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Spherical spin glass models

A sequence of random functions on the sphere in RN, (configuration space)

sV .= {x=(x,...,xn) € RY : [|x|| = 1}.

The spherical pure p-spin Hamiltonian:

where x = (x1,...,xy) and J;, ;.



Spherical spin glass models

A sequence of random functions on the sphere in RN, (configuration space)

sV .= {x=(x,...,xn) € RY : [|x|| = 1}.

The spherical pure p-spin Hamiltonian:

N
Hpy p(x) = Vv'N Z i X Xy * X s
iy ip=1
where x = (x1,...,xn) and J; ;i ~ Normal(0,1) i.i.d.

Covariance: EHn(x)Hn(y) = N(x - y)P.



Spherical spin glass models

A sequence of random functions on the sphere in RN, (configuration space)
N N
SN = {x = (xt, ..., 5v) € RY : ||x]| =1} .
o

“mixture” polynomial:  £(t) = -2, v5tP.

The spherical mixed p-spin Hamiltonian:

Hn(x) = Z YoHn,p(X).-
p=1

Covariance: EHn(x)Hn(y) = NE(x - y).



Spherical spin glass models

A sequence of random functions on the sphere in RN, (configuration space)

sV .= {x=(x,...,xn) € RY : [|x|| = 1}.

“mixture” polynomial:  £(t) = -2, v5tP.

The spherical mixed p-spin Hamiltonian:

Hn(x) = Z YoHn,p(X).-
p=1

Covariance: EHn(x)Hn(y) = NE(x - y).

* Models with Ising spins: (not today...)
SN replaced by Xy := {+1, -1}V, 1



Scaling of basic quantities

Typical values:  Hy(x) = O(V/N).
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Scaling of basic quantities

Typical values:  Hy(x) = O(V/N).

Maximal value: 3JE, > 0, such that, a.s.,

1
lim — max Hy(x) = E..
N— oo xeSN

Gradient at typical pt.: ||[VHy(x)|| = O(N).

Critical points: VE € [0, E,) :

#{x € SN VHu(x) = 0, Hu(x) ~ NE} = eCerrol®)

[Auffinger-Ben Arous-Cerny ‘13], [Auffinger-Ben Arous ‘13],
[S. '17], [Ben Arous-S.-Zeitouni ‘18], [S.-Zeitouni ‘21]
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Concentration of measure on the sphere

Let f : S — R be a deterministic function on the unit sphere in RV,
Consider A(t) :== {x e SN f(x) > Nt}.
Suppose f is Lipschitz with constant L,

[f(x) = F(y)| < NL|x —yll,

and for simplicity that [, f(x)dx = 0.
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Suppose f is Lipschitz with constant L,

[f(x) = F(y)| < NL|x —yll,

and for simplicity that [, f(x)dx = 0.

Lévy’s inequality (1919)

cne?

Vol(A(t)) < Ke™ 2.




Concentration of measure on the sphere

Let f : S’ — R be a deterministic function on the unit sphere in RV.
Consider A(t) :== {x e SN f(x) > Nt}.
Suppose f is Lipschitz with constant L,

[f(x) — f(y)l < NL|Ix —yll,

and for simplicity that [, f(x)dx = 0.

If ¢ not too close to max f(x), then for large N,

e N < Vol(A(t)) < e M.



Consider the super-level sets of the random function Hy(x),

An(E) = {x e SN Hy(x) > /\/E}.

As NV — oo, what is the asymptotic behavior of Vol (Ay(E))?




Consider the super-level sets of the random function Hy(x),

An(E) = {x e SN Hy(x) > /\/E}.

Since e”N < Vol(An(E)) < e= <V,

the right question is to compute (it exists?)

V(E) = lim %E log (vo|(AN(E))).




The free energy

The free energy is defined by:

1 1
Fn(B) = 5 log Zu(B) = 7 log | "™ dx.
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The free energy

The free energy is defined by:

1 1
Fu(B) = 5 log Zn(B) = ; log /SN P gy

From general concentration results,

Jim_[Fu(5) —EFn(B)] = 0.

One of the most important problems is to compute the limit

F(B) == lim EFn(B).

li
N— o



The free energy

For any energy level E,

F(B) := lim lIEIog/ ePHn(x) gy
N SN

N— o0

1 ,
> lim —]Elog/ e"NE dx
N—oo N An(E)

= BE+ Jim %Emg (vo|(AN(E))) =: BE + V(E).
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The free energy

For any energy level E,

F(B) := lim lIEIog/ ePHn () gx
N SN

N— o0

1 ,
> lim —]Elog/ e"NE dx
N—oo N An(E)

= BE+ Jim %Emg (vo|(AN(E))) =: BE + V(E).

In fact, F(5) and —V/(E) are convex conjugates:

F(B) = E+ V(E
(B) ngtié]ﬂ + V(E),

—V(E) = r/pZa%(BEf F(5).

(F(ﬁ))ﬁ>0 and (V(E))Ee(o.E ) contain the same information!



Parisi's formula for the free energy
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The Parisi formula

The ‘replica method’ (Edwards-Anderson ‘75) suggests that to compute
F() one can compute ]EZ,'{,ﬁ for integer ¢ > 1, extend to real t, and use

1 Zh . —1 1EZL . —1

F(p):= lim ~ElogZys=lim L im ZM8 T2 o fim fim LN T
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The Parisi formula
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Parisi ‘80 proposed an Ansatz within the replica approach for the SK model
from which he derived his famous formula for the free energy.

Parisi’s formula

lim EFy(8) = min  Pes(y).
aim EFn(B) = min  Pesy)




The Parisi formula

The ‘replica method’ (Edwards-Anderson ‘75) suggests that to compute

F() one can compute EZ,f,ﬁ for , extend to real t, and use
1 Zyg—1 . 1EZf,-1
FR) = i ios Zus = Jim_ Bl S5 = i Jim_ =

Parisi ‘80 proposed an Ansatz within the replica approach for the SK model
from which he derived his famous formula for the free energy.

Parisi’s formula

lim EFy(8) = min  Pes(y).
aim EFn(B) = min  Pesy)

Upper bound proved by Guerra ‘03, lower bound by Talagrand ‘06 for even
models (v, = 0 for odd p). Extended to general mixtures by Panchenko
‘14 (cube) and Chen ‘13 (sphere).

Notable related breakthroughs: Ghirlanda-Guerra identities ‘98,
Aizenman-Sims-Starr scheme ‘03, ultrametricity by Panchenko ‘13.



The Parisi formula

The ‘replica method’ (Edwards-Anderson ‘75) suggests that to compute

F() one can compute EZ,f,ﬁ for , extend to real t, and use
1 Zyg—1 . 1EZf,-1
FR) = i ios Zus = Jim_ Bl S5 = i Jim_ =

Parisi ‘80 proposed an Ansatz within the replica approach for the SK model
from which he derived his famous formula for the free energy.

Parisi’s formula

lim EFy(8) = min  Pes(y).
aim EFn(B) = min  Pesy)

For spherical models, the Crisanti-Sommers ‘92 representation is

Pestn = 5 (2 [ Y{0)¢ (a)da + / B g - ).

g v(s)ds

For Ising models, more complicated.
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interpreted by physicists in terms of the properties of the system.
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The Parisi formula

In the years after the discovery (1980-1985), Parisi's solution was
interpreted by physicists in terms of the properties of the system.

An important connection was made to the Gibbs measure:

1
Gn,s(A) = Zus ePHn() g,

The minimizing distribution in Parisi's formula is equal to the (averaged)
distribution of the ‘overlap’ of two independent samples x;,x, from the
Gibbs measure,

y(t) =P(x1 - x2 < t).



Thouless-Anderson-Palmer Approach (1977)

P. W. Anderson R. Palmer

,,% Thouless and Anderson are Nobel Prize laureates (2016 & 1977).



e Generalized TAP representation for the free energy
e Computation of the free energy for pure models

e Multi-species models

10
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Gn p(A) == Zus s M) gx.
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Generalized TAP representation

Gibbs measure:

1
Gn p(A) == Zus s M) gx.

Let x1, X2, ... be independent samples from Gy g(-).
Def.: g € [0,1) is a good overlap if Yk > 1,¢ >0,
]P’(Vi <j<k: |x,- 253 = q| < e) = e °N),

Lemma. Any overlap in the support of the Parisi
distribution is good!
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Generalized TAP representation

Gibbs measure:

1
Gn,a(A) == Zus s " eBH() g,

Let x1, X2, ... be independent samples from Gy g(-).

Def.: g € [0,1) is a good overlap if Yk > 1,e > 0,

]P’(Vi <j<k: |x,-~xjf q| < e) = e °N),

Lemma. Any overlap in the support of the Parisi
distribution is good!

) 1
Denote E.(q) = Nlinoo N mgﬁ\/aagSN Hy(m).
Define
Band(m) = {x € S" : |(x — m) - m| < on}.

11



TAP representation for the free energy
P —m—

F(5,q) — free energy of the mixture
&o(t) =&((1 = )t +q) — (@) — (@1 — a)t,

1 , 1
and 5 log(1—q) = A)me N log Vol(Band(m)).

Theorem (TAP representation) [S. ‘18]

Consider a Hamiltonian with general mixture £(t). if and only if

F(B) = BE.(q) + % log(1 —q) + F(5,q).

If same holds with inequality




TAP representation for the free energy
P —m—

F(5,q) — free energy of the mixture
&o(t) =&((1 = )t +q) — (@) — (@1 — a)t,

1 , 1
and 5 log(1—q) = A)me N log Vol(Band(m)).

Theorem (TAP representation) [S. ‘18]

Consider a Hamiltonian with general mixture £(t). if and only if

F(B) = BE.(q) + % log(1 —q) + F(5,q).

If same holds with inequality

For the (so-called Onsager correction)

F(8,q) = %32 (5(1) —&(q) — (1 - q)ﬁ“(q))




Previous works

The ‘classical’ formula with Onsager correction was proved for:
e S. ‘17: spherical pure p-spin with p >3 and 5> 1.

e Ben Arous-S.-Zeitouni ‘18: same as above, for mixed models ‘close’
to pure.

e Belius-Kistler ‘18: spherical pure 2-spin.

e Chen-Panchenko ‘17: general mixed models, Ising spins,
a similar, but more complicated formula.

The general formula with with good g proved for:

e Chen-Panchenko-S. ‘18: general mixed models with Ising spins.

13



Computing the free energy from the
TAP representation for pure models




TAP representation for pure models

Note that by Jensen's inequality, always

F(B) = lim 1E|ogZN5< Jim N|OgEZNﬁ—*BZ£()

N—oo N
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TAP representation for pure models

Note that by Jensen's inequality, always

F(B) = lim 1E|ogZN5< Jim N|OgEZNﬁ—*BZ£()

N—oo N

For any spherical model, there exists a critical J. > 0 such that
1 2 ] - ]
F(8) = 58%(1) < £ < b,
1
F(B) < 5525(1) — B> B

13



TAP representation for pure models

For the pure models, the Hamiltonian is homogeneous

eeesip Xiy Xiy *+ X

N
HN(X) Z:\/N Z J,'l

yeens ip=1
.1 P
Therefore, E.(g):= lim — max Hy(m)= q2E,.
N—oc me./q-SN

13



TAP representation for pure models

For the pure models, the Hamiltonian is homogeneous

N
Hy(x) := VN Z iy Xi Xy Xy

fyeeyip=1
.1 P
Therefore, E.(q) := N||m — max Hy(m)=q2E,.
> OC me./q-SN

The TAP representation becomes
1 ,
q good: F(B) = IE.q" + 5 log(l — )+ F(F,q),

p 1
g not good :  F(B) > fE.q° + 5 log(1 —q)+ F(B,q).

13



TAP representation for pure models

Denote by g. the maximal good overlap at ..

Theorem (S. ‘21)

For the spherical pure p-spin model with p > 3:

1. is the unique solution in (0,1) of
p(1—q)log(1—q) +pg— (p—1)g> =0.

2. The critical inverse-temperature is

3. The ground-state energy is

W( (- D1 —q) + (p_l)(l—qc)>'




TAP representation for pure models

For 8 < B., F(B) = %Bz. For 8 > f., the free energy is given by the following.

ii5)



TAP representation for pure models

For 8 < B., F(B) = %[32. For B > f., the free energy is given by the following.
Define E., =2,/252.

Theorem (S. ‘21)

For the spherical pure p-spin model with p > 3 and any
the is the larger of the two solutions in (0, 1) of

- e

With the same g, the free enegy is

ii5)



Multi-species models




Multi-species pure p-spin models

./ - a finite set of ‘species’.
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/" - a finite set of ‘species’. ls = Is(N) - disjoint sets s.t.
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Multi-species pure p-spin models

/" - a finite set of ‘species’. ls = Is(N) - disjoint sets s.t.

N—oo N

{t,2,.....,N} = £, lim @:A(s).

Configuration space: a product of spheres
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SN._{XER D Vs e, Zx, = N}'

i€ls
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Multi-species pure p-spin models

/" - a finite set of ‘species’. ls = Is(N) - disjoint sets s.t.
{t,2,.....,N} = £, lim @:A(s).
T ’ = N—oo N

Configuration space: a product of spheres

_ N : 2 _ |l
SN._{XER D Vs e, Zx, = N}'

i€ls

p=(p(s))ser,  P(s)E€EZy, |pl:=2scqP(s)

Hamiltonian:  Hy(x) = Hnp(x) = Cn.p D Ji . ipiX - X

iip| - 1id normal variables.

Sum over indices s.t. for any s € .7, #{j:ij € I} = p(s).
16



Multi-species mixed p-spin models

Same configuration space, and
Hn(o) = Z APHN,p(X)a
P

for some numbers A, > 0.

17



Multi-species mixed p-spin models

Same configuration space, and
Hy(o) = Z ApHn,p(x),
P

for some numbers A, > 0.

Covariance function: define

N
Rs(x,y)= i > xiyi € [-1,1],
S icl

€00 =322 T[ x(s.

se€

Then,

IEHN(x)HN(y) = Ni((Rs(Xy))S) 17



The free energy

Free energy:

F(B) = lim lIEIog/ PN gy (x),
N Sy

N— oo

where 1 is the product of uniform measures on each of the || spheres.
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The free energy

Free energy:

1

F(B) = lim —Elog/ PN gy (x),
N—oo N G

where 1 is the product of uniform measures on each of the || spheres.

Barra, Contucci, Mingione and Tantari ‘15 and Panchenko ‘15
proved a Parisi formula for the free energy for multi-species Ising models.

More recently, Bates and Sohn ‘21 proved a Parisi formula for the
multi-species spherical models.
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The free energy

Free energy:

F(B) = lim lIEIog/ PN gy (x),
N Su

N— oo

where 1 is the product of uniform measures on each of the || spheres.

Barra, Contucci, Mingione and Tantari ‘15 and Panchenko ‘15
proved a Parisi formula for the free energy for multi-species Ising models.

More recently, Bates and Sohn ‘21 proved a Parisi formula for the
multi-species spherical models.

The upper bound in both cases assumes that £(x) is a convex function.
For the pure models, £(x) is concave everywhere in x!

However, the computation from the TAP representation still works in the
multi-species case.
18



The free energy

Let p= (P(S))Sey/ €Zy and g = (q(s))se&/’ € [07 1]5/;'

Define
Z A(s) log(1 — q(s)),
ses
=14+ Z ),
ses
and
@)= G

19



The free energy

Theorem (S. ‘21)

For the multi-species spherical pure p-spin model with |p| > 3:*
(1) At B. there is a unique maximal good g. € (0,1)” and it is equal to

the unique solution of

Vs e ./ Eﬂ = ®(q).

p(s)1—q(s)

(2) The critical inverse-temperature is given by

[®(qc)
g(qc) .
V(qc).

B

(3) The ground-state is given by
E, =

* Assuming the convergence of the free energy. 19



The free energy

Theorem (S. ‘21)

For the multi-species spherical pure p-spin model with |p| > 3 and 5 > [.:
there is a unique maximal good g and it is defined by

\/¢qc +\/¢Qc 5

CI(S) 2y.(8) ’
where y, () is the larger of the two solutions in (0, c0) of

—/®(ge ®(gc) + 428 (s)
y2H< \/ (Cl)+\/ (gc) + p(s)+1>p iy

2y

Vs €.

ses
With the same gq,

= BvVE(q)Es + = Z/\ )log(1 — q(s))

56/

+ %52 (g(l) —&(a) = €(q) Y p(s)—~

se.

Do
o




Free energy landscapes




Free energy landscape I

Similarly to the approach of TAP, we wish to
associate to each point m inside the sphere a

free energy.

e
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free energy.

We first associate to m the subset ‘
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Free energy landscape I

Similarly to the approach of TAP, we wish to
associate to each point m inside the sphere a

free energy.

We first associate to m the subset ‘

Band(m) = {x € S" : |(x — m) - m| < én}.

And then define

1
FN,g(m) = N |Og/B ” )eBHN(X)dX.

21



Free energy landscape I

1
FN,g(m) = N |Og/B " )eBHN(X)dX.

Can we find a meaningful characterization for points such that

F[\/ﬂ(m) ~ FNﬁ?

That is, points such that computing the free energy over the band
roughly gives the same result as computing it over the whole sphere.
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Free energy landscape I

1
FN,g(m) = N |Og/B " )eBHN(X)dX.

Can we find a meaningful characterization for points such that

F[\/ﬂ(m) ~ FNﬁ?

That is, points such that computing the free energy over the band
roughly gives the same result as computing it over the whole sphere.

Unfortunately, the set of such points is ‘too large’ to work with...

21



Free energy landscape II

Define another free energy (for each m).

22



Free energy landscape II

Define another free energy (for each m).

Consider the set of roughly orthogonal
k-tuples inside the band,

-

\

Band(m, k, €) :={(x1,...,%x«) € Band(m)* :
Vi # j, [(xi = m) - (xj — m)| < e},

and define

1
FN7ﬁ(m7ka€) = mlog/B o )eﬁzle HN(XOXm"'ka.

22



Free energy landscape II

Define another free energy (for each m).

Consider the set of roughly orthogonal
k-tuples inside the band,

-

\

Band(m, k, €) :={(x1,...,%x«) € Band(m)* :
Vi # j, [(xi = m) - (xj — m)| < e},

and define
1
FN,ﬁ(m,k,e) = —Iog/ eﬁzle HN(X/')dxl.._dxk.
kN Band(m,k,e)

Note that
F/Vﬁ(m7 kve) < FN,B(m) < Fn-

22



Why work with orthogonal replicas?

Define the centered versions by replacing Hy(x) by Hy(x) — Hy(m):

Fn,g(m) = L Iog/ A HN()—=Hi(m)) gy
N Band(m)
and similarly define Fj, ;(m. ky.en), so that
F _5 (
n,p(m) = NHN(m) + Fn,p(m),

Fng(m, k,e) = %HN(m) + F5 5(m, k, €).

23



Why work with orthogonal replicas?

Define the centered versions by replacing Hy(x) by Hy(x) — Hy(m):
1
= ) = =l / B (H () —Hu(m) g
N Band(m)
and similarly define Fj, ;(m. ky.en), so that
F _5 H ‘
m,p(m) = Hy(m) + Fy 5(m),

FN7B(m, k,e) = EHN(m) + F;V

N (m, k,e).

Let ky — oo and ey — 0, going the their limit slowly.
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Why work with orthogonal replicas?

Define the

1

and similarly define , so that

F,\,’ﬂ(m) = %HN(FI‘I) +

Fvs(m, k. €) = 5 Hn(m) +

Let ky — oo and ey — 0, going the their limit slowly.

versions by replacing Hy(x) by Hyn(x) — Hn(m):

~ Lo / EB(HN()—Hu(m) g
N Band(m)

Theorem (S. ‘18)

Uniform concentration of the free energy:

max |FN7/3(m, kn,€n) — EFN;@(m, kn, eN)| — 0 a.s.

m: ||ml|| <1

23



Why work with orthogonal replicas?

Recall that for general m,

Frn,g(m, kn,en) < Fu,g.
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Why work with orthogonal replicas?

Recall that for general m,

Frn,g(m, kn,en) < Fu,g.

One can show that g is a good overlap, iff (w.h.p.)

dm, € \/aSN : FN,B(m*,kN,eN) = FNﬁ—FO(l).
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Why work with orthogonal replicas?

Recall that for general m,

Frn,g(m, kn,en) < Fu,g.

One can show that g is a good overlap, iff (w.h.p.)

dm, € \/aSN : FN,B(m*,kN,eN) = FNﬁ—FO(l).

We can substitute Fy g(m, kn, en) = %HN(m) + Fr g(m, kn, en),

and use concentration to add expectations:

Vm e \/a~§N : %Hm(m)—HEFK,’ﬁ(m7 kn,en) < EFnpg,

dm, € \/a SN . %HN(H’I*) + I[“EFKLB(ITI*7 kn, EN) = EFN’g + O(l)

24



Why work with orthogonal replicas?

Recall that for general m,

Frn,g(m, kn,en) < Fu,g.

One can show that g is a good overlap, iff (w.h.p.)

dm, € \/aSN : FN,B(m*,kN,eN) = FNﬁ—FO(l).

Vm e \/ESN : %HN(m)—HEFK,’ﬁ(m, kN76N) SEFNﬁ,

=

Im, € g SV ZHy(m,.) +EFy s(ma, kn, en) = EFn g + o(1).
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dm, € \/aSN : FN,B(m*,kN,eN) = FNﬁ—FO(l).

Vm e \/ESN : %HN(m)—HEFK,’ﬁ(m, kN76N) SEFNﬁ,

=

Im, € g SV ZHy(m,.) +EFy s(ma, kn, en) = EFn g + o(1).

= Vme q-SV: %HN(m) < %HN(m*) +0o(1)
1

— gyH(m) = max SHu(m)+ o(1) = E.(a) + o(1)

24



Why work with orthogonal replicas?

Recall that for general m,

Frn,g(m, kn,en) < Fu,g.

One can show that g is a good overlap, iff (w.h.p.)

dm, € \/aSN : FN,B(m*,kN,eN) = FNﬁ—FO(l).

Vm e \/ESN : %HN(m)—HEFK,’ﬁ(m, kN76N) SEFNﬁ,

=

Im, € g SV ZHy(m,.) +EFy s(ma, kn, en) = EFn g + o(1).

= Vme q-SV: %HN(m) < %HN(m*) +0o(1)

1 1
— NHN(m*) = e NHN(m) +0(1) = E.(q) + o(1)

= PE(q)+ NIi_}mOO EFN s(my, kn,en) = F(B) -



TAP representation

We proved a representation for the free energy:

if g is a good overlap, for arbitray m € /g - SV,

F(B) = BE.(q)+ Jim EFF 5(m, k, en).

25



TAP representation

We proved a representation for the free energy:

if g is a good overlap, for arbitray m € \/§~SN,

F(B) = BE.(q)+ Jim EFF 5(m, k, en).

Recall that we work with a thin band, approximately a sphere.

25



TAP representation

We proved a representation for the free energy:

if g is a good overlap, for arbitray m € \/§~SN,

F(B) = BE.(q)+ Jim EFF 5(m, k, en).

Recall that we work with a thin band, approximately a sphere.
We can map the band to the sphere of radius 1.

25



TAP representation

We proved a representation for the free energy:

if g is a good overlap, for arbitray m € \/§~SN,

F(B) = BE.(q)+ Jim EFF 5(m, k, en).

Recall that we work with a thin band, approximately a sphere.
We can map the band to the sphere of radius 1.
This mapping gives rise to the entropy term

1 1
5 log(1—q) = NI;m@ N log Vol(Band(m)),
and (after several additional steps) to the last term in the representation
F(8,q),

corresponding to the mixture &4(t) = £((1—q)t+q)—£&(q)—&'(q)(1—q)t.
25



Proof sketch: free energy of pure p-spin




TAP representation for pure models

For the pure models, the Hamiltonian is homogeneous

N
Hy(x) := VN Z iy Xi Xy Xy

fyeeyip=1
.1 P
Therefore, E.(q) := N||m — max Hy(m)=q2E,.
> OC me./q-SN
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TAP representation for pure models

For the pure models, the Hamiltonian is homogeneous

N
Hy(x) := VN Z iy Xi Xy Xy

fyeeyip=1
.1 P
Therefore, E.(q) := N||m — max Hy(m)=q2E,.
> OC me./q-SN

The TAP representation becomes

2] 1 P
q good: F(P) = IE.q* + 5 log(l —q) + F(7 ),

p 1 )
g not good :  F(f) > fE.q° + 2 log(1—q)+ F(53,q)-
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TAP representation for pure models

For the pure models, the Hamiltonian is homogeneous

N
Hy(x) := VN Z iy Xi Xy Xy

i1yeeeyip=1
. 1 &
Therefore, E.(q) := N||m N max Hy(m) = g2 E,.
> OC me./q-S

The TAP representation becomes
, P 1 ; F(B
g good: F(B)=pPE.q> +§|og(1—q)+F(d,q), ()

p 1 .
g not good :  F(f3) > fE*q*JrEIog(lfq)JrF(‘iq). .- 5
At any good g > 0, derivatives in  or g of both sides are equal.

26



TAP representation for pure models

Denote by g. the maximal good overlap at ..
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TAP representation for pure models

Denote by g. the maximal good overlap at ..

From the TAP representation (with the Onsager correction),

1 2 1 1 -
=2 = F(Be) = BeEnqé + 5 log(L — ac) + 552(1 — g2 — p(1 - ac)a ™).
(Eq. T)
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Denote by g. the maximal good overlap at ..

From the TAP representation (with the Onsager correction),

1 2 1 1 -
=2 = F(Be) = BeEnqé + 5 log(L — ac) + 552(1 — g2 — p(1 - ac)a ™).

(Eq. 1)
From equality of derivatives in 3,
Be = 2 F(8e) = Ecal + 5 (1 -9 —p(l—gq )q"’1>- (Eq. ID)
c d/B c c c c)Yc
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TAP representation for pure models

Denote by g. the maximal good overlap at ..

From the TAP representation (with the Onsager correction),

1 2 1 1 -
=2 = F(Be) = BeEnqé + 5 log(L — ac) + 552(1 — g2 — p(1 - ac)a ™).

(Eq. 1)
From equality of derivatives in 3,
Be = 2 F(8e) = Ecal + 5 (1 -9 —p(l—gq )q"’1>- (Eq. ID)
c d/B c c c c)Yc

From equality of derivatives in g,

d p 2-1 ) _
O:%F(ﬁc): 3.E.Sqd T — — 282p(p — 1)(1 — qc)g2 2.

1
2 21—gq. 2'°¢
(Eq. I11)
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TAP representation for pure models

Denote by g. the maximal good overlap at ..

From the TAP representation (with the Onsager correction),

1 e 1 1 _
=2 = F(Be) = BeEnqé + 5 log(L — ac) + 552(1 — g2 — p(1 - ac)a ™).

(Eq. 1)
From equality of derivatives in 3,
8 :iF(ﬂ ):E*chJrff <17q"fp(1fq )qp’1>. (Eq. II)
c d/g c c c c)Yc

From equality of derivatives in g,

d p 21 1 1, _
0=7qF(ﬁc)= 3. Ex=q2 — — 282p(p — 1)(1 — qc)g2 2.

1
2 21—gq. 2'°¢
(Eq. I11)

We got three equations in three variables 5., E; and q..

Solving them yields the first theorem we saw. 27



TAP representation for pure models

Denote by g. the maximal good overlap at ..

Theorem (S. ‘21)

For the spherical pure p-spin model with p > 3:

1. is the unique solution in (0,1) of
p(1—q)log(1—q) +pg— (p—1)g> =0.

2. The critical inverse-temperature is

3. The ground-state energy is

W( (- D1 —q) + (p_l)(l—qc)>'




TAP representation for pure models

For 8 > (., we only have the last equation: if g is the maximal good overlap
then

d p 1 1 1 _
0= —F(8) = BE.2q% " — 57— — =8%(p— 1)1 — 9)g" >

-
(Eq. 110
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TAP representation for pure models

For 8 > (., we only have the last equation: if g is the maximal good overlap
then

d pey 1 1 1 2 -2
= —F(B)=BE=q* ' —Z—— — ~B%p(p—1)(1 - q)¢"2.
0 aq (B) q 58 P(p=1)(1 = q)q
(Eq. III)

But /3 is a given, and we already know the value of E,.
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TAP representation for pure models

For 8 > (., we only have the last equation: if g is the maximal good overlap
then

0=—F(8) = BE.2q°

=% plp—1)(1 —q)g" 2.

(Eq. 110

d p ey 11 }32
Toe 5
But 3 is a given, and we already know the value of E,.

Solving for g we get 4 possible solutions.
We prove that the maximal good overlap can only be equal to one of them.
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TAP representation for pure models

For 8 > (., we only have the last equation: if g is the maximal good overlap
then

But /3 is a given, and we already know the value of E,.

Solving for g we get 4 possible solutions.
We prove that the maximal good overlap can only be equal to one of them.

This gives the value of the maximal good overlap. Substituting back to the
TAP representation gives the free energy, and the second theorem we saw.
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TAP representation for pure models

For 8 < B., F(B) = %Bz. For 8 > f., the free energy is given by the following.
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TAP representation for pure models

For 8 < B., F(B) = %[32. For B > f., the free energy is given by the following.
Define E., =2,/252.

Theorem (S. ‘21)

For the spherical pure p-spin model with p > 3 and any
the is the larger of the two solutions in (0, 1) of

- e

With the same g, the free enegy is

28



Thank You!
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