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Spherical spin glass models

A sequence of random functions on the sphere in RN , (configuration space)

SN :=
{

x = (x1, ..., xN) ∈ RN : ‖x‖ = 1
}
.

The spherical pure p-spin Hamiltonian:

HN,p(x) =
√
N

N∑
i1,...,ip=1

Ji1,...,ipxi1xi2 · · · xip ,

where x = (x1, . . . , xN) and Ji1,...,ip ∼ Normal(0, 1) i.i.d.

Covariance: EHN(x)HN(y) = N(x · y)p.
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Spherical spin glass models

A sequence of random functions on the sphere in RN , (configuration space)

SN :=
{

x = (x1, ..., xN) ∈ RN : ‖x‖ = 1
}
.

“mixture” polynomial: ξ(t) =
∑∞

p=1 γ
2
pt

p.

The spherical mixed p-spin Hamiltonian:

HN(x) =
∞∑
p=1

γpHN,p(x).

Covariance: EHN(x)HN(y) = Nξ(x · y).

? Models with Ising spins: (not today...)

SN replaced by ΣN := {+1,−1}N .
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Consider the super-level sets of the random function HN(x),

AN(E ) :=
{

x ∈ SN : HN(x) ≥ NE
}
.

As N →∞, what is the asymptotic behavior of Vol
(
AN(E )

)
?
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Concentration of measure on the sphere

Let f : SN → R be a deterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministic function on the unit sphere in RN .

Consider A(t) :=
{

x ∈ SN : f (x) ≥ Nt
}
.

Suppose f is Lipschitz with constant NL,

|f (x)− f (y)| ≤ NL‖x− y‖,

and for simplicity that
∫
SN f (x)dx = 0.

Lévy’s inequality (1919)

Vol
(
A(t)

)
≤ Ke−

CNt2

L2 .
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Consider the super-level sets of the random function HN(x),

AN(E ) :=
{

x ∈ SN : HN(x) ≥ NE
}
.

Since e−cN ≤ Vol
(
AN(E )

)
≤ e−CN ,

the right question is to compute (it exists?)

V (E ) := lim
N→∞

1

N
E log

(
Vol
(
AN(E )

))
.
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The free energy

The free energy is defined by:

FN(β) =
1

N
logZN(β) =

1

N
log

∫
SN

eβHN (x)dx.

From general concentration results,

lim
N→∞

|FN(β)− EFN(β)| = 0.

One of the most important problems is to compute the limit

F (β) := lim
N→∞

EFN(β).
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The free energy

For any energy level E ,

F (β) := lim
N→∞

1

N
E log

∫
SN

eβHN (x)dx

≥ lim
N→∞

1

N
E log

∫
AN (E)

eβNEdx

= βE + lim
N→∞

1

N
E log

(
Vol
(
AN(E )

))
=: βE + V (E ).

In fact, F (β) and −V (E ) are convex conjugates:

F (β) = max
E∈[0,E?]

βE + V (E ),

−V (E ) = max
β≥0

βE − F (β).

(
F (β)

)
β>0

and
(
V (E )

)
E∈(0,E?)

contain the same information!
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Parisi’s formula for the free energy



The Parisi formula

The ‘replica method’ (Edwards-Anderson ‘75) suggests that to compute

F (β) one can compute EZ t
N,β for integer t ≥ 1, extend to realrealrealrealrealrealrealrealrealrealrealrealrealrealrealrealreal t, and use

F (β) := lim
N→∞

1

N
E logZN,β = lim

N→∞

1

N
E lim

t→0

Z t
N,β − 1

t
≈ lim

t→0
lim

N→∞

1

N

EZ t
N,β − 1

t
.

Parisi ‘80 proposed an Ansatz within the replica approach for the SK model

from which he derived his famous formula for the free energy.

Parisi’s formula

lim
N→∞

EFN(β) = min
y∈D([0,1))

Pξ,β(y).
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Parisi ‘80 proposed an Ansatz within the replica approach for the SK model

from which he derived his famous formula for the free energy.

Parisi’s formula

lim
N→∞

EFN(β) = min
y∈D([0,1))

Pξ,β(y).

Upper bound proved by Guerra ‘03, lower bound by Talagrand ‘06 for even

models (γp = 0 for odd p). Extended to general mixtures by Panchenko

‘14 (cube) and Chen ‘13 (sphere).

Notable related breakthroughs: Ghirlanda-Guerra identities ‘98,

Aizenman-Sims-Starr scheme ‘03, ultrametricity by Panchenko ‘13. 8



The Parisi formula

The ‘replica method’ (Edwards-Anderson ‘75) suggests that to compute
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Parisi ‘80 proposed an Ansatz within the replica approach for the SK model

from which he derived his famous formula for the free energy.

Parisi’s formula

lim
N→∞

EFN(β) = min
y∈D([0,1))

Pξ,β(y).

For spherical models, the Crisanti-Sommers ‘92 representation is

Pξ,β(y) =
1

2

(
β2

∫ 1

0

y(q)ξ′(q)dq +

∫ q̂

0

dq∫ 1

q
y(s)ds

+ log(1− q̂)
)
.

For Ising models, more complicated. 8



The Parisi formula

In the years after the discovery (1980-1985), Parisi’s solution was

interpreted by physicists in terms of the properties of the system.

An important connection was made to the Gibbs measure:

GN,β(A) :=
1

ZN,β

∫
A

eβHN (x)dx.

The minimizing distribution in Parisi’s formula is equal to the (averaged)

distribution of the ‘overlapoverlapoverlapoverlapoverlapoverlapoverlapoverlapoverlapoverlapoverlapoverlapoverlapoverlapoverlapoverlapoverlap’ of two independent samples x1, x2 from the

Gibbs measure,

y(t) = P
(
x1 · x2 ≤ t

)
.
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Thouless-Anderson-Palmer Approach (1977)

D. J. Thouless P. W. Anderson R. Palmer

Thouless and Anderson are Nobel Prize laureates (2016 & 1977).



Overview

� Generalized TAP representation for the free energy

� Computation of the free energy for pure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure models

� Multi-species models
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Generalized TAP representation

Gibbs measure:

GN,β(A) :=
1

ZN,β

∫
A

eβHN (x)dx.

Let x1, x2, ... be independent samples from GN,β(·).

Def.:Def.:Def.:Def.:Def.:Def.:Def.:Def.:Def.:Def.:Def.:Def.:Def.:Def.:Def.:Def.:Def.: q ∈ [0, 1) is a good overlap if ∀k ≥ 1, ε > 0,

P
(
∀i < j ≤ k :

∣∣xi · xj − q
∣∣ < ε

)
= e−o(N).

Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma. Any overlap in the support of the Parisi

distribution is good!

Denote E?(q) := lim
N→∞

1

N
max

m∈√q·SN
HN(m).

Define

Band(m) =
{

x ∈ SN : |(x−m) ·m| < δN
}
.

1
√
q
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Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma.Lemma. Any overlap in the support of the Parisi

distribution is good!

Denote E?(q) := lim
N→∞

1

N
max

m∈√q·SN
HN(m).

Define

Band(m) =
{

x ∈ SN : |(x−m) ·m| < δN
}
.

1
√
q

11



TAP representation for the free energy

F (β, q) — free energy of the mixture

ξq(t) = ξ
(
(1− q)t + q

)
− ξ(q)− ξ′(q)(1− q)t,

and
1

2
log(1− q) = lim

N→∞

1

N
log Vol(Band(m)).

1
√
q

Theorem (TAP representation) [S. ‘18]

Consider a Hamiltonian with general mixture ξ(t). q is good if and only if

F (β) = βE?(q) +
1

2
log(1− q) + F (β, q).

If q is not good, same holds with inequality >.

For the maximal good q, (so-called Onsager correction)

F (β, q) =
1

2
β2
(
ξ(1)− ξ(q)− (1− q)ξ′(q)

)
.
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Previous works

The ‘classical’ formula with Onsager correction was proved for:

� S. ‘17: spherical pure p-spin with p ≥ 3 and β � 1.

� Ben Arous-S.-Zeitouni ‘18: same as above, for mixed models ‘close’

to pure.

� Belius-Kistler ‘18: spherical pure 2-spin.

� Chen-Panchenko ‘17: general mixed models, Ising spins,

a similar, but more complicated formula.

The general formula with with good q proved for:

� Chen-Panchenko-S. ‘18: general mixed models with Ising spins.

13



Computing the free energy from the

TAP representation for pure models



TAP representation for pure models

Note that by Jensen’s inequality, always

F (β) = lim
N→∞

1

N
E logZN,β ≤ lim

N→∞

1

N
logEZN,β =

1

2
β2ξ(1).

For any spherical model, there exists a critical βc > 0 such that

F (β) =
1

2
β2ξ(1) ⇐⇒ β ≤ βc ,

F (β) <
1

2
β2ξ(1) ⇐⇒ β > βc .
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TAP representation for pure models

For the pure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure models, the Hamiltonian is homogeneous

HN(x) :=
√
N

N∑
i1,...,ip=1

Ji1,...,ipxi1xi2 · · · xip .

Therefore, E?(q) := lim
N→∞

1

N
max

m∈√q·SN
HN(m) = q

p
2 E?.

The TAP representation becomes

q good : F (β) = βE?q
p
2 +

1

2
log(1− q) + F (β, q),

q not good : F (β) > βE?q
p
2 +

1

2
log(1− q) + F (β, q).
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TAP representation for pure models

Denote by qc the maximal good overlap at βc .

Theorem (S. ‘21)

For the spherical pure p-spin model with p ≥ 3:

1. qc is the unique solution in (0,1) of

p(1− q) log(1− q) + pq − (p − 1)q2 = 0.

2. The critical inverse-temperature is

βc =
q
− p

2 +1
c√

p(1− qc)
.

3. The ground-state energy is

E? =

√
p − 1

p

(√
(p − 1)(1− qc) +

1√
(p − 1)(1− qc)

)
.

14



TAP representation for pure models

For β ≤ βc , F (β) = 1
2β

2. For β > βc , the free energy is given by the following.

Define E∞ = 2
√

p−1
p .

Theorem (S. ‘21)

For the spherical pure p-spin model with p ≥ 3 and any β ≥ βc ,

the maximal good overlap q is the larger of the two solutions in (0, 1) of

q
p
2−1(1− q) =

1

β
√

p(p − 1)

(
E?
E∞
−

√
E 2
?

E 2
∞
− 1

)
.

With the same q, the free enegy is

F (β) = βE?q
p
2 +

1

2
log(1− q) +

1

2
β2
(

1− qp − p(1− q)qp−1
)
.
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Multi-species models



Multi-species pure p-spin models

S - a finite set of ‘species’.

Is = Is(N) - disjoint sets s.t.

{
1, 2, . . . . ,N

}
=
⋃
s∈S

Is , lim
N→∞

|Is |
N

= λ(s).

Configuration spaceConfiguration spaceConfiguration spaceConfiguration spaceConfiguration spaceConfiguration spaceConfiguration spaceConfiguration spaceConfiguration spaceConfiguration spaceConfiguration spaceConfiguration spaceConfiguration spaceConfiguration spaceConfiguration spaceConfiguration spaceConfiguration space: a product of spheres

SN :=

{
x ∈ RN : ∀s ∈ S ,

∑
i∈Is

x2
i =
|Is |
N

}
.

p = (p(s))s∈S , p(s) ∈ Z+, |p| :=
∑

s∈S p(s).

HamiltonianHamiltonianHamiltonianHamiltonianHamiltonianHamiltonianHamiltonianHamiltonianHamiltonianHamiltonianHamiltonianHamiltonianHamiltonianHamiltonianHamiltonianHamiltonianHamiltonian: HN(x) = HN,p(x) = CN,p

∑
Ji1,...,i|p|x1 · · · x|p|

Ji1,...,i|p| - iid normal variables.

Sum over indices s.t. for any s ∈ S , #{j : ij ∈ Is} = p(s).
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Multi-species mixed p-spin models

Same configuration space, and

HN(σ) =
∑
p

∆pHN,p(x),

for some numbers ∆p ≥ 0.

Covariance function: define

Rs(x, y)=
N

|Is |
∑
i∈Is

xiyi ∈ [−1, 1],

ξ(x) =
∑
p

∆2
p

∏
s∈S

x(s)p(s).

Then,

EHN(x)HN(y) = Nξ
(
(Rs(x, y))s

)
.
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The free energy

Free energy:

F (β) = lim
N→∞

1

N
E log

∫
SN

eβHN (x)dµ(x),

where µ is the product of uniform measures on each of the |S | spheres.

Barra, Contucci, Mingione and Tantari ‘15 and Panchenko ‘15

proved a Parisi formula for the free energy for multi-species Ising models.

More recently, Bates and Sohn ‘21 proved a Parisi formula for the

multi-species spherical models.

The upper bound in both cases assumes that ξ(x) is a convex function.

For the pure models, ξ(x) is concave everywhere in x!

However, the computation from the TAP representation still works in the

multi-species case.
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The free energy

Let p = (p(s))s∈S ∈ Z+ and q = (q(s))s∈S ∈ [0, 1]S .

Define

V (q) := −
∑
s∈S

λ(s) log(1− q(s)),

U(q) := 1 +
∑
s∈S

p(s)
1− q(s)

q(s)
,

and

Φ(q) :=
V (q)

U(q)
,

Ω(q) := V (q)U(q).

19



The free energy

Theorem (S. ‘21)

For the multi-species spherical pure p-spin model with |p| ≥ 3:?

(1) At βc there is a unique maximal good qc ∈ (0, 1)S and it is equal to

the unique solution of

∀s ∈ S :
λ(s)

p(s)

q(s)2

1− q(s)
= Φ(q).

(2) The critical inverse-temperature is given by

βc =

√
Φ(qc)

ξ(qc)
.

(3) The ground-state is given by

E? =
√

Ω(qc).

? Assuming the convergence of the free energy. 19



The free energy

Theorem (S. ‘21)

For the multi-species spherical pure p-spin model with |p| ≥ 3 and β > βc :

there is a unique maximal good q and it is defined by

∀s ∈ S :
1− q(s)

q(s)
=
−
√

Φ(qc) +
√

Φ(qc) + 4λ(s)
p(s)

2y?(β)
,

where y?(β) is the larger of the two solutions in (0,∞) of

y2
∏
s∈S

(−√Φ(qc) +
√

Φ(qc) + 4λ(s)
p(s)

2y
+ 1

)p(s)

= β2.

With the same q,

F (β) = β
√
ξ(q)E? +

1

2

∑
s∈S

λ(s) log(1− q(s))

+
1

2
β2

(
ξ(1)− ξ(q)− ξ(q)

∑
s∈S

p(s)
1− q(s)

q(s)

)
.

20



Free energy landscapes



Free energy landscape I

Similarly to the approach of TAP, we wish to

associate to each point m inside the sphere a

free energy.

We first associate to m the subset

Band(m) =
{

x ∈ SN : |(x−m) ·m| < δN
}
.

1
√
q

And then define

FN,β(m) =
1

N
log

∫
Band(m)

eβHN (x)dx.
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Free energy landscape I

FN,β(m) =
1

N
log

∫
Band(m)

eβHN (x)dx.

Can we find a meaningful characterizationmeaningful characterizationmeaningful characterizationmeaningful characterizationmeaningful characterizationmeaningful characterizationmeaningful characterizationmeaningful characterizationmeaningful characterizationmeaningful characterizationmeaningful characterizationmeaningful characterizationmeaningful characterizationmeaningful characterizationmeaningful characterizationmeaningful characterizationmeaningful characterization for points such that

FN,β(m) ≈ FN,β?

That is, points such that computing the free energy over the band

roughly gives the same result as computing it over the whole sphere.

Unfortunately, the set of such points is ‘too large’ to work with...
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Free energy landscape II

Define another free energy (for each m).

Consider the set of roughly orthogonalorthogonalorthogonalorthogonalorthogonalorthogonalorthogonalorthogonalorthogonalorthogonalorthogonalorthogonalorthogonalorthogonalorthogonalorthogonalorthogonal

k-tuples inside the band,

Band(m, k, ε) :=
{

(x1, . . . , xk) ∈ Band(m)k :

∀i 6= j , |(xi −m) · (xj −m)| < ε
}
,

1
√
q

and define

FN,β(m, k, ε) =
1

kN
log

∫
Band(m,k,ε)

eβ
∑k

i=1 HN (xi )dx1 · · · dxk .

Note that

FN,β(m, k, ε) ≤ FN,β(m) ≤ FN,β .
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Why work with orthogonal replicas?

Define the centered versions by replacing HN(x) by HN(x)− HN(m):

F c
N,β(m) =

1

N
log

∫
Band(m)

eβ(HN (x)−HN (m))dx,

and similarly define F c
N,β(m, kN , εN), so that

FN,β(m) =
β

N
HN(m) + F c

N,β(m),

FN,β(m, k , ε) =
β

N
HN(m) + F c

N,β(m, k , ε).

Let kN →∞ and εN → 0, going the their limit slowly.

Theorem (S. ‘18)

Uniform concentration of the centered free energy:

max
m: ‖m‖<1

∣∣F c
N,β(m, kN , εN)− EF c

N,β(m, kN , εN)
∣∣→ 0 a.s.

23



Why work with orthogonal replicas?

Define the centered versions by replacing HN(x) by HN(x)− HN(m):

F c
N,β(m) =

1

N
log

∫
Band(m)

eβ(HN (x)−HN (m))dx,

and similarly define F c
N,β(m, kN , εN), so that

FN,β(m) =
β

N
HN(m) + F c

N,β(m),

FN,β(m, k , ε) =
β

N
HN(m) + F c

N,β(m, k , ε).

Let kN →∞ and εN → 0, going the their limit slowly.

Theorem (S. ‘18)

Uniform concentration of the centered free energy:

max
m: ‖m‖<1

∣∣F c
N,β(m, kN , εN)− EF c

N,β(m, kN , εN)
∣∣→ 0 a.s.

23



Why work with orthogonal replicas?

Define the centered versions by replacing HN(x) by HN(x)− HN(m):

F c
N,β(m) =

1

N
log

∫
Band(m)

eβ(HN (x)−HN (m))dx,

and similarly define F c
N,β(m, kN , εN), so that

FN,β(m) =
β

N
HN(m) + F c

N,β(m),

FN,β(m, k , ε) =
β

N
HN(m) + F c

N,β(m, k , ε).

Let kN →∞ and εN → 0, going the their limit slowly.

Theorem (S. ‘18)

Uniform concentration of the centered free energy:

max
m: ‖m‖<1

∣∣F c
N,β(m, kN , εN)− EF c

N,β(m, kN , εN)
∣∣→ 0 a.s.

23



Why work with orthogonal replicas?

Recall that for general m,

FN,β(m, kN , εN) ≤ FN,β .

One can show that q is a good overlap, iff (w.h.p.)

∃m? ∈
√
q ·SN : FN,β(m?, kN , εN) = FN,β+o(1).

1
√
q

We can substitute FN,β(m, kN , εN) = β
NHN(m) + F c

N,β(m, kN , εN),

and use concentration to add expectationsexpectationsexpectationsexpectationsexpectationsexpectationsexpectationsexpectationsexpectationsexpectationsexpectationsexpectationsexpectationsexpectationsexpectationsexpectationsexpectations:

∀m ∈ √q · SN :
β

N
HN(m) + EF c

N,β(m, kN , εN) ≤ EFN,β ,

∃m? ∈
√
q · SN :

β

N
HN(m?) + EF c

N,β(m?, kN , εN) = EFN,β + o(1).
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TAP representation

We proved a representation for the free energy:

if q is a good overlap, for arbitray m ∈ √q · SN ,

F (β) = βE?(q)+ lim
N→∞

EF c
N,β(m, kN , εN).

1
√
q

Recall that we work with a thinthinthinthinthinthinthinthinthinthinthinthinthinthinthinthinthin band, approximately a sphere.

We can map the band to the sphere of radius 1.

This mapping gives rise to the entropy term

1

2
log(1− q) = lim

N→∞

1

N
log Vol(Band(m)),

and (after several additional steps) to the last term in the representation

F (β, q),

corresponding to the mixture ξq(t) = ξ
(
(1−q)t+q

)
−ξ(q)−ξ′(q)(1−q)t.
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Proof sketch: free energy of pure p-spin



TAP representation for pure models

For the pure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure modelspure models, the Hamiltonian is homogeneous

HN(x) :=
√
N

N∑
i1,...,ip=1

Ji1,...,ipxi1xi2 · · · xip .

Therefore, E?(q) := lim
N→∞

1

N
max

m∈√q·SN
HN(m) = q

p
2 E?.

The TAP representation becomes

q good : F (β) = βE?q
p
2 +

1

2
log(1− q) + F (β, q),

q not good : F (β) > βE?q
p
2 +

1

2
log(1− q) + F (β, q). β

F (β)

At any good q > 0, derivatives in β or q of both sides are equal.
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TAP representation for pure models

Denote by qc the maximal good overlap at βc .

From the TAP representation (with the Onsager correction),

1

2
β2
c = F (βc) = βcE?q

p
2
c +

1

2
log(1− qc) +

1

2
β2
c

(
1− qpc − p(1− qc)qp−1

c

)
.

(Eq. I)

From equality of derivatives in β,

βc =
d

dβ
F (βc) = E?q

p
2
c + βc

(
1− qpc − p(1− qc)qp−1

c

)
. (Eq. II)

From equality of derivatives in q,

0 =
d

dq
F (βc) = βcE?

p

2
q

p
2−1
c − 1

2

1

1− qc
− 1

2
β2
cp(p − 1)(1− qc)qp−2

c .

(Eq. III)

We got three equationsthree equationsthree equationsthree equationsthree equationsthree equationsthree equationsthree equationsthree equationsthree equationsthree equationsthree equationsthree equationsthree equationsthree equationsthree equationsthree equations in three variablesthree variablesthree variablesthree variablesthree variablesthree variablesthree variablesthree variablesthree variablesthree variablesthree variablesthree variablesthree variablesthree variablesthree variablesthree variablesthree variables βc , E? and qc .

Solving them yields the first theorem we saw.
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TAP representation for pure models

Denote by qc the maximal good overlap at βc .

Theorem (S. ‘21)

For the spherical pure p-spin model with p ≥ 3:

1. qc is the unique solution in (0,1) of

p(1− q) log(1− q) + pq − (p − 1)q2 = 0.

2. The critical inverse-temperature is

βc =
q
− p

2 +1
c√

p(1− qc)
.

3. The ground-state energy is

E? =

√
p − 1

p

(√
(p − 1)(1− qc) +

1√
(p − 1)(1− qc)

)
.
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TAP representation for pure models

For β > βc , we only have the last equation: if q is the maximal good overlap

then

0 =
d

dq
F (β) = βE?

p

2
q

p
2−1 − 1

2

1

1− q
− 1

2
β2p(p − 1)(1− q)qp−2.

(Eq. III)

But β is a given, and we already know the value of E?.

Solving for q we get 4 possible solutions.

We prove that the maximal good overlap can only be equal to one of them.

This gives the value of the maximal good overlap. Substituting back to the

TAP representation gives the free energy, and the second theorem we saw.
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TAP representation for pure models

For β ≤ βc , F (β) = 1
2β

2. For β > βc , the free energy is given by the following.

Define E∞ = 2
√

p−1
p .

Theorem (S. ‘21)

For the spherical pure p-spin model with p ≥ 3 and any β ≥ βc ,

the maximal good overlap q is the larger of the two solutions in (0, 1) of

q
p
2−1(1− q) =

1

β
√

p(p − 1)

(
E?
E∞
−

√
E 2
?

E 2
∞
− 1

)
.

With the same q, the free enegy is

F (β) = βE?q
p
2 +

1

2
log(1− q) +

1

2
β2
(

1− qp − p(1− q)qp−1
)
.
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Thank You!

28


	Parisi's formula for the free energy
	Thouless-Anderson-Palmer Approach (1977)
	Generalized TAP representation
	Computing the free energy from the TAP representation for pure models
	Multi-species models
	Free energy landscapes
	Proof sketch: free energy of pure p-spin

