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From Barry Simon’s book "Szegő’s Theorem and Its Descendants",
Chapter 2 :

In algebra, when one says a = b, it is a tautology and so uninteresting ;
while in analysis, when one says a = b, it is two deep inequalities.
(attributed to S. Bochner)

If one only proves a = b by showing a 6 b and b 6 a, one has not
understood the true reason why a = b.
(attributed to E. Noether)

Our contribution could be :

If a and b are two positive functionals, when one says a = b, a probabilist
may think that a and b could be two rate functions of the same large
deviation principle under two different encodings.
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Kullback Leibler Divergence

Kullback Leibler Divergence

S. Kullback (1907-1994) R. Leibler (1914-2003)

P,Q probability measures on some space E

K(P,Q) =

{∫
E log dPdQdP if P � Q and log dPdQ ∈ L

1(P)

+∞ otherwise
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Orthogonal polynomial recursion on T

Orthogonal polynomial recursion on T

I µ probability measure on T
1) (pn) sequence of orthogonal polynomials associated to µ
2) pn is monic and has degree n
3) k 6= n,

∫
T pn(z)pk(z)µ(dz) = 0

I Satisfies the recursion

→ pn+1(z) = zpn(z) − αnp
∗
n(z) where p∗n(z) := z

npn(1/z̄).
→ αn = −pn+1(0) is the Verblunsky coefficient
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Szegö Theorem

Szegö Theorem

G. Szegö (1895-1985)

Szegö Theorem
λ Lebesgue measure on T.

K(λ,µ) = −

∞∑
n=0

log(1 − |αn|
2)

F. Gamboa (IMT Toulouse and IFCAM Bangalore) Bangalore February 5th 2019 10 / 32



The three parametrizations

Overview

1 Kullback Leibler Divergence

2 Orthogonal polynomial recursion on T

3 Szegö Theorem

4 The three parametrizations

5 Three particular probability distributions

6 Killip Simon Theorem

7 Our sum rules

8 How to get a sum rule with a probabilistic method
F. Gamboa (IMT Toulouse and IFCAM Bangalore) Bangalore February 5th 2019 11 / 32



The three parametrizations

The three parametrizations

I µ probability measure on R
→ Assume that µ has all its moments finite
→ (pn) normalized othogonal polynomials in L2(µ)
→ Three terms recursion

xpn(x) = anpn−1(x) + bn+1pn(x) + an+1pn+1(x), an > 0, bn+1 ∈ R

I Assume moreover that µ is supported on [0,+∞[
bn = z2n−2 + z2n−1, and a2n = z2n−1z2n.

I If µ is supported on [0, 1], µ may be seen as the pushforward of a
measure on T invariant by 2π− θ by sin2(θ/2).
bk+1 = 1/4[2 − (1 − α2k−1)α2k − (1 + α2k−1)α2k−2] and

ak+1 = 1/4
√

(1 − α2k−1)(1 − α2
2k)(1 + α2k+1)

F. Gamboa (IMT Toulouse and IFCAM Bangalore) Bangalore February 5th 2019 12 / 32



The three parametrizations

The three parametrizations

I µ probability measure on R
→ Assume that µ has all its moments finite
→ (pn) normalized othogonal polynomials in L2(µ)
→ Three terms recursion

xpn(x) = anpn−1(x) + bn+1pn(x) + an+1pn+1(x), an > 0, bn+1 ∈ R

I Assume moreover that µ is supported on [0,+∞[
bn = z2n−2 + z2n−1, and a2n = z2n−1z2n.

I If µ is supported on [0, 1], µ may be seen as the pushforward of a
measure on T invariant by 2π− θ by sin2(θ/2).
bk+1 = 1/4[2 − (1 − α2k−1)α2k − (1 + α2k−1)α2k−2] and

ak+1 = 1/4
√

(1 − α2k−1)(1 − α2
2k)(1 + α2k+1)

F. Gamboa (IMT Toulouse and IFCAM Bangalore) Bangalore February 5th 2019 12 / 32



Three particular probability distributions

Overview

1 Kullback Leibler Divergence

2 Orthogonal polynomial recursion on T

3 Szegö Theorem

4 The three parametrizations

5 Three particular probability distributions

6 Killip Simon Theorem

7 Our sum rules

8 How to get a sum rule with a probabilistic method
F. Gamboa (IMT Toulouse and IFCAM Bangalore) Bangalore February 5th 2019 13 / 32



Three particular probability distributions

Semicircular distribution

R = 2

SC(dx) =
1

2π

√
4 − x21[−2,2](x)dx

Limit of the eigenvalues distribution of the symmetric Gaussian ensemble

ak = 1, bk = 0 for all k > 1 .
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Three particular probability distributions

Pastur-Marchenko Distribution

L. Pastur V. Marchenko

MPτ(dx) =

√
(τ+ − x)(x− τ−)

2πτx
1(τ−,τ+)(x)dx , τ± = (1±

√
τ)2

Limit of the squared singular values distribution of rectangular Gaussian
matrices. τ ∈]0, 1] the asymptotic ratio nb col/ nb line

ak =
√
τ (k > 1) , b1 = 1 , bk = 1 + τ (k > 2)

and correspond to z2n−1 = 1 and z2n = τ for all n > 1.
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Three particular probability distributions

Kesten Mac Kay Distribution

H. Kesten B. Mc Kay

KMKκ1,κ2(dx) =
(2 + κ1 + κ2)

2π

√
(u+ − x)(x− u−)

x(1 − x)
1(u−,u+)(x)dx

u± :=
1

2
+
κ21 − κ

2
2 ± 4

√
(1 + κ1)(1 + κ2)(1 + κ1 + κ2)

2(2 + κ1 + κ2)2
, κ1, κ2 > 0.

Asymptotic distribution of the eigenvalues in the Jacobi-ensemble
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Three particular probability distributions

The associated Verblunsky coefficients for k > 0,

α2k =
κ1 − κ2

2 + κ1 + κ2
, α2k+1 = −

κ1 + κ2
2 + κ1 + κ2

.

Then

a1 =

√
(1 + κ1)(1 + κ2)

(2 + κ1 + κ2)3/2
, b1 =

1 + κ2
2 + κ1 + κ2

,

and for k > 2

ak =

√
(1 + κ1 + κ2)(1 + κ1)(1 + κ2)

(2 + κ1 + κ2)2
, bk =

1

2

[
1 −

κ21 − κ
2
2

(2 + κ1 + κ2)2

]
.
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Killip Simon Theorem

Killip Simon Theorem

R. Killip B. Simon

K(SC|µ) +
N+∑
n=1

F+
H(λ

+
n) +

N−∑
n=1

F−
H(λ

−
n) =

∑
k>1

(1

2
b2k + a

2
k − 1 − log(a2k)

)

F+
H(x) :=


∫x
2

√
t2 − 4dt = x

2

√
x2 − 4 − 2 log

(
x+
√
x2−4
2

)
if x > 2

∞ otherwise,

F−
H(x) := F+

H(−x)
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Our sum rules

Our sum rules I

K(MPτ|µ) +
N+∑
n=1

F+
L (λ

+
n) +

N−∑
n=1

F−
L (λ

−
n) =

∞∑
k=1

τ−1G(z2k−1) +G(τ
−1z2k)

F+
L (x) =


∫x
τ+

√
(t− τ−)(t− τ+)

tτ
dt if x > τ+,

∞ otherwise,

F−
L (x) =


∫τ−
x

√
(τ− − t)(τ+ − t)

tτ
dt if x 6 τ−,

∞ otherwise.

G(x) = x− 1 − log x, (x > 0).
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Our sum rules

Our sum rules II

K(KMKκ1,κ2 |µ) +
N+∑
n=1

F+
J (λ

+
n) +

N−∑
n=1

F−
J (λ

−
n) =

∞∑
k=0

H1(α2k+1) +H2(α2k)

F+
J (x) =


∫x
u+

√
(t− u+)(t− u−)

t(1 − t)
dt if u+ 6 x 6 1

∞ otherwise.

F−
J (x) =


∫u−

x

√
(u− − t)(u+ − t)

t(1 − t)
dt if 0 6 x 6 u−

∞ otherwise.
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Our sum rules

For −1 6 x 6 1

H1(x) = −(1 + κ1 + κ2) log

[
2 + κ1 + κ2

2(1 + κ1 + κ2)
(1 − x)

]
− log

[
2 + κ1 + κ2

2
(1 + x)

]

H2(x) = −(1 + κ1) log

[
(2 + κ1 + κ2)

2(1 + κ1)
(1 + x)

]
−(1 + κ2) log

[
(2 + κ1 + κ2)

2(1 + κ1)
(1 − x)

]
.

Particular case κ1 = κ2 = 0⇒ u− = 0, u+ = 1, KMKκ1,κ2 arsine law.

We recover the Szegö Theorem pushed on [0, 1] by sin2(θ/2).
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How to get a sum rule with a probabilistic method

How to get a sum rule with a probabilistic method
I Consider a compactly supported measure µ as the spectral measure

of some operator M in some class, at a vector e :

< e,Mke >=

∫
E

xkdµ(x) , (k > 0)

E = T or R , M unitary or self-adjoint.
I Randomize in this class, a family of finite-dimensional operators

(Mn)n>1 and their spectral measures (µn)n>1 at (e(n))n>1

I Consider the two encodings of the spectral measures µn
1) the pair "locations, weights"

µn =

n∑
k=1

w
(n)
k δ

λ
(n)
k

2) the recursion coefficients (Jacobi or Verblunsky) : (a(n)k ,b
(n)
k ) or

(α
(n)
k ).
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How to get a sum rule with a probabilistic method

I Prove two Large Deviation Principles :

1

n
log P(µn ∼= µ) ∼= −Isp(µ)

1

n
log P(µn ∼= µ) ∼= −IJac(a1,b1,a2, . . . )

I Write equality of both rate functions :

Isp(µ) = IJac(a1,b1,a2, . . . )

Notice the difference between the two measures

µn = µSPn =

n∑
k=1

wkδλk (spectral measure)

µESDn =
1

n

n∑
k=1

δλk (empirical spectral distribution) .
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I Prove two Large Deviation Principles :
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Randomization for the KS/SR
I Suppose the distribution of Mn has the GUE-density

Z−1
n exp−

n

2
trM2

I Dumitriu-Edelman (’02) proved that the Jacobi parameters are
independent and

b
(n)
k ∼ N(0;n−1) (1 6 k 6 n),

(a
(n)
k )2 ∼ Gamma (n− k;n−1) (1 6 k 6 n− 1) .

Note that b(n)k → 0, a(n)k → 1, the Jacobi coefficients of SC.

Theorem (GR ’11)

µSPn satisfies the LDP with speed n and rate function

IJac =

∞∑
1

1

2
b2k +

∞∑
1

G(a2k) , G(x) = x− 1 − log x .

F. Gamboa (IMT Toulouse and IFCAM Bangalore) Bangalore February 5th 2019 27 / 32



How to get a sum rule with a probabilistic method

LDP for the measure side, general potential
I Mn random complex Hermitian n× n matrix with density

(ZVn)
−1 exp(−ntrV(M))

I Potential V : R→ (−∞,∞] smooth, e.g. V(x) = x2/2, (GUE).
I

µSPn =

n∑
1

wiδλi

with wi = |U1,i|
2 for U unitary matrix of eigenvectors.

I The joint density of eigenvalues is

(ZVn)
−1
∏
i<j

(λi − λj)
2
n∏
i

exp(−nV(λi))

and (w1, . . . ,wn) is uniformly distributed on the simplex, and
independent of the eigenvalues.
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Theorem (GNR ’16)
Under assumptions on V , the sequence of random spectral measures
µ(n) satisfies the LDP with speed n with good rate function

Isp(µ) = K(µV |µ) +
∑
k

FV(E
+
k ) +

∑
k

FV(E
−
k )

for probability measures µ on R satisfying

Supp(Σ) = [aV ,bV ] ∪ {E−j }
N−

j=1 ∪ {E+j }
N+

j=1

where N+ (resp. N−) is 0, finite or infinite, E−j ↑ aV and E+j ↓ bV are
isolated points of the support .
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New sum rules need LDPs for the coefficient side.

We need matrix models whose spectral measure admits
coefficients with nice probabilistic properties !
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Sum rule

Spectral side Coefficient side

Potential Moment problem

Hermite, Laguerre, Jacobi Hamburger, Stieltjès, Hausdorff

SC, MP, KMK (ak,bk), (zk), (uk)
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THANK YOU FOR YOUR ATTENTION!
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