ,(9;() =y 11

Then 6, >0, =1,...,k,



Let S ={t1,..., tx}.
Let X be the covariance matrix of (X(t1),...,X(tx)).
Let 0 = (017 e ,(9;() =y 11

Then 6, >0, =1,...,k,

P( min X(t;) > u) ~(27) K2(det £)7Y2(0y ... 0,)
J=1,...,

L 2/ 2
u ke “/20*(b), u—00.
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An important function

m(t) = E(X(t)|X(s)=1,s€S5), 0<t<b.

» m is infinitely differentiable, > 1 on [0, b].

» m=1on S, so points of S are local minima.

The key assumption: m” > 0on SN (0, b).
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Theorem 1

Let the cardinality of S be k. Then

P( min X(t) > u) ~ cuke /272 b) s oo
0<t<b

for c € [0, 00).

Furthermore, ¢ > 0 if and only if the key assumption holds.



Theorem 2

Suppose the key assumption holds. Then in C[0, b],

where Q is the law of a tilted Gaussian process on [0, b].



Theorem 3

Suppose the key assumption holds.

Then, as u — oo, the conditional distribution of

u(tgf(i)?b]X(t) —u) given tgé?b]X(t) > u

converges weakly to the exponential distribution with mean o2(b).
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Theorem 4

Suppose the key assumption holds. Let

T, :=arg min X(s) (the leftmost one in case of ties).
s€[0,b]

Then, as u — oo,

P(T*e-

min X(s) > u) = Uy
s€[0,b]
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How often does the key assumption hold?

P It is a nondegeneracy assumption.
> Example The Gaussian covariance function R(t) = e /2.
> If 0 < b<22079..., S ={0, b}.

> The key assumption holds.
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» Suppose 2.2079... < b < 3.9283....

> Then S = {0,b/2, b}.



mu

1.01 1.02 1.03 1.04 1.05

1.00

b

3

mu

1.04

1.03

1.02

1.01

1.00

b=3.9283

o -

F.



Existence of holes in excursion sets



Existence of holes in excursion sets

> X = (X(t), t € RY): real-valued continuous Gaussian random
field.



Existence of holes in excursion sets

> X = (X(t), t € RY): real-valued continuous Gaussian random
field.

» B a Euclidean ball, cg its center, Sg = 9(B) the boundary
(the sphere).



Existence of holes in excursion sets

> X = (X(t), t € RY): real-valued continuous Gaussian random
field.

» B a Euclidean ball, cg its center, Sg = 9(B) the boundary
(the sphere).

» Is there a hole in the middle of a high excursion set?



Existence of holes in excursion sets

> X = (X(t), t € RY): real-valued continuous Gaussian random
field.

» B a Euclidean ball, cg its center, Sg = 9(B) the boundary
(the sphere).

» Is there a hole in the middle of a high excursion set?

> Two probabilities:
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> Fix0<r<I1.

Wsp(u; r) = P(there exists a ball B entirely in T

such that X(t) > u for all t € Sg but X(s) < ru for some s € B)

Wep.c(u; r) = P(there exists a ball B entirely in T

such that X(t) > u for all t € Sg but X(cg) < ru).
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» Similar questions can be asked about a fixed ball.

> Investigate the probabilities on logarithmic level using large
deviations.

> fixed ball B: Is a hole likely or not?

Let

W(u) = P(X(t) > uforall t € Sg).
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1 1
lim = log Wepc(u;r) = lim — log W(u),

u—o0 12 u—o00 U

the hole is “likely”.

» Large deviations approach requires solving difficult
optimization problems.
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Isotropic Gaussian fields

» A centered Gaussian field is isotropic if

Rx(tl,tg) = R(Htl —tQH), t1,tbeT.

P By the isotropy, the rotationally invariant probability measure
on the sphere is optimal in many relevant optimization
problems.

» Start first with the hole in the center of the ball.
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D =sup{p >0: thereis a ball of radius p entirely in T}.

For 0 < p < D denote:

» S,(0): the sphere of radius p centered at the origin;

» up: the rotation invariant probability measure on S5,(0).
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ForOo<p<Dand0<r<1:

D(p) = /5 / R(Its — o )n(dts) sun(d).

Wolr) =4 rO)DO-(R() .
AR Rlp) > ()

{ D(p) if R(p) < rD(p),
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Theorem Let X be isotropic. Then

. 1 1 . -1
uIl_)moo 2 log Wep.c(u;r) = ~3 Og\plgD(Wp(r)) .

For a sphere of radius p and 0 < r < 1:

» a hole of depth r is likely if R(p) < rD(p);
» a hole of depth r is unlikely if R(p) > rD(p).
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Is it true that a hole is always unlikely as p — 0 and is always
likely as p — o0?

For small spheres (p — 0):
» a hole of depth 0 < r < 1 is unlikely;

> a hole of depth r = 1 is unlikely if the field has a finite second
spectral moment.

» If the second spectral moment is infinite, a hole of depth
r =1 may or may not be unlikely.
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For large spheres (p — o0):

» a hole of any depth 0 < r < 1 is likely if the memory is
sufficiently short, e.g. if R is nonnegative and

imsup )

<t witha>d—-1, forall t >1.

» In dimensions d > 2, if the memory is sufficiently long, then
a deep enough hole may be unlikely even for a sphere of an
infinite radius.
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Suppose that d > 2, R monotone and
R is regularly varying at infinity with exponent —(d — 1) + ¢.
Denote

I(dic) = / / s — tof @D 1 (dty) pa(da)
51(0) /51(0)

A hole of depth r < 1/I(d;¢) is unlikely even for spheres of infinite
radius!

This is true even though the field is ergodic and mixing.
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Most likely radius

What is the radius of a sphere for which this event is the most
likely:

1. the random field has a “peak” of height greater than u
covering the entire sphere;

2. there is a “hole” in the center of the sphere where the height
is smaller than ru.



Assume that R is monotone, R(t) — 0, and 0 < r < 1. Let

R(0)D(p) - (R(p))
(0) — 2rR(p) + r2D(p)’

2

Hp(r):R p>0.



Assume that R is monotone, R(t) — 0, and 0 < r < 1. Let

() = —ROPE) = (R(e)”
" R(0) ~2rR(p) + 2D(p)’

p>0.

Then
py = argmax,sqH,(r).

is the radius of the sphere most likely to have a hole corresponding
to a factor r in the center.



D and H Optimal radius

Thostar

Figure: The functions D(p) (solid line) and H,(r) (dashed line) for
r = 1/2 (left plot) and the optimal radius p} (right plot), both for
R(t)=e*.
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Limiting shapes

For the isotropic random field and any sphere, there is a
deterministic function (x(t), t € RY) such that

X(t) > u for each t on the sphere

%X(t) — x(t)’ > e

P<sup
teT

and X(center) < ru) —0

as u — oQ.
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P> The shape is rotationally invariant.

» The shape depends on whether the hole is likely or not.



P> The shape is rotationally invariant.
» The shape depends on whether the hole is likely or not.

> We plot a radial crossection of the limting shape.



T T T T T T
o.o 1.0 2.0 3.0 o.o 1.0 2.

Figure: The limiting shapes for p = 1 (hole unlikely, left plot)

and p = 2 (hole likely, right plot), both for r =1/2 and R(t) = e *.

The horizontal axes are units of t1/p.
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The probability Ws,(u; r)

Wsp(u; r) = P(there exists a ball B entirely in T
such that X(t) > u for all t € Sg but X(s) < ru for some s € B)
Vep(uir) = Wspe(uir).

In many cases: asymptotic behaviour of the two probabilities
is the same on the logarithmic scale.
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Assume R(0) = 1, and denote S; = 51(0).
For p>0,0<b<1anduec M (5) let

V(p, bip) =

Js, Js, R(ollts — ta]) (tn)u(dts) — (fs, Rl — besl)) u()’

1—2r [ R(pllt — bed||) u(dt) +r2 [g [s R(plltr — to|) pu(dt)p(dta)



Let

subject to

/51 R(pl||t — bey||) p / / (pllts — ta]) p(dts)p(dtz) .



Let

subject to

/51 R(pllt — bex ) u // (pllts — tal]) p(dts)p(dts)

If, for every 0 < p < D such that R(p) > rD(p), the function
Vi(p, b), 0 < b < 1 achieves its maximum at b = 0, then

1
lim log Wsp(u; r) = lim log Wsp.c(u;r).

U—00 u2 u—00 u2



A sufficient condition: for every 0 < p < D such that
R(p) > rD(p),
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A sufficient condition: for every 0 < p < D such that
R(p) > rD(p),

min / R(pllt — bex ) un(dt) = /5 R(plIt]) n(d) = R(p),

0<b<1 Jg

where pp is the rotation invariant probability measure on S;.

This condition is not necessary.
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Numerical experiments: the condition tends to hold for values of
the radius p exceeding a certain positive threshold.

In dimension d = 2 for both R(t) = e~ and R(t) = eI,
the threshold is around p = 1.18.

For these two covariance functions: the two probabilities are
asymptotically equivalent on the logarithmic scale.



