Large deviations and sum rules

Fabrice Gamboa (Institut de Mathématiques de Toulouse and IFCAM) Collaboration with: Jan Nagel (Eindhoven) and Alain Rouault (Versailles)

February 5th 2019

J. Nagel (Eindhoven)

A. Rouault (Versailles)

ISI Bangalore

Bibliography

Spectral theory

B. Simon, Szegö's Theorem and Its Descendants (2011)

B. Simon, Orthogonal Polynomials on the Unit Circle I and II (2005, 2007)

Large deviations G. Anderson, A. Guionnet, and O. Zeitouni *An introduction to random matrices* (2010).

Bibliography

Spectral theory

- B. Simon, Szegö's Theorem and Its Descendants (2011)
- B. Simon, Orthogonal Polynomials on the Unit Circle I and II (2005, 2007)

Large deviations

G. Anderson, A. Guionnet, and O. Zeitouni *An introduction to random matrices* (2010).

Bibliography

Spectral theory

B. Simon, Szegö's Theorem and Its Descendants (2011)

B. Simon, Orthogonal Polynomials on the Unit Circle I and II (2005, 2007)

Large deviations

G. Anderson, A. Guionnet, and O. Zeitouni *An introduction to random matrices* (2010).

Papers (LD = large deviations, SR = sum rules)

F. Gamboa, J. Nagel, A. Rouault

- Canonical moments and random spectral measures, JoTP (2010)
- LD for random spectral measures and SR, AMRX (2011)
- Operator-valued spectral measures and LD, JSPI (2014)
- SR via LD, J. Funct. Anal. (2016)
- SR and LD for spectral matrix measures, Bernoulli (2018)
- SR and LD for spectral measures on the unit circle, Random Matrices Th. and Appl. (2017)
- SR and LD for the spectral measures in the Jacobi ensemble, arXiv (2018)

J. Breuer, B. Simon, O. Zeitouni : LD and SR for Spectral Theory : A Pedagogical Approach, *J. Spectral Th.* (2018).

- J. Breuer, B. Simon, O. Zeitouni : LD and the Lukic conjecture, *Duke* (2018).
- B. Simon : Spectral Theory, SR, Meromorphic Herglotz Functions and LD, *Notices AMS* (2017)

Papers (LD = large deviations, SR = sum rules)

- F. Gamboa, J. Nagel, A. Rouault
 - Canonical moments and random spectral measures, JoTP (2010)
 - LD for random spectral measures and SR, AMRX (2011)
 - Operator-valued spectral measures and LD, JSPI (2014)
 - SR via LD, J. Funct. Anal. (2016)
 - SR and LD for spectral matrix measures, Bernoulli (2018)
 - SR and LD for spectral measures on the unit circle, Random Matrices Th. and Appl. (2017)
 - SR and LD for the spectral measures in the Jacobi ensemble, *arXiv* (2018)

J. Breuer, B. Simon, O. Zeitouni : LD and SR for Spectral Theory : A Pedagogical Approach, *J. Spectral Th.* (2018). J. Breuer, B. Simon, O. Zeitouni : LD and the Lukic conjecture, *Duke* (2018).

B. Simon : Spectral Theory, SR, Meromorphic Herglotz Functions and LD, *Notices AMS* (2017)

Papers (LD = large deviations, SR = sum rules)

- F. Gamboa, J. Nagel, A. Rouault
 - Canonical moments and random spectral measures, JoTP (2010)
 - LD for random spectral measures and SR, AMRX (2011)
 - Operator-valued spectral measures and LD, JSPI (2014)
 - SR via LD, J. Funct. Anal. (2016)
 - SR and LD for spectral matrix measures, Bernoulli (2018)
 - SR and LD for spectral measures on the unit circle, Random Matrices Th. and Appl. (2017)
 - SR and LD for the spectral measures in the Jacobi ensemble, *arXiv* (2018)
- J. Breuer, B. Simon, O. Zeitouni : LD and SR for Spectral Theory : A Pedagogical Approach, *J. Spectral Th.* (2018).
- J. Breuer, B. Simon, O. Zeitouni : LD and the Lukic conjecture, *Duke* (2018).
- B. Simon : Spectral Theory, SR, Meromorphic Herglotz Functions and LD, *Notices AMS* (2017)

In algebra, when one says a = b, it is a tautology and so uninteresting; while in analysis, when one says a = b, it is two deep inequalities. (attributed to S. Bochner)

If one only proves a = b by showing $a \le b$ and $b \le a$, one has not understood the true reason why a = b. (attributed to E. Noether)

Our contribution could be :

In algebra, when one says a = b, it is a tautology and so uninteresting; while in analysis, when one says a = b, it is two deep inequalities. (attributed to S. Bochner)

If one only proves a = b by showing $a \le b$ and $b \le a$, one has not understood the true reason why a = b. (attributed to E. Noether)

Our contribution could be :

In algebra, when one says a = b, it is a tautology and so uninteresting; while in analysis, when one says a = b, it is two deep inequalities. (attributed to S. Bochner)

If one only proves a = b by showing $a \le b$ and $b \le a$, one has not understood the true reason why a = b. (attributed to E. Noether)

Our contribution could be :

In algebra, when one says a = b, it is a tautology and so uninteresting; while in analysis, when one says a = b, it is two deep inequalities. (attributed to S. Bochner)

If one only proves a = b by showing $a \le b$ and $b \le a$, one has not understood the true reason why a = b. (attributed to E. Noether)

Our contribution could be :

Overview

- 1 Kullback Leibler Divergence
- 2 Orthogonal polynomial recursion on ${\mathbb T}$
- 3 Szegö Theorem
- 4 The three parametrizations
- 5 Three particular probability distributions
- 6 Killip Simon Theorem
- 7 Our sum rules

B How to get a sum rule with a probabilistic method

Kullback Leibler Divergence

DR. SOLOMON KULLBACK

S. Kullback (1907-1994)

DR. RICHARD A. LEIBLER

R. Leibler (1914-2003)

P, Q probability measures on some space E

 $\mathsf{K}(\mathsf{P}, Q) = \begin{cases} \int_\mathsf{E} \log \frac{\mathrm{d}\mathsf{P}}{\mathrm{d}Q} d\mathsf{P} \ \text{ if } \mathsf{P} \ll Q \text{ and } \log \frac{\mathrm{d}\mathsf{P}}{\mathrm{d}Q} \in \mathsf{L}^1(\mathsf{P}) \\ +\infty \ \text{ otherwise} \end{cases}$

Overview

- 1 Kullback Leibler Divergence
- 2 Orthogonal polynomial recursion on ${\mathbb T}$
- 3 Szegö Theorem
- 4 The three parametrizations
- 5 Three particular probability distributions
- 6 Killip Simon Theorem
- 7 Our sum rules

B How to get a sum rule with a probabilistic method

Orthogonal polynomial recursion on ${\mathbb T}$

• μ probability measure on $\mathbb T$

- 1) (p_n) sequence of orthogonal polynomials associated to μ
- 2) p_{n} is monic and has degree n
- 3) $k \neq n$, $\int_{\mathbb{T}} p_n(z) p_k(z) \mu(dz) = 0$

Satisfies the recursion

```
 \begin{array}{l} \rightarrow \ p_{n+1}(z) = zp_n(z) - \overline{\alpha}_n p_n^*(z) \text{ where } p_n^*(z) := z^n p_n(1/\overline{z}). \\ \rightarrow \ \alpha_n = -p_{n+1}(0) \text{ is the Verblunsky coefficient} \end{array}
```

Orthogonal polynomial recursion on ${\mathbb T}$

• μ probability measure on \mathbb{T}

- 1) (p_n) sequence of orthogonal polynomials associated to μ
- 2) p_n is monic and has degree n
- 3) $k \neq n$, $\int_{\mathbb{T}} p_n(z) p_k(z) \mu(dz) = 0$
- Satisfies the recursion

```
 \begin{array}{l} \rightarrow \ \mathfrak{p}_{n+1}(z) = z\mathfrak{p}_n(z) - \overline{\alpha}_n\mathfrak{p}_n^*(z) \text{ where } \mathfrak{p}_n^*(z) := z^n\mathfrak{p}_n(1/\overline{z}), \\ \rightarrow \ \alpha_n = -\mathfrak{p}_{n+1}(0) \text{ is the Verblunsky coefficient} \end{array}
```

Orthogonal polynomial recursion on ${\mathbb T}$

• μ probability measure on \mathbb{T}

- 1) (p_n) sequence of orthogonal polynomials associated to μ
- 2) p_n is monic and has degree n
- 3) $k \neq n$, $\int_{\mathbb{T}} p_n(z) p_k(z) \mu(dz) = 0$
- Satisfies the recursion

$$\rightarrow p_{n+1}(z) = zp_n(z) - \overline{\alpha}_n p_n^*(z) \text{ where } p_n^*(z) := z^n p_n(1/\overline{z}).$$

$$\rightarrow \alpha = -p_{n-1}(0) \text{ is the Verblunsky coefficient}$$

Overview

- 1 Kullback Leibler Divergence
- 2 Orthogonal polynomial recursion on ${\mathbb T}$
- 3 Szegö Theorem
- 4 The three parametrizations
- 5 Three particular probability distributions
- 6 Killip Simon Theorem
- 7 Our sum rules

B How to get a sum rule with a probabilistic method

Szegö Theorem

Szegö Theorem

G. Szegö (1895-1985)

Szegö Theorem

 λ Lebesgue measure on \mathbb{T} .

$$\mathsf{K}(\lambda,\mu) = -\sum_{n=0}^{\infty} \log(1-|\alpha_n|^2)$$

Overview

- 1 Kullback Leibler Divergence
- 2 Orthogonal polynomial recursion on ${\mathbb T}$
- 3 Szegö Theorem
- 4 The three parametrizations
- 5 Three particular probability distributions
- 6 Killip Simon Theorem
- 7 Our sum rules

B How to get a sum rule with a probabilistic method

The three parametrizations

• μ probability measure on $\mathbb R$

- $ightarrow\,$ Assume that μ has all its **moments finite**
- $ightarrow \, (p_{n})$ normalized othogonal polynomials in $L^{2}(\mu)$
- ightarrow Three terms recursion

$$xp_n(x) = a_n p_{n-1}(x) + b_{n+1} p_n(x) + a_{n+1} p_{n+1}(x), a_n > 0, b_{n+1} \in \mathbb{R}$$

- Assume moreover that μ is supported on $[0, +\infty[$ $b_n = z_{2n-2} + z_{2n-1}$, and $a_n^2 = z_{2n-1}z_{2n}$.
- ► If μ is supported on [0, 1], μ may be seen as the pushforward of a measure on \mathbb{T} invariant by $2\pi \theta$ by $\sin^2(\theta/2)$. $b_{k+1} = 1/4[2 + (1 - \alpha_{2k-1})\alpha_{2k} - (1 + \alpha_{2k-1})\alpha_{2k-2}]$ and $a_{k+1} = 1/4\sqrt{(1 - \alpha_{2k-1})(1 - \alpha_{2k}^2)(1 + \alpha_{2k+1})}$

The three parametrizations

- μ probability measure on \mathbb{R}
 - $\rightarrow~$ Assume that μ has all its moments finite
 - $\rightarrow (p_n)$ normalized othogonal polynomials in $L^2(\mu)$
 - \rightarrow Three terms recursion

 $xp_n(x) = a_n p_{n-1}(x) + b_{n+1} p_n(x) + a_{n+1} p_{n+1}(x), \ a_n > 0, \ b_{n+1} \in \mathbb{R}$

Assume moreover that μ is supported on $[0, +\infty[$ $b_n = z_{2n-2} + z_{2n-1}$, and $a_n^2 = z_{2n-1}z_{2n}$.

► If μ is supported on [0, 1], μ may be seen as the pushforward of a measure on \mathbb{T} invariant by $2\pi - \theta$ by $\sin^2(\theta/2)$. $b_{k+1} = 1/4[2 - (1 - \alpha_{2k-1})\alpha_{2k} - (1 + \alpha_{2k-1})\alpha_{2k-2}]$ and $a_{k+1} = 1/4\sqrt{(1 - \alpha_{2k-1})(1 - \alpha_{2k}^2)(1 + \alpha_{2k+1})}$

Overview

- 1 Kullback Leibler Divergence
- 2 Orthogonal polynomial recursion on ${\mathbb T}$
- 3 Szegö Theorem
- 4 The three parametrizations
- 5 Three particular probability distributions
- 6 Killip Simon Theorem
- 7 Our sum rules

B How to get a sum rule with a probabilistic method

Semicircular distribution

$$R = 2$$

$$SC(dx) = \frac{1}{2\pi}\sqrt{4-x^2} \mathbb{1}_{[-2,2]}(x) dx$$

Limit of the eigenvalues distribution of the symmetric Gaussian ensemble

 $a_k=1, \ b_k=0 \ \text{ for all } k \geqslant 1.$

Pastur-Marchenko Distribution

L. Pastur

V. Marchenko

$$\mathsf{MP}_{\tau}(dx) = \frac{\sqrt{(\tau^+ - x)(x - \tau^-)}}{2\pi\tau x} \; \mathbbm{1}_{(\tau^-, \tau^+)}(x) dx \;\; , \tau^{\pm} = (1 \pm \sqrt{\tau})^2$$

Limit of the squared singular values distribution of rectangular Gaussian matrices. $\tau\in]0,1]$ the asymptotic ratio nb col/ nb line

$$a_k = \sqrt{ au} \; (k \geqslant 1)$$
 , $b_1 = 1$, $b_k = 1 + au \; (k \geqslant 2)$

and correspond to $z_{2n-1} = 1$ and $z_{2n} = \tau$ for all $n \ge 1$.

H. Kesten

B. Mc Kay

 $\mathsf{KMK}_{\kappa_{1},\kappa_{2}}(dx) = \frac{(2+\kappa_{1}+\kappa_{2})}{2\pi} \frac{\sqrt{(u^{+}-x)(x-u^{-})}}{x(1-x)} \, \mathbb{1}_{(u^{-},u^{+})}(x) dx$

 $u^{\pm} := \frac{1}{2} + \frac{\kappa_1^2 - \kappa_2^2 \pm 4\sqrt{(1+\kappa_1)(1+\kappa_2)(1+\kappa_1+\kappa_2)}}{2(2+\kappa_1+\kappa_2)^2}, \, \kappa_1, \, \kappa_2 \geqslant 0.$

Asymptotic distribution of the eigenvalues in the Jacobi-ensemble

The associated Verblunsky coefficients for $k \ge 0$,

$$\alpha_{2k} = \frac{\kappa_1 - \kappa_2}{2 + \kappa_1 + \kappa_2}, \quad \alpha_{2k+1} = -\frac{\kappa_1 + \kappa_2}{2 + \kappa_1 + \kappa_2}$$

Then

$$a_1 = \frac{\sqrt{(1+\kappa_1)(1+\kappa_2)}}{(2+\kappa_1+\kappa_2)^{3/2}} \ , \quad b_1 = \frac{1+\kappa_2}{2+\kappa_1+\kappa_2}$$

and for $k \ge 2$

$$a_{k} = \frac{\sqrt{(1 + \kappa_{1} + \kappa_{2})(1 + \kappa_{1})(1 + \kappa_{2})}}{(2 + \kappa_{1} + \kappa_{2})^{2}}, \quad b_{k} = \frac{1}{2} \left[1 - \frac{\kappa_{1}^{2} - \kappa_{2}^{2}}{(2 + \kappa_{1} + \kappa_{2})^{2}} \right]$$

Overview

- 1 Kullback Leibler Divergence
- 2 Orthogonal polynomial recursion on ${\mathbb T}$
- 3 Szegö Theorem
- 4 The three parametrizations
- 5 Three particular probability distributions
- 6 Killip Simon Theorem

7 Our sum rules

B How to get a sum rule with a probabilistic method

Killip Simon Theorem

Killip Simon Theorem

R. Killip

B. Simon

$$\begin{split} \mathsf{K}(\mathsf{SC}|\mu) + \sum_{n=1}^{\mathsf{N}^+} \mathcal{F}_{\mathsf{H}}^+(\lambda_n^+) + \sum_{n=1}^{\mathsf{N}^-} \mathcal{F}_{\mathsf{H}}^-(\lambda_n^-) &= \sum_{k \geqslant 1} \big(\frac{1}{2} \mathfrak{b}_k^2 + \mathfrak{a}_k^2 - 1 - \log(\mathfrak{a}_k^2) \big) \\ \mathcal{F}_{\mathsf{H}}^+(x) &:= \begin{cases} \int_2^x \sqrt{t^2 - 4} \, dt = \frac{x}{2} \sqrt{x^2 - 4} - 2 \log\left(\frac{x + \sqrt{x^2 - 4}}{2}\right) & \text{if } x \geqslant 2 \\ \infty & \text{otherwise,} \end{cases} \\ \mathcal{F}_{\mathsf{H}}^-(x) &:= \mathcal{F}_{\mathsf{H}}^+(-x) \end{split}$$

Overview

- 1 Kullback Leibler Divergence
- 2 Orthogonal polynomial recursion on ${\mathbb T}$
- 3 Szegö Theorem
- 4 The three parametrizations
- 5 Three particular probability distributions
- 6 Killip Simon Theorem
 - Our sum rules

B How to get a sum rule with a probabilistic method

Our sum rules I

 $\mathsf{K}(\mathsf{MP}_{\tau}|\mu) + \sum_{n=1}^{\mathsf{N}^{+}} \mathcal{F}_{\mathsf{L}}^{+}(\lambda_{n}^{+}) + \sum_{n=1}^{\mathsf{N}^{-}} \mathcal{F}_{\mathsf{L}}^{-}(\lambda_{n}^{-}) = \sum_{k=1}^{\infty} \tau^{-1}\mathsf{G}(z_{2k-1}) + \mathsf{G}(\tau^{-1}z_{2k})$ $\mathcal{F}_L^+(x) = \begin{cases} & \int_{\tau^+}^x \frac{\sqrt{(t-\tau^-)(t-\tau^+)}}{t\tau} \, dt & \text{ if } x \geqslant \tau^+, \\ & \infty & \text{ otherwise,} \end{cases}$ $\mathcal{F}_L^-(x) = \begin{cases} & \int_x^{\tau^-} \frac{\sqrt{(\tau^- - t)(\tau^+ - t)}}{t\tau} \, dt & \text{ if } x \leqslant \tau^-, \\ & \infty & \text{ otherwise.} \end{cases}$ $G(x) = x - 1 - \log x$. (x > 0).

Our sum rules II

 $\mathsf{K}(\mathsf{KMK}_{\kappa_{1},\kappa_{2}}|\mu) + \sum_{n=1}^{\mathsf{N}^{+}} \mathcal{F}_{J}^{+}(\lambda_{n}^{+}) + \sum_{n=1}^{\mathsf{N}^{-}} \mathcal{F}_{J}^{-}(\lambda_{n}^{-}) = \sum_{k=0}^{\infty} \mathsf{H}_{1}(\alpha_{2k+1}) + \mathsf{H}_{2}(\alpha_{2k})$ $\mathfrak{F}^+_J(x) = \begin{cases} \int_{u^+}^x \frac{\sqrt{(t-u^+)(t-u^-)}}{t(1-t)} \, dt & \text{ if } u^+ \leqslant x \leqslant 1 \\ \infty & \text{ otherwise.} \end{cases}$ $\mathfrak{F}_J^-(x) = \begin{cases} \displaystyle \int_x^{u^-} \frac{\sqrt{(u^- - t)(u^+ - t)}}{t(1-t)} \, dt & \text{ if } 0 \leqslant x \leqslant u^- \\ \infty & \text{ otherwise.} \end{cases}$

For $-1 \leqslant x \leqslant 1$

$$\begin{split} H_1(x) &= -(1+\kappa_1+\kappa_2) \log \left[\frac{2+\kappa_1+\kappa_2}{2(1+\kappa_1+\kappa_2)}(1-x) \right] \\ &- \log \left[\frac{2+\kappa_1+\kappa_2}{2}(1+x) \right] \end{split}$$

$$\begin{split} H_2(x) &= -(1+\kappa_1) \log \left[\frac{(2+\kappa_1+\kappa_2)}{2(1+\kappa_1)} (1+x) \right] \\ &-(1+\kappa_2) \log \left[\frac{(2+\kappa_1+\kappa_2)}{2(1+\kappa_1)} (1-x) \right] \end{split}$$

Particular case $\kappa_1 = \kappa_2 = 0 \Rightarrow u^- = 0$, $u^+ = 1$, KMK_{κ_1,κ_2} arsine law.

We recover the Szegö Theorem pushed on [0, 1] by $sin^2(\theta/2)$.

Overview

- 1 Kullback Leibler Divergence
- 2 Orthogonal polynomial recursion on ${\mathbb T}$
- 3 Szegö Theorem
- 4 The three parametrizations
- 5 Three particular probability distributions
- 6 Killip Simon Theorem
- 7 Our sum rules

8 How to get a sum rule with a probabilistic method

F. Gamboa (IMT Toulouse and IFCAM Bangalor

Bangalore

Consider a compactly supported measure µ as the spectral measure of some operator M in some class, at a vector e :

$$< e, M^k e > = \int_E x^k d\mu(x)$$
 , $(k \geqslant 0)$

 $\mathsf{E}=\mathbb{T}$ or \mathbb{R} , M unitary or self-adjoint.

- ► Randomize in this class, a family of finite-dimensional operators (M_n)_{n≥1} and their spectral measures (µ_n)_{n≥1} at (e⁽ⁿ⁾)_{n≥1}
- Consider the two encodings of the spectral measures μ_n

1) the pair "locations, weights"

2) the recursion coefficients (Jacobi or Verblunsky) : $(a_k^{(n)}, b_k^{(n)})$ or $(\alpha_k^{(n)})$.

 $\mu_n = \sum_{k=1}^n w_k^{(n)} \delta_{\lambda_k^{(n)}}$

Consider a compactly supported measure μ as the spectral measure of some operator M in some class, at a vector e :

$$< e$$
, $M^k e >= \int_E x^k d\mu(x)$, $(k \geqslant 0)$

- $E=\mathbb{T}$ or \mathbb{R} , M unitary or self-adjoint.
- ► Randomize in this class, a family of finite-dimensional operators (M_n)_{n≥1} and their spectral measures (µ_n)_{n≥1} at (e⁽ⁿ⁾)_{n≥1}
- \blacktriangleright Consider the two encodings of the spectral measures μ_n

1) the pair "locations, weights"

2) the recursion coefficients (Jacobi or Verblunsky) : $(a_k^{(n)}, b_k^{(n)})$ or $(\alpha_k^{(n)})$.

 $\mu_n = \sum^n \mathtt{w}^{(n)}_k \delta_{\lambda^{(n)}_k}$

Consider a compactly supported measure μ as the spectral measure of some operator M in some class, at a vector e :

$$< e, M^k e > = \int_E x^k d\mu(x)$$
 , $(k \geqslant 0)$

 $\mathsf{E}=\mathbb{T} \text{ or } \mathbb{R}$, M unitary or self-adjoint.

- ► Randomize in this class, a family of finite-dimensional operators (M_n)_{n≥1} and their spectral measures (µ_n)_{n≥1} at (e⁽ⁿ⁾)_{n≥1}
- Consider the two encodings of the spectral measures µn

1) the pair "locations, weights"

2) the recursion coefficients (Jacobi or Verblunsky) : $(a_k^{(n)}, b_k^{(n)})$ or $(\alpha_k^{(n)})$.

 $\mu_n = \sum_{k=1}^n \mathtt{w}_k^{(n)} \delta_{\lambda_k^{(n)}}$

Consider a compactly supported measure μ as the spectral measure of some operator M in some class, at a vector e :

$$< e, M^k e > = \int_E x^k d\mu(x)$$
 , $(k \geqslant 0)$

 $\mathsf{E}=\mathbb{T} \text{ or } \mathbb{R}$, M unitary or self-adjoint.

- ► Randomize in this class, a family of finite-dimensional operators (M_n)_{n≥1} and their spectral measures (µ_n)_{n≥1} at (e⁽ⁿ⁾)_{n≥1}
- Consider the two encodings of the spectral measures µn

1) the pair "locations, weights"

2) the recursion coefficients (Jacobi or Verblunsky) : $(a_k^{(n)}, b_k^{(n)})$ or $(\alpha_k^{(n)})$.

 $\mu_n = \sum_{k=1}^n w_k^{(n)} \delta_{\lambda_k^{(n)}}$

Consider a compactly supported measure μ as the spectral measure of some operator M in some class, at a vector e :

$$< e, M^k e > = \int_E x^k d\mu(x)$$
 , $(k \geqslant 0)$

 $E=\mathbb{T} \text{ or } \mathbb{R}$, M unitary or self-adjoint.

- ► Randomize in this class, a family of finite-dimensional operators (M_n)_{n≥1} and their spectral measures (µ_n)_{n≥1} at (e⁽ⁿ⁾)_{n≥1}
- Consider the two encodings of the spectral measures µn

1) the pair "locations, weights"

$$\mu_n = \sum_{k=1}^n \mathtt{w}_k^{(n)} \delta_{\lambda_k^{(n)}}$$

2) the recursion coefficients (Jacobi or Verblunsky) : $(a_k^{(n)}, b_k^{(n)})$ or $(\alpha_k^{(n)})$.

Consider a compactly supported measure μ as the spectral measure of some operator M in some class, at a vector e :

$$< e, M^k e > = \int_E x^k d\mu(x)$$
 , $(k \geqslant 0)$

 $E=\mathbb{T} \text{ or } \mathbb{R}$, M unitary or self-adjoint.

- ► Randomize in this class, a family of finite-dimensional operators (M_n)_{n≥1} and their spectral measures (µ_n)_{n≥1} at (e⁽ⁿ⁾)_{n≥1}
- Consider the two encodings of the spectral measures µn

1) the pair "locations, weights"

$$\mu_n = \sum_{k=1}^n \mathtt{w}_k^{(n)} \delta_{\lambda_k^{(n)}}$$

2) the recursion coefficients (Jacobi or Verblunsky) : $(a_k^{(n)}, b_k^{(n)})$ or $(\alpha_k^{(n)}).$

Prove two Large Deviation Principles :

$$\begin{split} &\frac{1}{n}\log \mathsf{P}(\mu_{n}\cong\mu)\cong-\mathfrak{I}_{sp}(\mu)\\ &\frac{1}{n}\log\mathsf{P}(\mu_{n}\cong\mu)\cong-\mathfrak{I}_{Jac}(\mathfrak{a}_{1},\mathfrak{b}_{1},\mathfrak{a}_{2},\ldots) \end{split}$$

Write equality of both rate functions :

$$\mathfrak{I}_{sp}(\mu) = \mathfrak{I}_{Jac}(\mathfrak{a}_1, \mathfrak{b}_1, \mathfrak{a}_2, \dots)$$

Notice the difference between the two measures

$$\begin{split} \mu_n &= \mu_n^{SP} = \sum_{k=1}^n \mathtt{w}_k \delta_{\lambda_k} \ \text{ (spectral measure)} \\ \mu_n^{ESD} &= \frac{1}{n} \sum_{k=1}^n \delta_{\lambda_k} \ \text{ (empirical spectral distribution)} \,. \end{split}$$

Prove two Large Deviation Principles :

$$\begin{split} &\frac{1}{n}\log \mathsf{P}(\mu_{n}\cong\mu)\cong-\mathfrak{I}_{sp}(\mu)\\ &\frac{1}{n}\log\mathsf{P}(\mu_{n}\cong\mu)\cong-\mathfrak{I}_{Jac}(\mathfrak{a}_{1},\mathfrak{b}_{1},\mathfrak{a}_{2},\ldots) \end{split}$$

Write equality of both rate functions :

$$\mathfrak{I}_{sp}(\mu) = \mathfrak{I}_{Jac}(\mathfrak{a}_1, \mathfrak{b}_1, \mathfrak{a}_2, \dots)$$

Notice the difference between the two measures

$$\begin{split} \mu_n &= \mu_n^{SP} = \sum_{k=1}^n \mathbb{w}_k \delta_{\lambda_k} \ \text{ (spectral measure)} \\ \mu_n^{ESD} &= \frac{1}{n} \sum_{k=1}^n \delta_{\lambda_k} \ \text{ (empirical spectral distribution)} \,. \end{split}$$

Prove two Large Deviation Principles :

$$\begin{split} &\frac{1}{n}\log \mathsf{P}(\mu_{n}\cong\mu)\cong-\mathfrak{I}_{sp}(\mu)\\ &\frac{1}{n}\log\mathsf{P}(\mu_{n}\cong\mu)\cong-\mathfrak{I}_{Jac}(\mathfrak{a}_{1},\mathfrak{b}_{1},\mathfrak{a}_{2},\ldots) \end{split}$$

Write equality of both rate functions :

$$\mathcal{I}_{sp}(\mu) = \mathcal{I}_{Jac}(a_1, b_1, a_2, \dots)$$

Notice the difference between the two measures

$$\begin{split} \mu_n &= \mu_n^{SP} = \sum_{k=1}^n \mathtt{w}_k \delta_{\lambda_k} \ \text{ (spectral measure)} \\ \mu_n^{ESD} &= \frac{1}{n} \sum_{k=1}^n \delta_{\lambda_k} \ \text{ (empirical spectral distribution)} \,. \end{split}$$

Randomization for the KS/SR

Suppose the distribution of M_n has the GUE-density

$$\mathcal{Z}_n^{-1} \exp{-\frac{n}{2}} tr M^2$$

 Dumitriu-Edelman ('02) proved that the Jacobi parameters are independent and

$$\begin{split} b_k^{(n)} &\sim \mathcal{N}(0; n^{-1}) \quad (1 \leqslant k \leqslant n), \\ (a_k^{(n)})^2 &\sim \text{Gamma} \; (n-k; n^{-1}) \; \; (1 \leqslant k \leqslant n-1) \; . \end{split}$$
 Note that $b_k^{(n)} \to 0, \; a_k^{(n)} \to 1$, the Jacobi coefficients of SC.

Theorem (GR '11)

 μ_n^{SP} satisfies the LDP with speed n and rate function

$$\mathbb{J}_{Jac} = \sum_{1}^{\infty} \frac{1}{2} b_k^2 + \sum_{1}^{\infty} G(a_k^2) \text{ , } \ G(x) = x - 1 - \log x \text{ .}$$

LDP for the measure side, general potential

• M_n random complex Hermitian $n \times n$ matrix with density

 $(\mathcal{Z}_n^V)^{-1} \exp(-\operatorname{ntr} V(M))$

▶ Potential $V : \mathbb{R} \to (-\infty, \infty]$ smooth, e.g. $V(x) = x^2/2$, (GUE).

$$\mu_n^{SP} = \sum_1^n w_i \delta_{\lambda_i}$$

with w_i = |U_{1,i}|² for U unitary matrix of eigenvectors.
The joint density of eigenvalues is

$$(\mathsf{Z}_n^V)^{-1}\prod_{i < j} (\lambda_i - \lambda_j)^2 \prod_i^n \mathsf{exp}(-nV(\lambda_i))$$

and (w_1, \ldots, w_n) is uniformly distributed on the simplex, and independent of the eigenvalues.

Theorem (GNR '16)

Under assumptions on V, the sequence of random spectral measures $\mu^{(n)}$ satisfies the LDP with speed n with good rate function

$$\mathbb{J}_{\text{sp}}(\mu) = \mathcal{K}(\mu_{\mathbf{V}} \mid \mu) + \sum_{k} \mathcal{F}_{\mathbf{V}}(\mathsf{E}_{k}^{+}) + \sum_{k} \mathcal{F}_{\mathbf{V}}(\mathsf{E}_{k}^{-})$$

for probability measures μ on $\mathbb R$ satisfying

$$Supp(\Sigma) = [a_V, b_V] \cup \{E_j^-\}_{j=1}^{N^-} \cup \{E_j^+\}_{j=1}^{N^+}$$

where N^+ (resp. N^-) is 0, finite or infinite, $E_j^-\uparrow \alpha_V$ and $E_j^+\downarrow b_V$ are isolated points of the support .

New sum rules need LDPs for the coefficient side.

We need matrix models whose spectral measure admits coefficients with *nice probabilistic properties*!

New sum rules need LDPs for the coefficient side.

We need matrix models whose spectral measure admits coefficients with *nice probabilistic properties*!

THANK YOU FOR YOUR ATTENTION!